1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/audio_processing/aec3/filter_analyzer.h"
12
13 #include <math.h>
14
15 #include <algorithm>
16 #include <array>
17 #include <numeric>
18
19 #include "modules/audio_processing/aec3/aec3_common.h"
20 #include "modules/audio_processing/aec3/render_buffer.h"
21 #include "modules/audio_processing/logging/apm_data_dumper.h"
22 #include "rtc_base/checks.h"
23
24 namespace webrtc {
25 namespace {
26
FindPeakIndex(rtc::ArrayView<const float> filter_time_domain,size_t peak_index_in,size_t start_sample,size_t end_sample)27 size_t FindPeakIndex(rtc::ArrayView<const float> filter_time_domain,
28 size_t peak_index_in,
29 size_t start_sample,
30 size_t end_sample) {
31 size_t peak_index_out = peak_index_in;
32 float max_h2 =
33 filter_time_domain[peak_index_out] * filter_time_domain[peak_index_out];
34 for (size_t k = start_sample; k <= end_sample; ++k) {
35 float tmp = filter_time_domain[k] * filter_time_domain[k];
36 if (tmp > max_h2) {
37 peak_index_out = k;
38 max_h2 = tmp;
39 }
40 }
41
42 return peak_index_out;
43 }
44
45 } // namespace
46
47 std::atomic<int> FilterAnalyzer::instance_count_(0);
48
FilterAnalyzer(const EchoCanceller3Config & config,size_t num_capture_channels)49 FilterAnalyzer::FilterAnalyzer(const EchoCanceller3Config& config,
50 size_t num_capture_channels)
51 : data_dumper_(new ApmDataDumper(instance_count_.fetch_add(1) + 1)),
52 bounded_erl_(config.ep_strength.bounded_erl),
53 default_gain_(config.ep_strength.default_gain),
54 h_highpass_(num_capture_channels,
55 std::vector<float>(
56 GetTimeDomainLength(config.filter.refined.length_blocks),
57 0.f)),
58 filter_analysis_states_(num_capture_channels,
59 FilterAnalysisState(config)),
60 filter_delays_blocks_(num_capture_channels, 0) {
61 Reset();
62 }
63
64 FilterAnalyzer::~FilterAnalyzer() = default;
65
Reset()66 void FilterAnalyzer::Reset() {
67 blocks_since_reset_ = 0;
68 ResetRegion();
69 for (auto& state : filter_analysis_states_) {
70 state.Reset(default_gain_);
71 }
72 std::fill(filter_delays_blocks_.begin(), filter_delays_blocks_.end(), 0);
73 }
74
Update(rtc::ArrayView<const std::vector<float>> filters_time_domain,const RenderBuffer & render_buffer,bool * any_filter_consistent,float * max_echo_path_gain)75 void FilterAnalyzer::Update(
76 rtc::ArrayView<const std::vector<float>> filters_time_domain,
77 const RenderBuffer& render_buffer,
78 bool* any_filter_consistent,
79 float* max_echo_path_gain) {
80 RTC_DCHECK(any_filter_consistent);
81 RTC_DCHECK(max_echo_path_gain);
82 RTC_DCHECK_EQ(filters_time_domain.size(), filter_analysis_states_.size());
83 RTC_DCHECK_EQ(filters_time_domain.size(), h_highpass_.size());
84
85 ++blocks_since_reset_;
86 SetRegionToAnalyze(filters_time_domain[0].size());
87 AnalyzeRegion(filters_time_domain, render_buffer);
88
89 // Aggregate the results for all capture channels.
90 auto& st_ch0 = filter_analysis_states_[0];
91 *any_filter_consistent = st_ch0.consistent_estimate;
92 *max_echo_path_gain = st_ch0.gain;
93 min_filter_delay_blocks_ = filter_delays_blocks_[0];
94 for (size_t ch = 1; ch < filters_time_domain.size(); ++ch) {
95 auto& st_ch = filter_analysis_states_[ch];
96 *any_filter_consistent =
97 *any_filter_consistent || st_ch.consistent_estimate;
98 *max_echo_path_gain = std::max(*max_echo_path_gain, st_ch.gain);
99 min_filter_delay_blocks_ =
100 std::min(min_filter_delay_blocks_, filter_delays_blocks_[ch]);
101 }
102 }
103
AnalyzeRegion(rtc::ArrayView<const std::vector<float>> filters_time_domain,const RenderBuffer & render_buffer)104 void FilterAnalyzer::AnalyzeRegion(
105 rtc::ArrayView<const std::vector<float>> filters_time_domain,
106 const RenderBuffer& render_buffer) {
107 // Preprocess the filter to avoid issues with low-frequency components in the
108 // filter.
