1 /*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "p2p/client/basic_port_allocator.h"
12
13 #include <algorithm>
14 #include <functional>
15 #include <memory>
16 #include <set>
17 #include <string>
18 #include <utility>
19 #include <vector>
20
21 #include "absl/algorithm/container.h"
22 #include "absl/memory/memory.h"
23 #include "absl/strings/string_view.h"
24 #include "api/task_queue/pending_task_safety_flag.h"
25 #include "api/transport/field_trial_based_config.h"
26 #include "api/units/time_delta.h"
27 #include "p2p/base/basic_packet_socket_factory.h"
28 #include "p2p/base/port.h"
29 #include "p2p/base/stun_port.h"
30 #include "p2p/base/tcp_port.h"
31 #include "p2p/base/turn_port.h"
32 #include "p2p/base/udp_port.h"
33 #include "rtc_base/checks.h"
34 #include "rtc_base/experiments/field_trial_parser.h"
35 #include "rtc_base/helpers.h"
36 #include "rtc_base/logging.h"
37 #include "rtc_base/network_constants.h"
38 #include "rtc_base/strings/string_builder.h"
39 #include "rtc_base/trace_event.h"
40 #include "system_wrappers/include/metrics.h"
41
42 namespace cricket {
43 namespace {
44 using ::rtc::CreateRandomId;
45 using ::webrtc::SafeTask;
46 using ::webrtc::TimeDelta;
47
48 const int PHASE_UDP = 0;
49 const int PHASE_RELAY = 1;
50 const int PHASE_TCP = 2;
51
52 const int kNumPhases = 3;
53
54 // Gets protocol priority: UDP > TCP > SSLTCP == TLS.
GetProtocolPriority(cricket::ProtocolType protocol)55 int GetProtocolPriority(cricket::ProtocolType protocol) {
56 switch (protocol) {
57 case cricket::PROTO_UDP:
58 return 2;
59 case cricket::PROTO_TCP:
60 return 1;
61 case cricket::PROTO_SSLTCP:
62 case cricket::PROTO_TLS:
63 return 0;
64 default:
65 RTC_DCHECK_NOTREACHED();
66 return 0;
67 }
68 }
69 // Gets address family priority: IPv6 > IPv4 > Unspecified.
GetAddressFamilyPriority(int ip_family)70 int GetAddressFamilyPriority(int ip_family) {
71 switch (ip_family) {
72 case AF_INET6:
73 return 2;
74 case AF_INET:
75 return 1;
76 default:
77 RTC_DCHECK_NOTREACHED();
78 return 0;
79 }
80 }
81
82 // Returns positive if a is better, negative if b is better, and 0 otherwise.
ComparePort(const cricket::Port * a,const cricket::Port * b)83 int ComparePort(const cricket::Port* a, const cricket::Port* b) {
84 int a_protocol = GetProtocolPriority(a->GetProtocol());
85 int b_protocol = GetProtocolPriority(b->GetProtocol());
86 int cmp_protocol = a_protocol - b_protocol;
87 if (cmp_protocol != 0) {
88 return cmp_protocol;
89 }
90
91 int a_family = GetAddressFamilyPriority(a->Network()->GetBestIP().family());
92 int b_family = GetAddressFamilyPriority(b->Network()->GetBestIP().family());
93 return a_family - b_family;
94 }
95
96 struct NetworkFilter {
97 using Predicate = std::function<bool(const rtc::Network*)>;
NetworkFiltercricket::__anon5c8be1460111::NetworkFilter98 NetworkFilter(Predicate pred, absl::string_view description)
99 : predRemain(
100 [pred](const rtc::Network* network) { return !pred(network); }),
101 description(description) {}
102 Predicate predRemain;
103 const std::string description;
104 };
105
FilterNetworks(std::vector<const rtc::Network * > * networks,NetworkFilter filter)106 void FilterNetworks(std::vector<const rtc::Network*>* networks,
107 NetworkFilter filter) {
108 auto start_to_remove =
109 std::partition(networks->begin(), networks->end(), filter.predRemain);
110 if (start_to_remove == networks->end()) {
111 return;
112 }
113 RTC_LOG(LS_INFO) << "Filtered out " << filter.description << " networks:";
114 for (auto it = start_to_remove; it != networks->end(); ++it) {
115 RTC_LOG(LS_INFO) << (*it)->ToString();
116 }
117 networks->erase(start_to_remove, networks->end());
118 }
119
IsAllowedByCandidateFilter(const Candidate & c,uint32_t filter)120 bool IsAllowedByCandidateFilter(const Candidate& c, uint32_t filter) {
121 // When binding to any address, before sending packets out, the getsockname
122 // returns all 0s, but after sending packets, it'll be the NIC used to
123 // send. All 0s is not a valid ICE candidate address and should be filtered
124 // out.
125 if (c.address().IsAnyIP()) {
126 return false;
127 }
128
129 if (c.type() == RELAY_PORT_TYPE) {
130 return ((filter & CF_RELAY) != 0);
131 } else if (c.type() == STUN_PORT_TYPE) {
132 return ((filter & CF_REFLEXIVE) != 0);
133 } else if (c.type() == LOCAL_PORT_TYPE) {
134 if ((filter & CF_REFLEXIVE) && !c.address().IsPrivateIP()) {
135 // We allow host candidates if the filter allows server-reflexive
136 // candidates and the candidate is a public IP. Because we don't generate
137 // server-reflexive candidates if they have the same IP as the host
138 // candidate (i.e. when the host candidate is a public IP), filtering to
139 // only server-reflexive candidates won't work right when the host
140 // candidates have public IPs.
