1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 // ALGORITHM OVERVIEW
17 // ==================
18 //
19 // An XLA cluster hoists all resource reads to be beginning of the cluster
20 // execution and all the resource writes to the end. This means it cannot
21 // enforce arbitrary ordering dependencies (via control or data edges) between
22 // resource operations. Since all resource reads happen before all resource
23 // writes, edges constraining resource reads to happen before resource writes
24 // are fine, but all other kinds of edges are problematic. This analysis
25 // computes the set of pairs of resource operations that cannot be put in the
26 // same cluster because XLA cannot respect the dependencies between them in the
27 // TensorFlow program.
28 //
29 // TODO(b/112856632): We can, in theory, support Read->Read and Write->Write
30 // dependencies.
31 //
32 // Specifically the result computed by this analysis contains the edge {W, R}
33 // iff all of these hold true:
34 //
35 // - In the graph (g - {edges from NextIteration to Merge}) there is a path
36 // from W to R.
37 // - IsEdgeSafe(W, R) == False [defined below]
38 // - W != R (note: some resource operations both read from and write to
39 // resource variables).
40 //
41 // The result is incorrect around loops because we ignore edges from
42 // NextIteration to Merge. For instance, in:
43 //
44 // Init -----> Merge <-------+
45 // | |
46 // v |
47 // Read |
48 // | |
49 // v |
50 // Write |
51 // | |
52 // v |
53 // NextIteration --+
54 //
55 // we won't put (Read, Write) in the returned set. This is fine if
56 // auto-clustering can only cluster the Read->Write edge, but it is a problem if
57 // it clusters the Write->NextIteration->Merge->Read edges instead. So we rely
58 // on auto-clustering to not cluster NextIteration->Merge edges. The same
59 // problem is present for the functional version of the loop above and we also
60 // rely on auto-clustering not clustering functional while loops containing
61 // resource operations.
62 //
63 // One way to think about this is that we only care about cases where two nodes,
64 // A and B, would normally have been put in the same cluster but cannot legally
65 // be in the same cluster because of resourcevar-dependencies. If A and B would
66 // normally have been put in the same cluster then all paths between A and B
67 // would have to be clusterable (otherwise we'd have introduced a cycle). Ergo
68 // there could not have been a NextIteration->Merge edge between A and B since
69 // we don't cluster these edges.
70 //
71 // IMPLEMENTATION
72 // --------------
73 //
74 // We traverse the graph minus backedges in reverse post order, mapping each
75 // node to the set of resource operation reaching that node. Since we visit
76 // producers before consumers, we can construct the set of reaching operations
77 // by taking the union of the operations reaching the input nodes. These
78 // "reaching resource operations" can then be used to create the pairs of
79 // incompatible nodes using `IsEdgeSafe`.
80
81 #include "tensorflow/compiler/jit/resource_operation_safety_analysis.h"
82
83 #include "absl/container/flat_hash_set.h"
84 #include "absl/memory/memory.h"
85 #include "absl/strings/str_join.h"
86 #include "absl/types/optional.h"
87 #include "tensorflow/compiler/jit/xla_cluster_util.h"
88 #include "tensorflow/compiler/tf2xla/resource_operation_table.h"
89 #include "tensorflow/core/framework/node_def.pb.h"
90 #include "tensorflow/core/graph/algorithm.h"
91 #include "tensorflow/core/graph/tensor_id.h"
92 #include "tensorflow/core/lib/hash/hash.h"
93 #include "tensorflow/core/util/ptr_util.h"
94
95 namespace tensorflow {
96 namespace {
97 // Maps `n` to the XlaResourceOpKind corresponding to its operation. If `n` is
98 // not a resource operation recognized by XLA then sets `out_resource_op_kind`
99 // to nullopt.