109 PreProcessFilters(filters_time_domain);
110 data_dumper_->DumpRaw("aec3_linear_filter_processed_td", h_highpass_[0]);
111
112 constexpr float kOneByBlockSize = 1.f / kBlockSize;
113 for (size_t ch = 0; ch < filters_time_domain.size(); ++ch) {
114 RTC_DCHECK_LT(region_.start_sample_, filters_time_domain[ch].size());
115 RTC_DCHECK_LT(region_.end_sample_, filters_time_domain[ch].size());
116
117 auto& st_ch = filter_analysis_states_[ch];
118 RTC_DCHECK_EQ(h_highpass_[ch].size(), filters_time_domain[ch].size());
119 RTC_DCHECK_GT(h_highpass_[ch].size(), 0);
120 st_ch.peak_index = std::min(st_ch.peak_index, h_highpass_[ch].size() - 1);
121
122 st_ch.peak_index =
123 FindPeakIndex(h_highpass_[ch], st_ch.peak_index, region_.start_sample_,
124 region_.end_sample_);
125 filter_delays_blocks_[ch] = st_ch.peak_index >> kBlockSizeLog2;
126 UpdateFilterGain(h_highpass_[ch], &st_ch);
127 st_ch.filter_length_blocks =
128 filters_time_domain[ch].size() * kOneByBlockSize;
129
130 st_ch.consistent_estimate = st_ch.consistent_filter_detector.Detect(
131 h_highpass_[ch], region_,
132 render_buffer.GetBlock(-filter_delays_blocks_[ch]), st_ch.peak_index,
133 filter_delays_blocks_[ch]);
134 }
135 }
136
UpdateFilterGain(rtc::ArrayView<const float> filter_time_domain,FilterAnalysisState * st)137 void FilterAnalyzer::UpdateFilterGain(
138 rtc::ArrayView<const float> filter_time_domain,
139 FilterAnalysisState* st) {
140 bool sufficient_time_to_converge =
141 blocks_since_reset_ > 5 * kNumBlocksPerSecond;
142
143 if (sufficient_time_to_converge && st->consistent_estimate) {
144 st->gain = fabsf(filter_time_domain[st->peak_index]);
145 } else {
146 // TODO(peah): Verify whether this check against a float is ok.
147 if (st->gain) {
148 st->gain = std::max(st->gain, fabsf(filter_time_domain[st->peak_index]));
149 }
150 }
151
152 if (bounded_erl_ && st->gain) {
153 st->gain = std::max(st->gain, 0.01f);
154 }
155 }
156
PreProcessFilters(rtc::ArrayView<const std::vector<float>> filters_time_domain)157 void FilterAnalyzer::PreProcessFilters(
158 rtc::ArrayView<const std::vector<float>> filters_time_domain) {
159 for (size_t ch = 0; ch < filters_time_domain.size(); ++ch) {
160 RTC_DCHECK_LT(region_.start_sample_, filters_time_domain[ch].size());
161 RTC_DCHECK_LT(region_.end_sample_, filters_time_domain[ch].size());
162
163 RTC_DCHECK_GE(h_highpass_[ch].capacity(), filters_time_domain[ch].size());
164 h_highpass_[ch].resize(filters_time_domain[ch].size());
165 // Minimum phase high-pass filter with cutoff frequency at about 600 Hz.
166 constexpr std::array<float, 3> h = {
167 {0.7929742f, -0.36072128f, -0.47047766f}};
168
169 std::fill(h_highpass_[ch].begin() + region_.start_sample_,
170 h_highpass_[ch].begin() + region_.end_sample_ + 1, 0.f);
171 float* h_highpass_ch = h_highpass_[ch].data();
172 const float* filters_time_domain_ch = filters_time_domain[ch].data();
173 const size_t region_end = region_.end_sample_;
174 for (size_t k = std::max(h.size() - 1, region_.start_sample_);
175 k <= region_end; ++k) {
176 float tmp = h_highpass_ch[k];
177 for (size_t j = 0; j < h.size(); ++j) {
178 tmp += filters_time_domain_ch[k - j] * h[j];
179 }
180 h_highpass_ch[k] = tmp;
181 }
182 }
183 }
184
ResetRegion()185 void FilterAnalyzer::ResetRegion() {
186 region_.start_sample_ = 0;
187 region_.end_sample_ = 0;
188 }
189
SetRegionToAnalyze(size_t filter_size)190 void FilterAnalyzer::SetRegionToAnalyze(size_t filter_size) {
191 constexpr size_t kNumberBlocksToUpdate = 1;
192 auto& r = region_;
193 r.start_sample_ = r.end_sample_ >= filter_size - 1 ? 0 : r.end_sample_ + 1;
194 r.end_sample_ =
195 std::min(r.start_sample_ + kNumberBlocksToUpdate * kBlockSize - 1,
196 filter_size - 1);
197
198 // Check range.