141 return true;
142 }
143
144 return ((filter & CF_HOST) != 0);
145 }
146 return false;
147 }
148
NetworksToString(const std::vector<const rtc::Network * > & networks)149 std::string NetworksToString(const std::vector<const rtc::Network*>& networks) {
150 rtc::StringBuilder ost;
151 for (auto n : networks) {
152 ost << n->name() << " ";
153 }
154 return ost.Release();
155 }
156
IsDiversifyIpv6InterfacesEnabled(const webrtc::FieldTrialsView * field_trials)157 bool IsDiversifyIpv6InterfacesEnabled(
158 const webrtc::FieldTrialsView* field_trials) {
159 // webrtc:14334: Improve IPv6 network resolution and candidate creation
160 if (field_trials &&
161 field_trials->IsEnabled("WebRTC-IPv6NetworkResolutionFixes")) {
162 webrtc::FieldTrialParameter<bool> diversify_ipv6_interfaces(
163 "DiversifyIpv6Interfaces", false);
164 webrtc::ParseFieldTrial(
165 {&diversify_ipv6_interfaces},
166 field_trials->Lookup("WebRTC-IPv6NetworkResolutionFixes"));
167 return diversify_ipv6_interfaces;
168 }
169 return false;
170 }
171
172 } // namespace
173
174 const uint32_t DISABLE_ALL_PHASES =
175 PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_TCP |
176 PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY;
177
178 // BasicPortAllocator
BasicPortAllocator(rtc::NetworkManager * network_manager,rtc::PacketSocketFactory * socket_factory,webrtc::TurnCustomizer * customizer,RelayPortFactoryInterface * relay_port_factory,const webrtc::FieldTrialsView * field_trials)179 BasicPortAllocator::BasicPortAllocator(
180 rtc::NetworkManager* network_manager,
181 rtc::PacketSocketFactory* socket_factory,
182 webrtc::TurnCustomizer* customizer,
183 RelayPortFactoryInterface* relay_port_factory,
184 const webrtc::FieldTrialsView* field_trials)
185 : field_trials_(field_trials),
186 network_manager_(network_manager),
187 socket_factory_(socket_factory) {
188 Init(relay_port_factory);
189 RTC_DCHECK(relay_port_factory_ != nullptr);
190 RTC_DCHECK(network_manager_ != nullptr);
191 RTC_CHECK(socket_factory_ != nullptr);
192 SetConfiguration(ServerAddresses(), std::vector<RelayServerConfig>(), 0,
193 webrtc::NO_PRUNE, customizer);
194 }
195
BasicPortAllocator(rtc::NetworkManager * network_manager,std::unique_ptr<rtc::PacketSocketFactory> owned_socket_factory,const webrtc::FieldTrialsView * field_trials)196 BasicPortAllocator::BasicPortAllocator(
197 rtc::NetworkManager* network_manager,
198 std::unique_ptr<rtc::PacketSocketFactory> owned_socket_factory,
199 const webrtc::FieldTrialsView* field_trials)
200 : field_trials_(field_trials),
201 network_manager_(network_manager),
202 socket_factory_(std::move(owned_socket_factory)) {
203 Init(nullptr);
204 RTC_DCHECK(relay_port_factory_ != nullptr);
205 RTC_DCHECK(network_manager_ != nullptr);
206 RTC_CHECK(socket_factory_ != nullptr);
207 }
208
BasicPortAllocator(rtc::NetworkManager * network_manager,std::unique_ptr<rtc::PacketSocketFactory> owned_socket_factory,const ServerAddresses & stun_servers,const webrtc::FieldTrialsView * field_trials)209 BasicPortAllocator::BasicPortAllocator(
210 rtc::NetworkManager* network_manager,
211 std::unique_ptr<rtc::PacketSocketFactory> owned_socket_factory,
212 const ServerAddresses& stun_servers,
213 const webrtc::FieldTrialsView* field_trials)
214 : field_trials_(field_trials),
215 network_manager_(network_manager),
216 socket_factory_(std::move(owned_socket_factory)) {
217 Init(nullptr);
218 RTC_DCHECK(relay_port_factory_ != nullptr);
219 RTC_DCHECK(network_manager_ != nullptr);
220 RTC_CHECK(socket_factory_ != nullptr);
221 SetConfiguration(stun_servers, std::vector<RelayServerConfig>(), 0,
222 webrtc::NO_PRUNE, nullptr);
223 }
224
BasicPortAllocator(rtc::NetworkManager * network_manager,rtc::PacketSocketFactory * socket_factory,const ServerAddresses & stun_servers,const webrtc::FieldTrialsView * field_trials)225 BasicPortAllocator::BasicPortAllocator(
226 rtc::NetworkManager* network_manager,
227 rtc::PacketSocketFactory* socket_factory,
228 const ServerAddresses& stun_servers,
229 const webrtc::FieldTrialsView* field_trials)
230 : field_trials_(field_trials),
231 network_manager_(network_manager),
232 socket_factory_(socket_factory) {
233 Init(nullptr);
234 RTC_DCHECK(relay_port_factory_ != nullptr);
235 RTC_DCHECK(network_manager_ != nullptr);
236 RTC_CHECK(socket_factory_ != nullptr);
237 SetConfiguration(stun_servers, std::vector<RelayServerConfig>(), 0,
238 webrtc::NO_PRUNE, nullptr);
239 }
240
OnIceRegathering(PortAllocatorSession * session,IceRegatheringReason reason)241 void BasicPortAllocator::OnIceRegathering(PortAllocatorSession* session,
242 IceRegatheringReason reason) {
243 // If the session has not been taken by an active channel, do not report the
244 // metric.
