xref: /aosp_15_r20/external/eigen/test/array_cwise.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
12 
13 // Test the corner cases of pow(x, y) for real types.
14 template<typename Scalar>
pow_test()15 void pow_test() {
16   const Scalar zero = Scalar(0);
17   const Scalar eps = Eigen::NumTraits<Scalar>::epsilon();
18   const Scalar one = Scalar(1);
19   const Scalar two = Scalar(2);
20   const Scalar three = Scalar(3);
21   const Scalar sqrt_half = Scalar(std::sqrt(0.5));
22   const Scalar sqrt2 = Scalar(std::sqrt(2));
23   const Scalar inf = Eigen::NumTraits<Scalar>::infinity();
24   const Scalar nan = Eigen::NumTraits<Scalar>::quiet_NaN();
25   const Scalar denorm_min = std::numeric_limits<Scalar>::denorm_min();
26   const Scalar min = (std::numeric_limits<Scalar>::min)();
27   const Scalar max = (std::numeric_limits<Scalar>::max)();
28   const Scalar max_exp = (static_cast<Scalar>(int(Eigen::NumTraits<Scalar>::max_exponent())) * Scalar(EIGEN_LN2)) / eps;
29 
30   const static Scalar abs_vals[] = {zero,
31                                     denorm_min,
32                                     min,
33                                     eps,
34                                     sqrt_half,
35                                     one,
36                                     sqrt2,
37                                     two,
38                                     three,
39                                     max_exp,
40                                     max,
41                                     inf,
42                                     nan};
43   const int abs_cases = 13;
44   const int num_cases = 2*abs_cases * 2*abs_cases;
45   // Repeat the same value to make sure we hit the vectorized path.
46   const int num_repeats = 32;
47   Array<Scalar, Dynamic, Dynamic> x(num_repeats, num_cases);
48   Array<Scalar, Dynamic, Dynamic> y(num_repeats, num_cases);
49   int count = 0;
50   for (int i = 0; i < abs_cases; ++i) {
51     const Scalar abs_x = abs_vals[i];
52     for (int sign_x = 0; sign_x < 2; ++sign_x) {
53       Scalar x_case = sign_x == 0 ? -abs_x : abs_x;
54       for (int j = 0; j < abs_cases; ++j) {
55         const Scalar abs_y = abs_vals[j];
56         for (int sign_y = 0; sign_y < 2; ++sign_y) {
57           Scalar y_case = sign_y == 0 ? -abs_y : abs_y;
58           for (int repeat = 0; repeat < num_repeats; ++repeat) {
59             x(repeat, count) = x_case;
60             y(repeat, count) = y_case;
61           }
62           ++count;
63         }
64       }
65     }
66   }
67 
68   Array<Scalar, Dynamic, Dynamic> actual = x.pow(y);
69   const Scalar tol = test_precision<Scalar>();
70   bool all_pass = true;
71   for (int i = 0; i < 1; ++i) {
72     for (int j = 0; j < num_cases; ++j) {
73       Scalar e = static_cast<Scalar>(std::pow(x(i,j), y(i,j)));
74       Scalar a = actual(i, j);
75       bool fail = !(a==e) && !internal::isApprox(a, e, tol) && !((numext::isnan)(a) && (numext::isnan)(e));
76       all_pass &= !fail;
77       if (fail) {
78         std::cout << "pow(" << x(i,j) << "," << y(i,j) << ")   =   " << a << " !=  " << e << std::endl;
79       }
80     }
81   }
82   VERIFY(all_pass);
83 }
84 
array(const ArrayType & m)85 template<typename ArrayType> void array(const ArrayType& m)
86 {
87   typedef typename ArrayType::Scalar Scalar;
88   typedef typename ArrayType::RealScalar RealScalar;
89   typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
90   typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
91 
92   Index rows = m.rows();
93   Index cols = m.cols();
94 
95   ArrayType m1 = ArrayType::Random(rows, cols),
96              m2 = ArrayType::Random(rows, cols),
97              m3(rows, cols);
98   ArrayType m4 = m1; // copy constructor
99   VERIFY_IS_APPROX(m1, m4);
100 
101   ColVectorType cv1 = ColVectorType::Random(rows);
102   RowVectorType rv1 = RowVectorType::Random(cols);
103 
104   Scalar  s1 = internal::random<Scalar>(),
105           s2 = internal::random<Scalar>();
106 
107   // scalar addition
108   VERIFY_IS_APPROX(m1 + s1, s1 + m1);
109   VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
110   VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
111   VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
112   VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
113   VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
114   m3 = m1;
115   m3 += s2;
116   VERIFY_IS_APPROX(m3, m1 + s2);