XlaResourceOpKindForNode(const Node & n,const FunctionLibraryDefinition * flib_def,const std::function<Status (const Node &,bool *)> & resource_ops_to_ignore,std::optional<XlaResourceOpKind> * out_resource_op_kind)100 Status XlaResourceOpKindForNode(
101 const Node& n, const FunctionLibraryDefinition* flib_def,
102 const std::function<Status(const Node&, bool*)>& resource_ops_to_ignore,
103 std::optional<XlaResourceOpKind>* out_resource_op_kind) {
104 bool should_ignore = false;
105 if (resource_ops_to_ignore) {
106 TF_RETURN_IF_ERROR(resource_ops_to_ignore(n, &should_ignore));
107 }
108 if (should_ignore) {
109 *out_resource_op_kind = std::nullopt;
110 return OkStatus();
111 }
112
113 const XlaResourceOpInfo* op_info = GetResourceOpInfoForOp(n.type_string());
114 if (op_info) {
115 *out_resource_op_kind = op_info->kind();
116 return OkStatus();
117 }
118
119 // We conservatively assume that functions will both read and write resource
120 // variables. In the future we may consider doing some form of
121 // inter-procedural analysis.
122 if (MayCallFunction(n, flib_def)) {
123 *out_resource_op_kind = XlaResourceOpKind::kReadWrite;
124 } else {
125 *out_resource_op_kind = std::nullopt;
126 }
127
128 return OkStatus();
129 }
130
131 // Returns true if a control or data dependence from a TensorFlow operation of
132 // resource op kind `from` to a TensorFlow operation of resource op kind `to`
133 // can be represented by an XLA cluster and needs no special handling around
134 // auto-jit.
IsEdgeSafe(XlaResourceOpKind from,XlaResourceOpKind to)135 bool IsEdgeSafe(XlaResourceOpKind from, XlaResourceOpKind to) {
136 // XLA clusters force all reads to happen before all writes. Moreover the set
137 // of reads are executed as one atomic operation, and the set of writes are as
138 // another atomic operation. This means we can faithfully represent the
139 // following edges: Read->*, *->Write.
140
141 return from == XlaResourceOpKind::kRead || to == XlaResourceOpKind::kWrite;
142 }
143
144 using ResourceOp = std::pair<int, XlaResourceOpKind>;
145
ResourceOpToString(const ResourceOp & resource_op)146 string ResourceOpToString(const ResourceOp& resource_op) {
147 return absl::StrCat(
148 resource_op.first, ": ",
149 XlaResourceOpInfo::XlaResourceOpKindToString(resource_op.second));
150 }
151
152 // A copy-on-write set used to store the set of ResourceOps reaching a node in a
153 // TensorFlow graph.
154 //
155 // TODO(sanjoy): It may be useful to pull this out into its own header at some
156 // point.
157 class ResourceOpSet {
158 private:
159 using Impl = absl::flat_hash_set<ResourceOp>;
160
161 public:
162 ResourceOpSet() = default;
163
164 // Adds all ResourceOp s in `other` to this set.
Add(const ResourceOpSet & other)165 void Add(const ResourceOpSet& other) {
166 CHECK(!frozen_);
167 if (other.impl_ == impl_) {
168 other.frozen_ = true;
169 return;
170 }
171
172 if (!impl_) {
173 other.frozen_ = true;
174 impl_ = other.impl_;
175 return;
176 }
177
178 for (ResourceOp resource_op : other) {
179 Add(resource_op);
180 }
181 }
182
Add(const ResourceOp & resource_op)183 void Add(const ResourceOp& resource_op) {
184 CHECK(!frozen_);
185 if (!IsCopy() && Contains(resource_op)) {
186 // We can avoid the copy if the item we want to insert already exists.
187 return;
188 }
189
190 EnsureIsCopied();
191 impl_->insert(resource_op);
192 }
193
begin() const194 Impl::const_iterator begin() const {
195 return impl_ ? impl_->begin() : GetEmptyImpl()->begin();
196 }
197
end() const198 Impl::const_iterator end() const {
199 return impl_ ? impl_->end() : GetEmptyImpl()->end();
200 }
201
Contains(const ResourceOp & resource_op) const202 bool Contains(const ResourceOp& resource_op) const {
203 return impl_ != nullptr && impl_->count(resource_op);
204 }
205
206 private:
IsCopy() const207 bool IsCopy() const { return storage_ != nullptr; }
208
EnsureIsCopied()209 void EnsureIsCopied() {
210 if (storage_ == nullptr) {
211 storage_ = std::make_unique<Impl>();
212 for (ResourceOp op : *this) {
213 storage_->insert(op);
214 }
215 impl_ = storage_.get();
216 }
217 }
218
GetEmptyImpl()219 static Impl* GetEmptyImpl() {
220 static Impl* empty_impl = new Impl;
221 return empty_impl;
222 }
223
224 Impl* impl_ = nullptr;
225 std::unique_ptr<Impl> storage_;
226
227 // frozen_ is true if there is another set pointing to this set's impl_. We
228 // can no longer add elements to this set in that case since the sets pointing
229 // to this set expect the contents of this set to be stable.