245 for (auto& allocator_session : pooled_sessions()) {
246 if (allocator_session.get() == session) {
247 return;
248 }
249 }
250
251 RTC_HISTOGRAM_ENUMERATION("WebRTC.PeerConnection.IceRegatheringReason",
252 static_cast<int>(reason),
253 static_cast<int>(IceRegatheringReason::MAX_VALUE));
254 }
255
~BasicPortAllocator()256 BasicPortAllocator::~BasicPortAllocator() {
257 CheckRunOnValidThreadIfInitialized();
258 // Our created port allocator sessions depend on us, so destroy our remaining
259 // pooled sessions before anything else.
260 DiscardCandidatePool();
261 }
262
SetNetworkIgnoreMask(int network_ignore_mask)263 void BasicPortAllocator::SetNetworkIgnoreMask(int network_ignore_mask) {
264 // TODO(phoglund): implement support for other types than loopback.
265 // See https://code.google.com/p/webrtc/issues/detail?id=4288.
266 // Then remove set_network_ignore_list from NetworkManager.
267 CheckRunOnValidThreadIfInitialized();
268 network_ignore_mask_ = network_ignore_mask;
269 }
270
GetNetworkIgnoreMask() const271 int BasicPortAllocator::GetNetworkIgnoreMask() const {
272 CheckRunOnValidThreadIfInitialized();
273 int mask = network_ignore_mask_;
274 switch (vpn_preference_) {
275 case webrtc::VpnPreference::kOnlyUseVpn:
276 mask |= ~static_cast<int>(rtc::ADAPTER_TYPE_VPN);
277 break;
278 case webrtc::VpnPreference::kNeverUseVpn:
279 mask |= static_cast<int>(rtc::ADAPTER_TYPE_VPN);
280 break;
281 default:
282 break;
283 }
284 return mask;
285 }
286
CreateSessionInternal(absl::string_view content_name,int component,absl::string_view ice_ufrag,absl::string_view ice_pwd)287 PortAllocatorSession* BasicPortAllocator::CreateSessionInternal(
288 absl::string_view content_name,
289 int component,
290 absl::string_view ice_ufrag,
291 absl::string_view ice_pwd) {
292 CheckRunOnValidThreadAndInitialized();
293 PortAllocatorSession* session = new BasicPortAllocatorSession(
294 this, std::string(content_name), component, std::string(ice_ufrag),
295 std::string(ice_pwd));
296 session->SignalIceRegathering.connect(this,
297 &BasicPortAllocator::OnIceRegathering);
298 return session;
299 }
300
AddTurnServerForTesting(const RelayServerConfig & turn_server)301 void BasicPortAllocator::AddTurnServerForTesting(
302 const RelayServerConfig& turn_server) {
303 CheckRunOnValidThreadAndInitialized();
304 std::vector<RelayServerConfig> new_turn_servers = turn_servers();
305 new_turn_servers.push_back(turn_server);
306 SetConfiguration(stun_servers(), new_turn_servers, candidate_pool_size(),
307 turn_port_prune_policy(), turn_customizer());
308 }
309
Init(RelayPortFactoryInterface * relay_port_factory)310 void BasicPortAllocator::Init(RelayPortFactoryInterface* relay_port_factory) {
311 if (relay_port_factory != nullptr) {
312 relay_port_factory_ = relay_port_factory;
313 } else {
314 default_relay_port_factory_.reset(new TurnPortFactory());
315 relay_port_factory_ = default_relay_port_factory_.get();
316 }
317 }
318
319 // BasicPortAllocatorSession
BasicPortAllocatorSession(BasicPortAllocator * allocator,absl::string_view content_name,int component,absl::string_view ice_ufrag,absl::string_view ice_pwd)320 BasicPortAllocatorSession::BasicPortAllocatorSession(
321 BasicPortAllocator* allocator,
322 absl::string_view content_name,
323 int component,
324 absl::string_view ice_ufrag,
325 absl::string_view ice_pwd)
326 : PortAllocatorSession(content_name,
327 component,
328 ice_ufrag,
329 ice_pwd,
330 allocator->flags()),
331 allocator_(allocator),
332 network_thread_(rtc::Thread::Current()),
333 socket_factory_(allocator->socket_factory()),
334 allocation_started_(false),
335 network_manager_started_(false),
336 allocation_sequences_created_(false),
337 turn_port_prune_policy_(allocator->turn_port_prune_policy()) {
338 TRACE_EVENT0("webrtc",
339 "BasicPortAllocatorSession::BasicPortAllocatorSession");
340 allocator_->network_manager()->SignalNetworksChanged.connect(
341 this, &BasicPortAllocatorSession::OnNetworksChanged);
342 allocator_->network_manager()->StartUpdating();
343 }
344
~BasicPortAllocatorSession()345 BasicPortAllocatorSession::~BasicPortAllocatorSession() {
346 TRACE_EVENT0("webrtc",
347 "BasicPortAllocatorSession::~BasicPortAllocatorSession");
348 RTC_DCHECK_RUN_ON(network_thread_);
349 allocator_->network_manager()->StopUpdating();
350
351 for (uint32_t i = 0; i < sequences_.size(); ++i) {
352 // AllocationSequence should clear it's map entry for turn ports before
353 // ports are destroyed.