117   m3 = m1;
118   m3 -= s1;
119   VERIFY_IS_APPROX(m3, m1 - s1);
120 
121   // scalar operators via Maps
122   m3 = m1;
123   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
124   VERIFY_IS_APPROX(m1, m3 - m2);
125 
126   m3 = m1;
127   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
128   VERIFY_IS_APPROX(m1, m3 + m2);
129 
130   m3 = m1;
131   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
132   VERIFY_IS_APPROX(m1, m3 * m2);
133 
134   m3 = m1;
135   m2 = ArrayType::Random(rows,cols);
136   m2 = (m2==0).select(1,m2);
137   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
138   VERIFY_IS_APPROX(m1, m3 / m2);
139 
140   // reductions
141   VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum());
142   VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum());
143   using std::abs;
144   VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum());
145   VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum());
146   if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
147       VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
148   VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>()));
149 
150   // vector-wise ops
151   m3 = m1;
152   VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
153   m3 = m1;
154   VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
155   m3 = m1;
156   VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
157   m3 = m1;
158   VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
159 
160   // Conversion from scalar
161   VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1));
162   VERIFY_IS_APPROX((m3 = 1),  ArrayType::Constant(rows,cols,1));
163   VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1),  ArrayType::Constant(rows,cols,1));
164   typedef Array<Scalar,
165                 ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime,
166                 ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime,
167                 ArrayType::Options> FixedArrayType;
168   {
169     FixedArrayType f1(s1);
170     VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
171     FixedArrayType f2(numext::real(s1));
172     VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
173     FixedArrayType f3((int)100*numext::real(s1));
174     VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
175     f1.setRandom();
176     FixedArrayType f4(f1.data());
177     VERIFY_IS_APPROX(f4, f1);
178   }
179   #if EIGEN_HAS_CXX11
180   {
181     FixedArrayType f1{s1};
182     VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
183     FixedArrayType f2{numext::real(s1)};
184     VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
185     FixedArrayType f3{(int)100*numext::real(s1)};
186     VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
187     f1.setRandom();
188     FixedArrayType f4{f1.data()};
189     VERIFY_IS_APPROX(f4, f1);
190   }
191   #endif
192 
193   // pow
194   VERIFY_IS_APPROX(m1.pow(2), m1.square());
195   VERIFY_IS_APPROX(pow(m1,2), m1.square());
196   VERIFY_IS_APPROX(m1.pow(3), m1.cube());
197   VERIFY_IS_APPROX(pow(m1,3), m1.cube());
198   VERIFY_IS_APPROX((-m1).pow(3), -m1.cube());
199   VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube());
200   ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
201   VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
202   VERIFY_IS_APPROX(m1.pow(exponents), m1.square());
203   VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square());
204   VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square());
205   VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
206   VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
207   VERIFY_IS_APPROX(Eigen::pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
208 
209   // Check possible conflicts with 1D ctor
210   typedef Array<Scalar, Dynamic, 1> OneDArrayType;
211   {
212     OneDArrayType o1(rows);
213     VERIFY(o1.size()==rows);
214     OneDArrayType o2(static_cast<int>(rows));
215     VERIFY(o2.size()==rows);
216   }
217   #if EIGEN_HAS_CXX11
218   {
219     OneDArrayType o1{rows};
220     VERIFY(o1.size()==rows);
221     OneDArrayType o4{int(rows)};
222     VERIFY(o4.size()==rows);
223   }
224   #endif
225   // Check possible conflicts with 2D ctor
226   typedef Array<Scalar, Dynamic, Dynamic> TwoDArrayType;
227   typedef Array<Scalar, 2, 1> ArrayType2;
228   {
229     TwoDArrayType o1(rows,cols);