199 RTC_DCHECK_LT(r.start_sample_, filter_size);
200 RTC_DCHECK_LT(r.end_sample_, filter_size);
201 RTC_DCHECK_LE(r.start_sample_, r.end_sample_);
202 }
203
ConsistentFilterDetector(const EchoCanceller3Config & config)204 FilterAnalyzer::ConsistentFilterDetector::ConsistentFilterDetector(
205 const EchoCanceller3Config& config)
206 : active_render_threshold_(config.render_levels.active_render_limit *
207 config.render_levels.active_render_limit *
208 kFftLengthBy2) {
209 Reset();
210 }
211
Reset()212 void FilterAnalyzer::ConsistentFilterDetector::Reset() {
213 significant_peak_ = false;
214 filter_floor_accum_ = 0.f;
215 filter_secondary_peak_ = 0.f;
216 filter_floor_low_limit_ = 0;
217 filter_floor_high_limit_ = 0;
218 consistent_estimate_counter_ = 0;
219 consistent_delay_reference_ = -10;
220 }
221
Detect(rtc::ArrayView<const float> filter_to_analyze,const FilterRegion & region,const Block & x_block,size_t peak_index,int delay_blocks)222 bool FilterAnalyzer::ConsistentFilterDetector::Detect(
223 rtc::ArrayView<const float> filter_to_analyze,
224 const FilterRegion& region,
225 const Block& x_block,
226 size_t peak_index,
227 int delay_blocks) {
228 if (region.start_sample_ == 0) {
229 filter_floor_accum_ = 0.f;
230 filter_secondary_peak_ = 0.f;
231 filter_floor_low_limit_ = peak_index < 64 ? 0 : peak_index - 64;
232 filter_floor_high_limit_ =
233 peak_index > filter_to_analyze.size() - 129 ? 0 : peak_index + 128;
234 }
235
236 float filter_floor_accum = filter_floor_accum_;
237 float filter_secondary_peak = filter_secondary_peak_;
238 for (size_t k = region.start_sample_;
239 k < std::min(region.end_sample_ + 1, filter_floor_low_limit_); ++k) {
240 float abs_h = fabsf(filter_to_analyze[k]);
241 filter_floor_accum += abs_h;
242 filter_secondary_peak = std::max(filter_secondary_peak, abs_h);
243 }
244
245 for (size_t k = std::max(filter_floor_high_limit_, region.start_sample_);
246 k <= region.end_sample_; ++k) {
247 float abs_h = fabsf(filter_to_analyze[k]);
248 filter_floor_accum += abs_h;
249 filter_secondary_peak = std::max(filter_secondary_peak, abs_h);
250 }
251 filter_floor_accum_ = filter_floor_accum;
252 filter_secondary_peak_ = filter_secondary_peak;
253
254 if (region.end_sample_ == filter_to_analyze.size() - 1) {
255 float filter_floor = filter_floor_accum_ /
256 (filter_floor_low_limit_ + filter_to_analyze.size() -
257 filter_floor_high_limit_);
258
259 float abs_peak = fabsf(filter_to_analyze[peak_index]);
260 significant_peak_ = abs_peak > 10.f * filter_floor &&
261 abs_peak > 2.f * filter_secondary_peak_;
262 }
263
264 if (significant_peak_) {
265 bool active_render_block = false;
266 for (int ch = 0; ch < x_block.NumChannels(); ++ch) {
267 rtc::ArrayView<const float, kBlockSize> x_channel =
268 x_block.View(/*band=*/0, ch);
269 const float x_energy = std::inner_product(
270 x_channel.begin(), x_channel.end(), x_channel.begin(), 0.f);
271 if (x_energy > active_render_threshold_) {
272 active_render_block = true;
273 break;
274 }
275 }
276
277 if (consistent_delay_reference_ == delay_blocks) {
278 if (active_render_block) {
279 ++consistent_estimate_counter_;
280 }
281 } else {
282 consistent_estimate_counter_ = 0;
283 consistent_delay_reference_ = delay_blocks;
284 }
285 }
286 return consistent_estimate_counter_ > 1.5f * kNumBlocksPerSecond;
287 }
288
289 } // namespace webrtc
290