354 sequences_[i]->Clear();
355 }
356
357 std::vector<PortData>::iterator it;
358 for (it = ports_.begin(); it != ports_.end(); it++)
359 delete it->port();
360
361 configs_.clear();
362
363 for (uint32_t i = 0; i < sequences_.size(); ++i)
364 delete sequences_[i];
365 }
366
allocator()367 BasicPortAllocator* BasicPortAllocatorSession::allocator() {
368 RTC_DCHECK_RUN_ON(network_thread_);
369 return allocator_;
370 }
371
SetCandidateFilter(uint32_t filter)372 void BasicPortAllocatorSession::SetCandidateFilter(uint32_t filter) {
373 RTC_DCHECK_RUN_ON(network_thread_);
374 if (filter == candidate_filter_) {
375 return;
376 }
377 uint32_t prev_filter = candidate_filter_;
378 candidate_filter_ = filter;
379 for (PortData& port_data : ports_) {
380 if (port_data.error() || port_data.pruned()) {
381 continue;
382 }
383 PortData::State cur_state = port_data.state();
384 bool found_signalable_candidate = false;
385 bool found_pairable_candidate = false;
386 cricket::Port* port = port_data.port();
387 for (const auto& c : port->Candidates()) {
388 if (!IsStopped() && !IsAllowedByCandidateFilter(c, prev_filter) &&
389 IsAllowedByCandidateFilter(c, filter)) {
390 // This candidate was not signaled because of not matching the previous
391 // filter (see OnCandidateReady below). Let the Port to fire the signal
392 // again.
393 //
394 // Note that
395 // 1) we would need the Port to enter the state of in-progress of
396 // gathering to have candidates signaled;
397 //
398 // 2) firing the signal would also let the session set the port ready
399 // if needed, so that we could form candidate pairs with candidates
400 // from this port;
401 //
402 // * See again OnCandidateReady below for 1) and 2).
403 //
404 // 3) we only try to resurface candidates if we have not stopped
405 // getting ports, which is always true for the continual gathering.
406 if (!found_signalable_candidate) {
407 found_signalable_candidate = true;
408 port_data.set_state(PortData::STATE_INPROGRESS);
409 }
410 port->SignalCandidateReady(port, c);
411 }
412
413 if (CandidatePairable(c, port)) {
414 found_pairable_candidate = true;
415 }
416 }
417 // Restore the previous state.
418 port_data.set_state(cur_state);
419 // Setting a filter may cause a ready port to become non-ready
420 // if it no longer has any pairable candidates.
421 //
422 // Note that we only set for the negative case here, since a port would be
423 // set to have pairable candidates when it signals a ready candidate, which
424 // requires the port is still in the progress of gathering/surfacing
425 // candidates, and would be done in the firing of the signal above.
426 if (!found_pairable_candidate) {
427 port_data.set_has_pairable_candidate(false);
428 }
429 }
430 }
431
StartGettingPorts()432 void BasicPortAllocatorSession::StartGettingPorts() {
433 RTC_DCHECK_RUN_ON(network_thread_);
434 state_ = SessionState::GATHERING;
435
436 network_thread_->PostTask(
437 SafeTask(network_safety_.flag(), [this] { GetPortConfigurations(); }));
438
439 RTC_LOG(LS_INFO) << "Start getting ports with turn_port_prune_policy "
440 << turn_port_prune_policy_;
441 }
442
StopGettingPorts()443 void BasicPortAllocatorSession::StopGettingPorts() {
444 RTC_DCHECK_RUN_ON(network_thread_);
445 ClearGettingPorts();
446 // Note: this must be called after ClearGettingPorts because both may set the
447 // session state and we should set the state to STOPPED.
448 state_ = SessionState::STOPPED;
449 }
450
ClearGettingPorts()451 void BasicPortAllocatorSession::ClearGettingPorts() {
452 RTC_DCHECK_RUN_ON(network_thread_);
453 ++allocation_epoch_;
454 for (uint32_t i = 0; i < sequences_.size(); ++i) {
455 sequences_[i]->Stop();
456 }
457 network_thread_->PostTask(
458 SafeTask(network_safety_.flag(), [this] { OnConfigStop(); }));
459 state_ = SessionState::CLEARED;
460 }
461
IsGettingPorts()462 bool BasicPortAllocatorSession::IsGettingPorts() {
463 RTC_DCHECK_RUN_ON(network_thread_);
464 return state_ == SessionState::GATHERING;
465 }
466
IsCleared() const467 bool BasicPortAllocatorSession::IsCleared() const {
468 RTC_DCHECK_RUN_ON(network_thread_);
469 return state_ == SessionState::CLEARED;
470 }
471
IsStopped() const472 bool BasicPortAllocatorSession::IsStopped() const {
473 RTC_DCHECK_RUN_ON(network_thread_);
474 return state_ == SessionState::STOPPED;
475 }
476
477 std::vector<const rtc::Network*>
GetFailedNetworks()478 BasicPortAllocatorSession::GetFailedNetworks() {
479 RTC_DCHECK_RUN_ON(network_thread_);
480
481 std::vector<const rtc::Network*> networks = GetNetworks();
482 // A network interface may have both IPv4 and IPv6 networks. Only if
483 // neither of the networks has any connections, the network interface
484 // is considered failed and need to be regathered on.
485 std::set<std::string> networks_with_connection;
486 for (const PortData& data : ports_) {
487 Port* port = data.port();
488 if (!port->connections().empty()) {
489 networks_with_connection.insert(port->Network()->name());
490 }
491 }
492
493 networks.erase(
494 std::remove_if(networks.begin(), networks.end(),
495 [networks_with_connection](const rtc::Network* network) {
496 // If a network does not have any connection, it is
497 // considered failed.
498 return networks_with_connection.find(network->name()) !=
499 networks_with_connection.end();
500 }),
501 networks.end());
502 return networks;
503 }
504
RegatherOnFailedNetworks()505 void BasicPortAllocatorSession::RegatherOnFailedNetworks() {
506 RTC_DCHECK_RUN_ON(network_thread_);
507
508 // Find the list of networks that have no connection.
509 std::vector<const rtc::Network*> failed_networks = GetFailedNetworks();
510 if (failed_networks.empty()) {
511 return;
512 }
513
514 RTC_LOG(LS_INFO) << "Regather candidates on failed networks";
515
516 // Mark a sequence as "network failed" if its network is in the list of failed
517 // networks, so that it won't be considered as equivalent when the session
518 // regathers ports and candidates.