230     VERIFY(o1.rows()==rows);
231     VERIFY(o1.cols()==cols);
232     TwoDArrayType o2(static_cast<int>(rows),static_cast<int>(cols));
233     VERIFY(o2.rows()==rows);
234     VERIFY(o2.cols()==cols);
235 
236     ArrayType2 o3(rows,cols);
237     VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols));
238     ArrayType2 o4(static_cast<int>(rows),static_cast<int>(cols));
239     VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols));
240   }
241   #if EIGEN_HAS_CXX11
242   {
243     TwoDArrayType o1{rows,cols};
244     VERIFY(o1.rows()==rows);
245     VERIFY(o1.cols()==cols);
246     TwoDArrayType o2{int(rows),int(cols)};
247     VERIFY(o2.rows()==rows);
248     VERIFY(o2.cols()==cols);
249 
250     ArrayType2 o3{rows,cols};
251     VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols));
252     ArrayType2 o4{int(rows),int(cols)};
253     VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols));
254   }
255   #endif
256 }
257 
comparisons(const ArrayType & m)258 template<typename ArrayType> void comparisons(const ArrayType& m)
259 {
260   using std::abs;
261   typedef typename ArrayType::Scalar Scalar;
262   typedef typename NumTraits<Scalar>::Real RealScalar;
263 
264   Index rows = m.rows();
265   Index cols = m.cols();
266 
267   Index r = internal::random<Index>(0, rows-1),
268         c = internal::random<Index>(0, cols-1);
269 
270   ArrayType m1 = ArrayType::Random(rows, cols),
271             m2 = ArrayType::Random(rows, cols),
272             m3(rows, cols),
273             m4 = m1;
274 
275   m4 = (m4.abs()==Scalar(0)).select(1,m4);
276 
277   VERIFY(((m1 + Scalar(1)) > m1).all());
278   VERIFY(((m1 - Scalar(1)) < m1).all());
279   if (rows*cols>1)
280   {
281     m3 = m1;
282     m3(r,c) += 1;
283     VERIFY(! (m1 < m3).all() );
284     VERIFY(! (m1 > m3).all() );
285   }
286   VERIFY(!(m1 > m2 && m1 < m2).any());
287   VERIFY((m1 <= m2 || m1 >= m2).all());
288 
289   // comparisons array to scalar
290   VERIFY( (m1 != (m1(r,c)+1) ).any() );
291   VERIFY( (m1 >  (m1(r,c)-1) ).any() );
292   VERIFY( (m1 <  (m1(r,c)+1) ).any() );
293   VERIFY( (m1 ==  m1(r,c)    ).any() );
294 
295   // comparisons scalar to array
296   VERIFY( ( (m1(r,c)+1) != m1).any() );
297   VERIFY( ( (m1(r,c)-1) <  m1).any() );
298   VERIFY( ( (m1(r,c)+1) >  m1).any() );
299   VERIFY( (  m1(r,c)    == m1).any() );
300 
301   // test Select
302   VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
303   VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
304   Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
305   for (int j=0; j<cols; ++j)
306   for (int i=0; i<rows; ++i)
307     m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
308   VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
309                         .select(ArrayType::Zero(rows,cols),m1), m3);
310   // shorter versions:
311   VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
312                         .select(0,m1), m3);
313   VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
314                         .select(m1,0), m3);
315   // even shorter version:
316   VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
317 
318   // count
319   VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
320 
321   // and/or
322   VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
323   VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
324   RealScalar a = m1.abs().mean();
325   VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());
326 
327   typedef Array<Index, Dynamic, 1> ArrayOfIndices;
328 
329   // TODO allows colwise/rowwise for array
330   VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
331   VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
332 }
333 
array_real(const ArrayType & m)334 template<typename ArrayType> void array_real(const ArrayType& m)
335 {
336   using std::abs;
337   using std::sqrt;
338   typedef typename ArrayType::Scalar Scalar;
339   typedef typename NumTraits<Scalar>::Real RealScalar;
340 
341   Index rows = m.rows();
342   Index cols = m.cols();
343 
344   ArrayType m1 = ArrayType::Random(rows, cols),
345             m2 = ArrayType::Random(rows, cols),
346             m3(rows, cols),
347             m4 = m1;
348 
349   m4 = (m4.abs()==Scalar(0)).select(Scalar(1),m4);
350 
351   Scalar  s1 = internal::random<Scalar>();
352 
353   // these tests are mostly to check possible compilation issues with free-functions.
