xref: /aosp_15_r20/external/armnn/src/backends/tosaCommon/operatorMappings/ElementwiseUnaryOperator.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "ElementwiseUnaryOperator.hpp"
7 
ConvertElementwiseUnaryOperator(const Layer * layer,const std::vector<const TensorInfo * > & inputs,const std::vector<const TensorInfo * > & outputs,const ElementwiseUnaryDescriptor * unaryDescriptor)8 TosaSerializationBasicBlock* ConvertElementwiseUnaryOperator(const Layer* layer,
9                                                              const std::vector<const TensorInfo*>& inputs,
10                                                              const std::vector<const TensorInfo*>& outputs,
11                                                              const ElementwiseUnaryDescriptor* unaryDescriptor)
12 {
13     std::string input0Name = std::string("input0_");
14     std::string outputName = std::string("output0_");
15     std::string blockName  = std::string("Op_ELEMENTWISEUNARY_block_") + GetUniqueTosaMappingID();
16 
17 
18     // If a layer is present then the block will be used for execution, so input and output names need to be determined
19     // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
20     if(layer != nullptr)
21     {
22         // Get the layer connected to the input slot and determine unique the tensor name.
23         Layer& connectedLayer0 = layer->GetInputSlot(0).GetConnectedOutputSlot()->GetOwningLayer();
24         input0Name = GenerateUniqueName(connectedLayer0, 0);
25 
26         // Determine unique output tensor name.
27         outputName = GenerateUniqueOutputName(*layer, 0);
28     }
29 
30     TosaSerializationOperator* op = nullptr;
31     switch(unaryDescriptor->m_Operation)
32     {
33         case UnaryOperation::Rsqrt:
34         {
35             op = new TosaSerializationOperator(tosa::Op_RSQRT,
36                                                Attribute_NONE,
37                                                nullptr,
38                                                {input0Name},
39                                                {outputName});
40             blockName = std::string("Op_RSQRT_block_") + GetUniqueTosaMappingID();
41             break;
42         }
43         default:
44             throw armnn::Exception("ConvertElementwiseUnaryToTosaOperator: Unsupported layer type.");
45     }
46 
47     ARMNN_ASSERT(op != nullptr);
48 
49     std::vector<TosaSerializationTensor*> tensors;
50     // Only add input tensor if connected layer is an input layer.
51     // As intermediate or constant tensors will be created separately.
52     // There also can't be duplicate tensor.
53     if(input0Name.find("input0_") != std::string::npos)
54     {
55         std::vector<int32_t> inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
56         DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());
57         tensors.push_back(new TosaSerializationTensor(input0Name, inputShape0, inputDType0, {}));
58     }
59 
60     std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
61     DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
62 
63     tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
64 
65     // operatorInputNames/operatorOutputNames ends up being the same as
66     // blockInputNames/blockOutputNames for one-to-one ArmNN to Tosa mappings
67     return new TosaSerializationBasicBlock(blockName, // name
68                                            {op}, // operators
69                                            tensors, // tensors
70                                            {input0Name}, // inputs
71                                            {outputName}); // outputs
72 }