519 for (AllocationSequence* sequence : sequences_) {
520 if (!sequence->network_failed() &&
521 absl::c_linear_search(failed_networks, sequence->network())) {
522 sequence->set_network_failed();
523 }
524 }
525
526 bool disable_equivalent_phases = true;
527 Regather(failed_networks, disable_equivalent_phases,
528 IceRegatheringReason::NETWORK_FAILURE);
529 }
530
Regather(const std::vector<const rtc::Network * > & networks,bool disable_equivalent_phases,IceRegatheringReason reason)531 void BasicPortAllocatorSession::Regather(
532 const std::vector<const rtc::Network*>& networks,
533 bool disable_equivalent_phases,
534 IceRegatheringReason reason) {
535 RTC_DCHECK_RUN_ON(network_thread_);
536 // Remove ports from being used locally and send signaling to remove
537 // the candidates on the remote side.
538 std::vector<PortData*> ports_to_prune = GetUnprunedPorts(networks);
539 if (!ports_to_prune.empty()) {
540 RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size() << " ports";
541 PrunePortsAndRemoveCandidates(ports_to_prune);
542 }
543
544 if (allocation_started_ && network_manager_started_ && !IsStopped()) {
545 SignalIceRegathering(this, reason);
546
547 DoAllocate(disable_equivalent_phases);
548 }
549 }
550
GetCandidateStatsFromReadyPorts(CandidateStatsList * candidate_stats_list) const551 void BasicPortAllocatorSession::GetCandidateStatsFromReadyPorts(
552 CandidateStatsList* candidate_stats_list) const {
553 auto ports = ReadyPorts();
554 for (auto* port : ports) {
555 auto candidates = port->Candidates();
556 for (const auto& candidate : candidates) {
557 absl::optional<StunStats> stun_stats;
558 port->GetStunStats(&stun_stats);
559 CandidateStats candidate_stats(allocator_->SanitizeCandidate(candidate),
560 std::move(stun_stats));
561 candidate_stats_list->push_back(std::move(candidate_stats));
562 }
563 }
564 }
565
SetStunKeepaliveIntervalForReadyPorts(const absl::optional<int> & stun_keepalive_interval)566 void BasicPortAllocatorSession::SetStunKeepaliveIntervalForReadyPorts(
567 const absl::optional<int>& stun_keepalive_interval) {
568 RTC_DCHECK_RUN_ON(network_thread_);
569 auto ports = ReadyPorts();
570 for (PortInterface* port : ports) {
571 // The port type and protocol can be used to identify different subclasses
572 // of Port in the current implementation. Note that a TCPPort has the type
573 // LOCAL_PORT_TYPE but uses the protocol PROTO_TCP.
574 if (port->Type() == STUN_PORT_TYPE ||
575 (port->Type() == LOCAL_PORT_TYPE && port->GetProtocol() == PROTO_UDP)) {
576 static_cast<UDPPort*>(port)->set_stun_keepalive_delay(
577 stun_keepalive_interval);
578 }
579 }
580 }
581
ReadyPorts() const582 std::vector<PortInterface*> BasicPortAllocatorSession::ReadyPorts() const {
583 RTC_DCHECK_RUN_ON(network_thread_);
584 std::vector<PortInterface*> ret;
585 for (const PortData& data : ports_) {
586 if (data.ready()) {
587 ret.push_back(data.port());
588 }
589 }
590 return ret;
591 }
592
ReadyCandidates() const593 std::vector<Candidate> BasicPortAllocatorSession::ReadyCandidates() const {
594 RTC_DCHECK_RUN_ON(network_thread_);
595 std::vector<Candidate> candidates;
596 for (const PortData& data : ports_) {
597 if (!data.ready()) {
598 continue;
599 }
600 GetCandidatesFromPort(data, &candidates);
601 }
602 return candidates;
603 }
604
GetCandidatesFromPort(const PortData & data,std::vector<Candidate> * candidates) const605 void BasicPortAllocatorSession::GetCandidatesFromPort(
606 const PortData& data,
607 std::vector<Candidate>* candidates) const {
608 RTC_DCHECK_RUN_ON(network_thread_);
609 RTC_CHECK(candidates != nullptr);
610 for (const Candidate& candidate : data.port()->Candidates()) {
611 if (!CheckCandidateFilter(candidate)) {
612 continue;
613 }
614 candidates->push_back(allocator_->SanitizeCandidate(candidate));
615 }
616 }
617
MdnsObfuscationEnabled() const618 bool BasicPortAllocator::MdnsObfuscationEnabled() const {
619 return network_manager()->GetMdnsResponder() != nullptr;
620 }
621
CandidatesAllocationDone() const622 bool BasicPortAllocatorSession::CandidatesAllocationDone() const {
623 RTC_DCHECK_RUN_ON(network_thread_);
624 // Done only if all required AllocationSequence objects
625 // are created.
626 if (!allocation_sequences_created_) {
627 return false;
628 }
629
630 // Check that all port allocation sequences are complete (not running).
631 if (absl::c_any_of(sequences_, [](const AllocationSequence* sequence) {
632 return sequence->state() == AllocationSequence::kRunning;
633 })) {
634 return false;
635 }
636
637 // If all allocated ports are no longer gathering, session must have got all
638 // expected candidates. Session will trigger candidates allocation complete
639 // signal.