354   VERIFY_IS_APPROX(m1.sin(), sin(m1));
355   VERIFY_IS_APPROX(m1.cos(), cos(m1));
356   VERIFY_IS_APPROX(m1.tan(), tan(m1));
357   VERIFY_IS_APPROX(m1.asin(), asin(m1));
358   VERIFY_IS_APPROX(m1.acos(), acos(m1));
359   VERIFY_IS_APPROX(m1.atan(), atan(m1));
360   VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
361   VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
362   VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
363 #if EIGEN_HAS_CXX11_MATH
364   VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1)));
365   VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1)));
366   VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1)));
367 #endif
368   VERIFY_IS_APPROX(m1.logistic(), logistic(m1));
369 
370   VERIFY_IS_APPROX(m1.arg(), arg(m1));
371   VERIFY_IS_APPROX(m1.round(), round(m1));
372   VERIFY_IS_APPROX(m1.rint(), rint(m1));
373   VERIFY_IS_APPROX(m1.floor(), floor(m1));
374   VERIFY_IS_APPROX(m1.ceil(), ceil(m1));
375   VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
376   VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
377   VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
378   VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
379   VERIFY_IS_APPROX(m1.abs(), abs(m1));
380   VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
381   VERIFY_IS_APPROX(m1.square(), square(m1));
382   VERIFY_IS_APPROX(m1.cube(), cube(m1));
383   VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
384   VERIFY_IS_APPROX(m1.sign(), sign(m1));
385   VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all());
386 
387   // avoid inf and NaNs so verification doesn't fail
388   m3 = m4.abs();
389   VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3)));
390   VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m3)));
391   VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m3)));
392   VERIFY_IS_APPROX(m3.log(), log(m3));
393   VERIFY_IS_APPROX(m3.log1p(), log1p(m3));
394   VERIFY_IS_APPROX(m3.log10(), log10(m3));
395   VERIFY_IS_APPROX(m3.log2(), log2(m3));
396 
397 
398   VERIFY((!(m1>m2) == (m1<=m2)).all());
399 
400   VERIFY_IS_APPROX(sin(m1.asin()), m1);
401   VERIFY_IS_APPROX(cos(m1.acos()), m1);
402   VERIFY_IS_APPROX(tan(m1.atan()), m1);
403   VERIFY_IS_APPROX(sinh(m1), Scalar(0.5)*(exp(m1)-exp(-m1)));
404   VERIFY_IS_APPROX(cosh(m1), Scalar(0.5)*(exp(m1)+exp(-m1)));
405   VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5)*(exp(m1)-exp(-m1)))/(Scalar(0.5)*(exp(m1)+exp(-m1))));
406   VERIFY_IS_APPROX(logistic(m1), (Scalar(1)/(Scalar(1)+exp(-m1))));
407   VERIFY_IS_APPROX(arg(m1), ((m1<Scalar(0)).template cast<Scalar>())*Scalar(std::acos(Scalar(-1))));
408   VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
409   VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all());
410   VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all());
411   VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all());
412   VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all());
413   VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all());
414   VERIFY((Eigen::isnan)((m1*Scalar(0))/Scalar(0)).all());
415   VERIFY((Eigen::isinf)(m4/Scalar(0)).all());
416   VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*Scalar(0)/Scalar(0))) && (!(Eigen::isfinite)(m4/Scalar(0)))).all());
417   VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
418   VERIFY((abs(m1) == m1 || abs(m1) == -m1).all());
419   VERIFY_IS_APPROX(m3, sqrt(abs2(m3)));
420   VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1));
421   VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
422   VERIFY_IS_APPROX( m1*m1.sign(),m1.abs());
423   VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1);
424 
425   VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
426   VERIFY_IS_APPROX(numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1));
427   if(!NumTraits<Scalar>::IsComplex)
428     VERIFY_IS_APPROX(numext::real(m1), m1);
429 
430   // shift argument of logarithm so that it is not zero
431   Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
432   VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m3) + smallNumber));
433   VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log() , log1p(abs(m3) + smallNumber));
434 
435   VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
436   VERIFY_IS_APPROX(m1.exp(), exp(m1));
437   VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
438 
439   VERIFY_IS_APPROX(m1.expm1(), expm1(m1));
440   VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber));
441 
442   VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
443   VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
444 
445   VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt());
446   VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt());
447 
448   // Avoid inf and NaN.