230 mutable bool frozen_ = false;
231
232 TF_DISALLOW_COPY_AND_ASSIGN(ResourceOpSet);
233 };
234
ResourceOpSetToString(const ResourceOpSet & resource_op_set)235 string ResourceOpSetToString(const ResourceOpSet& resource_op_set) {
236 std::vector<string> elements_debug_string;
237 std::transform(resource_op_set.begin(), resource_op_set.end(),
238 std::back_inserter(elements_debug_string), ResourceOpToString);
239 return absl::StrCat("{", absl::StrJoin(elements_debug_string, ","), "}");
240 }
241
NodeToString(const Node & n,XlaResourceOpKind resource_op_kind)242 string NodeToString(const Node& n, XlaResourceOpKind resource_op_kind) {
243 return absl::StrCat(
244 "[", n.name(), ": ", n.type_string(), "(",
245 XlaResourceOpInfo::XlaResourceOpKindToString(resource_op_kind), ")", "]");
246 }
247 } // namespace
248
ComputeIncompatibleResourceOperationPairs(const Graph & g,const FunctionLibraryDefinition * flib_def,const std::function<Status (const Node &,bool *)> & resource_ops_to_ignore,std::vector<std::pair<int,int>> * result)249 Status ComputeIncompatibleResourceOperationPairs(
250 const Graph& g, const FunctionLibraryDefinition* flib_def,
251 const std::function<Status(const Node&, bool*)>& resource_ops_to_ignore,
252 std::vector<std::pair<int, int>>* result) {
253 CHECK(result->empty());
254
255 std::vector<Node*> rpo;
256 GetReversePostOrder(g, &rpo, /*stable_comparator=*/NodeComparatorName(),
257 /*edge_filter=*/[](const Edge& edge) {
258 return !edge.src()->IsNextIteration();
259 });
260
261 auto resource_op_set_for_node =
262 std::make_unique<ResourceOpSet[]>(g.num_node_ids());
263
264 const bool vlog = VLOG_IS_ON(2);
265
266 for (Node* n : rpo) {
267 std::optional<XlaResourceOpKind> op_kind;
268 TF_RETURN_IF_ERROR(XlaResourceOpKindForNode(
269 *n, flib_def, resource_ops_to_ignore, &op_kind));
270
271 ResourceOpSet* resource_op_set = &resource_op_set_for_node[n->id()];
272
273 // Merge the reaching resource operations for all the incoming edges to
274 // create the set of all possible resource ops reaching `n`.
275 for (const Edge* e : n->in_edges()) {
276 if (n->IsMerge() && e->src()->IsNextIteration()) {
277 // Ignore back-edges (see file comment).
278 continue;
279 }
280
281 const ResourceOpSet& incoming_op_set =
282 resource_op_set_for_node[e->src()->id()];
283 resource_op_set->Add(incoming_op_set);
284 }
285
286 // Add to the "incompatible resource ops" set if necessary.
287 if (op_kind) {
288 for (ResourceOp incoming_op : *resource_op_set) {
289 if (IsEdgeSafe(incoming_op.second, *op_kind)) {
290 continue;
291 }
292
293 if (vlog) {
294 VLOG(2) << "Unsafe edge: "
295 << NodeToString(*g.FindNodeId(incoming_op.first),
296 incoming_op.second)
297 << " -> " << NodeToString(*n, *op_kind);
298 }
299 result->push_back({incoming_op.first, n->id()});
300 }
301
302 // Some graphs might have a lot of 'kRead' kinds, but they are always safe
303 // for incoming ops, so not storing them might save a lot of memory.
304 if (op_kind != XlaResourceOpKind::kRead) {
305 resource_op_set->Add({n->id(), *op_kind});
306 }
307 }
308
309 if (vlog) {
310 VLOG(3) << n->name() << " -> " << ResourceOpSetToString(*resource_op_set);
311 }
312 }
313
314 std::sort(result->begin(), result->end());
315 CHECK(std::unique(result->begin(), result->end()) == result->end());
316
317 return OkStatus();
318 }
319 } // namespace tensorflow
320