640 return absl::c_none_of(
641 ports_, [](const PortData& port) { return port.inprogress(); });
642 }
643
UpdateIceParametersInternal()644 void BasicPortAllocatorSession::UpdateIceParametersInternal() {
645 RTC_DCHECK_RUN_ON(network_thread_);
646 for (PortData& port : ports_) {
647 port.port()->set_content_name(content_name());
648 port.port()->SetIceParameters(component(), ice_ufrag(), ice_pwd());
649 }
650 }
651
GetPortConfigurations()652 void BasicPortAllocatorSession::GetPortConfigurations() {
653 RTC_DCHECK_RUN_ON(network_thread_);
654
655 auto config = std::make_unique<PortConfiguration>(
656 allocator_->stun_servers(), username(), password(),
657 allocator()->field_trials());
658
659 for (const RelayServerConfig& turn_server : allocator_->turn_servers()) {
660 config->AddRelay(turn_server);
661 }
662 ConfigReady(std::move(config));
663 }
664
ConfigReady(PortConfiguration * config)665 void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) {
666 RTC_DCHECK_RUN_ON(network_thread_);
667 ConfigReady(absl::WrapUnique(config));
668 }
669
ConfigReady(std::unique_ptr<PortConfiguration> config)670 void BasicPortAllocatorSession::ConfigReady(
671 std::unique_ptr<PortConfiguration> config) {
672 RTC_DCHECK_RUN_ON(network_thread_);
673 network_thread_->PostTask(SafeTask(
674 network_safety_.flag(), [this, config = std::move(config)]() mutable {
675 OnConfigReady(std::move(config));
676 }));
677 }
678
679 // Adds a configuration to the list.
OnConfigReady(std::unique_ptr<PortConfiguration> config)680 void BasicPortAllocatorSession::OnConfigReady(
681 std::unique_ptr<PortConfiguration> config) {
682 RTC_DCHECK_RUN_ON(network_thread_);
683 if (config)
684 configs_.push_back(std::move(config));
685
686 AllocatePorts();
687 }
688
OnConfigStop()689 void BasicPortAllocatorSession::OnConfigStop() {
690 RTC_DCHECK_RUN_ON(network_thread_);
691
692 // If any of the allocated ports have not completed the candidates allocation,
693 // mark those as error. Since session doesn't need any new candidates
694 // at this stage of the allocation, it's safe to discard any new candidates.
695 bool send_signal = false;
696 for (std::vector<PortData>::iterator it = ports_.begin(); it != ports_.end();
697 ++it) {
698 if (it->inprogress()) {
699 // Updating port state to error, which didn't finish allocating candidates
700 // yet.
701 it->set_state(PortData::STATE_ERROR);
702 send_signal = true;
703 }
704 }
705
706 // Did we stop any running sequences?
707 for (std::vector<AllocationSequence*>::iterator it = sequences_.begin();
708 it != sequences_.end() && !send_signal; ++it) {
709 if ((*it)->state() == AllocationSequence::kStopped) {
710 send_signal = true;
711 }
712 }
713
714 // If we stopped anything that was running, send a done signal now.
715 if (send_signal) {
716 MaybeSignalCandidatesAllocationDone();
717 }
718 }
719
AllocatePorts()720 void BasicPortAllocatorSession::AllocatePorts() {
721 RTC_DCHECK_RUN_ON(network_thread_);
722 network_thread_->PostTask(SafeTask(
723 network_safety_.flag(), [this, allocation_epoch = allocation_epoch_] {
724 OnAllocate(allocation_epoch);
725 }));
726 }
727
OnAllocate(int allocation_epoch)728 void BasicPortAllocatorSession::OnAllocate(int allocation_epoch) {
729 RTC_DCHECK_RUN_ON(network_thread_);
730 if (allocation_epoch != allocation_epoch_)
731 return;
732
733 if (network_manager_started_ && !IsStopped()) {
734 bool disable_equivalent_phases = true;
735 DoAllocate(disable_equivalent_phases);
736 }
737
738 allocation_started_ = true;
739 }
740
GetNetworks()741 std::vector<const rtc::Network*> BasicPortAllocatorSession::GetNetworks() {
742 RTC_DCHECK_RUN_ON(network_thread_);
743 std::vector<const rtc::Network*> networks;
744 rtc::NetworkManager* network_manager = allocator_->network_manager();
745 RTC_DCHECK(network_manager != nullptr);
746 // If the network permission state is BLOCKED, we just act as if the flag has
747 // been passed in.
748 if (network_manager->enumeration_permission() ==
749 rtc::NetworkManager::ENUMERATION_BLOCKED) {
750 set_flags(flags() | PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
751 }
752 // If the adapter enumeration is disabled, we'll just bind to any address
753 // instead of specific NIC. This is to ensure the same routing for http
754 // traffic by OS is also used here to avoid any local or public IP leakage
755 // during stun process.
756 if (flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) {
757 networks = network_manager->GetAnyAddressNetworks();
758 } else {
759 networks = network_manager->GetNetworks();
760 // If network enumeration fails, use the ANY address as a fallback, so we
761 // can at least try gathering candidates using the default route chosen by
762 // the OS. Or, if the PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS flag is
763 // set, we'll use ANY address candidates either way.
764 if (networks.empty() ||
765 (flags() & PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS)) {
766 std::vector<const rtc::Network*> any_address_networks =
767 network_manager->GetAnyAddressNetworks();
768 networks.insert(networks.end(), any_address_networks.begin(),
769 any_address_networks.end());
770 }
771 }
772 // Filter out link-local networks if needed.
773 if (flags() & PORTALLOCATOR_DISABLE_LINK_LOCAL_NETWORKS) {
774 NetworkFilter link_local_filter(
775 [](const rtc::Network* network) {
776 return IPIsLinkLocal(network->prefix());
777 },
778 "link-local");
779 FilterNetworks(&networks, link_local_filter);
780 }
781 // Do some more filtering, depending on the network ignore mask and "disable
782 // costly networks" flag.