449   m3 = (m1.square()<NumTraits<Scalar>::epsilon()).select(Scalar(1),m3);
450   VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse());
451   pow_test<Scalar>();
452 
453   VERIFY_IS_APPROX(log10(m3), log(m3)/numext::log(Scalar(10)));
454   VERIFY_IS_APPROX(log2(m3), log(m3)/numext::log(Scalar(2)));
455 
456   // scalar by array division
457   const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
458   s1 += Scalar(tiny);
459   m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
460   VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
461 
462   // check inplace transpose
463   m3 = m1;
464   m3.transposeInPlace();
465   VERIFY_IS_APPROX(m3, m1.transpose());
466   m3.transposeInPlace();
467   VERIFY_IS_APPROX(m3, m1);
468 }
469 
array_complex(const ArrayType & m)470 template<typename ArrayType> void array_complex(const ArrayType& m)
471 {
472   typedef typename ArrayType::Scalar Scalar;
473   typedef typename NumTraits<Scalar>::Real RealScalar;
474 
475   Index rows = m.rows();
476   Index cols = m.cols();
477 
478   ArrayType m1 = ArrayType::Random(rows, cols),
479             m2(rows, cols),
480             m4 = m1;
481 
482   m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real());
483   m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag());
484 
485   Array<RealScalar, -1, -1> m3(rows, cols);
486 
487   for (Index i = 0; i < m.rows(); ++i)
488     for (Index j = 0; j < m.cols(); ++j)
489       m2(i,j) = sqrt(m1(i,j));
490 
491   // these tests are mostly to check possible compilation issues with free-functions.
492   VERIFY_IS_APPROX(m1.sin(), sin(m1));
493   VERIFY_IS_APPROX(m1.cos(), cos(m1));
494   VERIFY_IS_APPROX(m1.tan(), tan(m1));
495   VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
496   VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
497   VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
498   VERIFY_IS_APPROX(m1.logistic(), logistic(m1));
499   VERIFY_IS_APPROX(m1.arg(), arg(m1));
500   VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
501   VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
502   VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
503   VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
504   VERIFY_IS_APPROX(m1.log(), log(m1));
505   VERIFY_IS_APPROX(m1.log10(), log10(m1));
506   VERIFY_IS_APPROX(m1.log2(), log2(m1));
507   VERIFY_IS_APPROX(m1.abs(), abs(m1));
508   VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
509   VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1));
510   VERIFY_IS_APPROX(m1.square(), square(m1));
511   VERIFY_IS_APPROX(m1.cube(), cube(m1));
512   VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
513   VERIFY_IS_APPROX(m1.sign(), sign(m1));
514 
515 
516   VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
517   VERIFY_IS_APPROX(m1.exp(), exp(m1));
518   VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
519 
520   VERIFY_IS_APPROX(m1.expm1(), expm1(m1));
521   VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.);
522   // Check for larger magnitude complex numbers that expm1 matches exp - 1.
523   VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.);
524 
525   VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
526   VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
527   VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
528   VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0 + exp(-m1))));
529 
530   for (Index i = 0; i < m.rows(); ++i)
531     for (Index j = 0; j < m.cols(); ++j)
532       m3(i,j) = std::atan2(m1(i,j).imag(), m1(i,j).real());
533   VERIFY_IS_APPROX(arg(m1), m3);
534 
535   std::complex<RealScalar> zero(0.0,0.0);
536   VERIFY((Eigen::isnan)(m1*zero/zero).all());
537 #if EIGEN_COMP_MSVC
538   // msvc complex division is not robust
539   VERIFY((Eigen::isinf)(m4/RealScalar(0)).all());
540 #else
541 #if EIGEN_COMP_CLANG
542   // clang's complex division is notoriously broken too
543   if((numext::isinf)(m4(0,0)/RealScalar(0))) {
544 #endif
545     VERIFY((Eigen::isinf)(m4/zero).all());
546 #if EIGEN_COMP_CLANG
547   }
548   else
549   {
550     VERIFY((Eigen::isinf)(m4.real()/zero.real()).all());
551   }
552 #endif
553 #endif // MSVC
554 
555   VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all());
556 
557   VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
558   VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
559   VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real())+square(m1.imag())));
560   VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1)));
561   VERIFY_IS_APPROX(log10(m1), log(m1)/log(10));
562   VERIFY_IS_APPROX(log2(m1), log(m1)/log(2));
563 
564   VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
565   VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1);
566 
567   // scalar by array division
568   Scalar  s1 = internal::random<Scalar>();
569   const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon());
570   s1 += Scalar(tiny);
571   m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
572   VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
573 
574   // check inplace transpose
575   m2 = m1;
576   m2.transposeInPlace();
577   VERIFY_IS_APPROX(m2, m1.transpose());
578   m2.transposeInPlace();
579   VERIFY_IS_APPROX(m2, m1);
580   // Check vectorized inplace transpose.