783 NetworkFilter ignored_filter(
784 [this](const rtc::Network* network) {
785 return allocator_->GetNetworkIgnoreMask() & network->type();
786 },
787 "ignored");
788 FilterNetworks(&networks, ignored_filter);
789 if (flags() & PORTALLOCATOR_DISABLE_COSTLY_NETWORKS) {
790 uint16_t lowest_cost = rtc::kNetworkCostMax;
791 for (const rtc::Network* network : networks) {
792 // Don't determine the lowest cost from a link-local network.
793 // On iOS, a device connected to the computer will get a link-local
794 // network for communicating with the computer, however this network can't
795 // be used to connect to a peer outside the network.
796 if (rtc::IPIsLinkLocal(network->GetBestIP())) {
797 continue;
798 }
799 lowest_cost = std::min<uint16_t>(
800 lowest_cost, network->GetCost(*allocator()->field_trials()));
801 }
802 NetworkFilter costly_filter(
803 [lowest_cost, this](const rtc::Network* network) {
804 return network->GetCost(*allocator()->field_trials()) >
805 lowest_cost + rtc::kNetworkCostLow;
806 },
807 "costly");
808 FilterNetworks(&networks, costly_filter);
809 }
810
811 // Lastly, if we have a limit for the number of IPv6 network interfaces (by
812 // default, it's 5), remove networks to ensure that limit is satisfied.
813 //
814 // TODO(deadbeef): Instead of just taking the first N arbitrary IPv6
815 // networks, we could try to choose a set that's "most likely to work". It's
816 // hard to define what that means though; it's not just "lowest cost".
817 // Alternatively, we could just focus on making our ICE pinging logic smarter
818 // such that this filtering isn't necessary in the first place.
819 const webrtc::FieldTrialsView* field_trials = allocator_->field_trials();
820 if (IsDiversifyIpv6InterfacesEnabled(field_trials)) {
821 std::vector<const rtc::Network*> ipv6_networks;
822 for (auto it = networks.begin(); it != networks.end();) {
823 if ((*it)->prefix().family() == AF_INET6) {
824 ipv6_networks.push_back(*it);
825 it = networks.erase(it);
826 continue;
827 }
828 ++it;
829 }
830 ipv6_networks =
831 SelectIPv6Networks(ipv6_networks, allocator_->max_ipv6_networks());
832 networks.insert(networks.end(), ipv6_networks.begin(), ipv6_networks.end());
833 } else {
834 int ipv6_networks = 0;
835 for (auto it = networks.begin(); it != networks.end();) {
836 if ((*it)->prefix().family() == AF_INET6) {
837 if (ipv6_networks >= allocator_->max_ipv6_networks()) {
838 it = networks.erase(it);
839 continue;
840 } else {
841 ++ipv6_networks;
842 }
843 }
844 ++it;
845 }
846 }
847 return networks;
848 }
849
SelectIPv6Networks(std::vector<const rtc::Network * > & all_ipv6_networks,int max_ipv6_networks)850 std::vector<const rtc::Network*> BasicPortAllocatorSession::SelectIPv6Networks(
851 std::vector<const rtc::Network*>& all_ipv6_networks,
852 int max_ipv6_networks) {
853 if (static_cast<int>(all_ipv6_networks.size()) <= max_ipv6_networks) {
854 return all_ipv6_networks;
855 }
856 // Adapter types are placed in priority order. Cellular type is an alias of
857 // cellular, 2G..5G types.
858 std::vector<rtc::AdapterType> adapter_types = {
859 rtc::ADAPTER_TYPE_ETHERNET, rtc::ADAPTER_TYPE_LOOPBACK,
860 rtc::ADAPTER_TYPE_WIFI, rtc::ADAPTER_TYPE_CELLULAR,
861 rtc::ADAPTER_TYPE_VPN, rtc::ADAPTER_TYPE_UNKNOWN,
862 rtc::ADAPTER_TYPE_ANY};
863 int adapter_types_cnt = adapter_types.size();
864 std::vector<const rtc::Network*> selected_networks;
865 int adapter_types_pos = 0;
866
867 while (static_cast<int>(selected_networks.size()) < max_ipv6_networks &&
868 adapter_types_pos < adapter_types_cnt * max_ipv6_networks) {
869 int network_pos = 0;
870 while (network_pos < static_cast<int>(all_ipv6_networks.size())) {
871 if (adapter_types[adapter_types_pos % adapter_types_cnt] ==
872 all_ipv6_networks[network_pos]->type() ||
873 (adapter_types[adapter_types_pos % adapter_types_cnt] ==
874 rtc::ADAPTER_TYPE_CELLULAR &&
875 all_ipv6_networks[network_pos]->IsCellular())) {
876 selected_networks.push_back(all_ipv6_networks[network_pos]);
877 all_ipv6_networks.erase(all_ipv6_networks.begin() + network_pos);
878 break;
879 }
880 network_pos++;
881 }
882 adapter_types_pos++;
883 }
884
885 return selected_networks;
886 }
887
888 // For each network, see if we have a sequence that covers it already. If not,
889 // create a new sequence to create the appropriate ports.
DoAllocate(bool disable_equivalent)890 void BasicPortAllocatorSession::DoAllocate(bool disable_equivalent) {
891 RTC_DCHECK_RUN_ON(network_thread_);
892 bool done_signal_needed = false;
893 std::vector<const rtc::Network*> networks = GetNetworks();
894 if (networks.empty()) {
895 RTC_LOG(LS_WARNING)
896 << "Machine has no networks; no ports will be allocated";
897 done_signal_needed = true;
898 } else {
899 RTC_LOG(LS_INFO) << "Allocate ports on " << NetworksToString(networks);
900 PortConfiguration* config =
901 configs_.empty() ? nullptr : configs_.back().get();
902 for (uint32_t i = 0; i < networks.size(); ++i) {
903 uint32_t sequence_flags = flags();
904 if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
905 // If all the ports are disabled we should just fire the allocation
906 // done event and return.