581   ArrayType m5 = ArrayType::Random(131, 131);
582   ArrayType m6 = m5;
583   m6.transposeInPlace();
584   VERIFY_IS_APPROX(m6, m5.transpose());
585 }
586 
min_max(const ArrayType & m)587 template<typename ArrayType> void min_max(const ArrayType& m)
588 {
589   typedef typename ArrayType::Scalar Scalar;
590 
591   Index rows = m.rows();
592   Index cols = m.cols();
593 
594   ArrayType m1 = ArrayType::Random(rows, cols);
595 
596   // min/max with array
597   Scalar maxM1 = m1.maxCoeff();
598   Scalar minM1 = m1.minCoeff();
599 
600   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
601   VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));
602 
603   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
604   VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));
605 
606   // min/max with scalar input
607   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
608   VERIFY_IS_APPROX(m1, (m1.min)( maxM1));
609 
610   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
611   VERIFY_IS_APPROX(m1, (m1.max)( minM1));
612 
613 
614   // min/max with various NaN propagation options.
615   if (m1.size() > 1 && !NumTraits<Scalar>::IsInteger) {
616     m1(0,0) = NumTraits<Scalar>::quiet_NaN();
617     maxM1 = m1.template maxCoeff<PropagateNaN>();
618     minM1 = m1.template minCoeff<PropagateNaN>();
619     VERIFY((numext::isnan)(maxM1));
620     VERIFY((numext::isnan)(minM1));
621 
622     maxM1 = m1.template maxCoeff<PropagateNumbers>();
623     minM1 = m1.template minCoeff<PropagateNumbers>();
624     VERIFY(!(numext::isnan)(maxM1));
625     VERIFY(!(numext::isnan)(minM1));
626   }
627 }
628 
629 template<int N>
630 struct shift_left {
631   template<typename Scalar>
operator ()shift_left632   Scalar operator()(const Scalar& v) const {
633     return v << N;
634   }
635 };
636 
637 template<int N>
638 struct arithmetic_shift_right {
639   template<typename Scalar>
operator ()arithmetic_shift_right640   Scalar operator()(const Scalar& v) const {
641     return v >> N;
642   }
643 };
644 
array_integer(const ArrayType & m)645 template<typename ArrayType> void array_integer(const ArrayType& m)
646 {
647   Index rows = m.rows();
648   Index cols = m.cols();
649 
650   ArrayType m1 = ArrayType::Random(rows, cols),
651             m2(rows, cols);
652 
653   m2 = m1.template shiftLeft<2>();
654   VERIFY( (m2 == m1.unaryExpr(shift_left<2>())).all() );
655   m2 = m1.template shiftLeft<9>();
656   VERIFY( (m2 == m1.unaryExpr(shift_left<9>())).all() );
657 
658   m2 = m1.template shiftRight<2>();
659   VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<2>())).all() );
660   m2 = m1.template shiftRight<9>();
661   VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<9>())).all() );
662 }
663 
EIGEN_DECLARE_TEST(array_cwise)664 EIGEN_DECLARE_TEST(array_cwise)
665 {
666   for(int i = 0; i < g_repeat; i++) {
667     CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
668     CALL_SUBTEST_2( array(Array22f()) );
669     CALL_SUBTEST_3( array(Array44d()) );
670     CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
671     CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
672     CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
673     CALL_SUBTEST_6( array(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
674     CALL_SUBTEST_6( array_integer(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
675     CALL_SUBTEST_6( array_integer(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
676   }
677   for(int i = 0; i < g_repeat; i++) {
678     CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
679     CALL_SUBTEST_2( comparisons(Array22f()) );
680     CALL_SUBTEST_3( comparisons(Array44d()) );
681     CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
682     CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
683   }
684   for(int i = 0; i < g_repeat; i++) {
685     CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
686     CALL_SUBTEST_2( min_max(Array22f()) );
687     CALL_SUBTEST_3( min_max(Array44d()) );
688     CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
689     CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
690   }
691   for(int i = 0; i < g_repeat; i++) {
692     CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
693     CALL_SUBTEST_2( array_real(Array22f()) );
694     CALL_SUBTEST_3( array_real(Array44d()) );
695     CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
696     CALL_SUBTEST_7( array_real(Array<Eigen::half, 32, 32>()) );
697     CALL_SUBTEST_8( array_real(Array<Eigen::bfloat16, 32, 32>()) );
698   }
699   for(int i = 0; i < g_repeat; i++) {
700     CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
701   }
702 
703   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
704   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
705   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
706   typedef CwiseUnaryOp<internal::scalar_abs_op<double>, ArrayXd > Xpr;
707   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
708                            ArrayBase<Xpr>
709                          >::value));
710 }
711