907 done_signal_needed = true;
908 break;
909 }
910
911 if (!config || config->relays.empty()) {
912 // No relay ports specified in this config.
913 sequence_flags |= PORTALLOCATOR_DISABLE_RELAY;
914 }
915
916 if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) &&
917 networks[i]->GetBestIP().family() == AF_INET6) {
918 // Skip IPv6 networks unless the flag's been set.
919 continue;
920 }
921
922 if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6_ON_WIFI) &&
923 networks[i]->GetBestIP().family() == AF_INET6 &&
924 networks[i]->type() == rtc::ADAPTER_TYPE_WIFI) {
925 // Skip IPv6 Wi-Fi networks unless the flag's been set.
926 continue;
927 }
928
929 if (disable_equivalent) {
930 // Disable phases that would only create ports equivalent to
931 // ones that we have already made.
932 DisableEquivalentPhases(networks[i], config, &sequence_flags);
933
934 if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
935 // New AllocationSequence would have nothing to do, so don't make it.
936 continue;
937 }
938 }
939
940 AllocationSequence* sequence =
941 new AllocationSequence(this, networks[i], config, sequence_flags,
942 [this, safety_flag = network_safety_.flag()] {
943 if (safety_flag->alive())
944 OnPortAllocationComplete();
945 });
946 sequence->Init();
947 sequence->Start();
948 sequences_.push_back(sequence);
949 done_signal_needed = true;
950 }
951 }
952 if (done_signal_needed) {
953 network_thread_->PostTask(SafeTask(network_safety_.flag(), [this] {
954 OnAllocationSequenceObjectsCreated();
955 }));
956 }
957 }
958
OnNetworksChanged()959 void BasicPortAllocatorSession::OnNetworksChanged() {
960 RTC_DCHECK_RUN_ON(network_thread_);
961 std::vector<const rtc::Network*> networks = GetNetworks();
962 std::vector<const rtc::Network*> failed_networks;
963 for (AllocationSequence* sequence : sequences_) {
964 // Mark the sequence as "network failed" if its network is not in
965 // `networks`.
966 if (!sequence->network_failed() &&
967 !absl::c_linear_search(networks, sequence->network())) {
968 sequence->OnNetworkFailed();
969 failed_networks.push_back(sequence->network());
970 }
971 }
972 std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks);
973 if (!ports_to_prune.empty()) {
974 RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size()
975 << " ports because their networks were gone";
976 PrunePortsAndRemoveCandidates(ports_to_prune);
977 }
978
979 if (allocation_started_ && !IsStopped()) {
980 if (network_manager_started_) {
981 // If the network manager has started, it must be regathering.
982 SignalIceRegathering(this, IceRegatheringReason::NETWORK_CHANGE);
983 }
984 bool disable_equivalent_phases = true;
985 DoAllocate(disable_equivalent_phases);
986 }
987
988 if (!network_manager_started_) {
989 RTC_LOG(LS_INFO) << "Network manager has started";
990 network_manager_started_ = true;
991 }
992 }
993
DisableEquivalentPhases(const rtc::Network * network,PortConfiguration * config,uint32_t * flags)994 void BasicPortAllocatorSession::DisableEquivalentPhases(
995 const rtc::Network* network,
996 PortConfiguration* config,
997 uint32_t* flags) {
998 RTC_DCHECK_RUN_ON(network_thread_);
999 for (uint32_t i = 0; i < sequences_.size() &&
1000 (*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES;
1001 ++i) {
1002 sequences_[i]->DisableEquivalentPhases(network, config, flags);
1003 }
1004 }
1005
AddAllocatedPort(Port * port,AllocationSequence * seq)1006 void BasicPortAllocatorSession::AddAllocatedPort(Port* port,
1007 AllocationSequence* seq) {
1008 RTC_DCHECK_RUN_ON(network_thread_);
1009 if (!port)
1010 return;
1011
1012 RTC_LOG(LS_INFO) << "Adding allocated port for " << content_name();
1013 port->set_content_name(content_name());
1014 port->set_component(component());
1015 port->set_generation(generation());
1016 if (allocator_->proxy().type != rtc::PROXY_NONE)
1017 port->set_proxy(allocator_->user_agent(), allocator_->proxy());
1018 port->set_send_retransmit_count_attribute(
1019 (flags() & PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0);
1020
1021 PortData data(port, seq);
1022 ports_.push_back(data);
1023
1024 port->SignalCandidateReady.connect(
1025 this, &BasicPortAllocatorSession::OnCandidateReady);
1026 port->SignalCandidateError.connect(
1027 this, &BasicPortAllocatorSession::OnCandidateError);
1028 port->SignalPortComplete.connect(this,
1029 &BasicPortAllocatorSession::OnPortComplete);
1030 port->SubscribePortDestroyed(
1031 [this](PortInterface* port) { OnPortDestroyed(port); });
1032
1033 port->SignalPortError.connect(this, &BasicPortAllocatorSession::OnPortError);
1034 RTC_LOG(LS_INFO) << port->ToString() << ": Added port to allocator";
1035
1036 port->PrepareAddress();
1037 }
1038
OnAllocationSequenceObjectsCreated()1039 void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() {
1040 RTC_DCHECK_RUN_ON(network_thread_);
1041 allocation_sequences_created_ = true;
1042 // Send candidate allocation complete signal if we have no sequences.
1043 MaybeSignalCandidatesAllocationDone();
1044 }
1045
OnCandidateReady(Port * port,const Candidate & c)1046 void BasicPortAllocatorSession::OnCandidateReady(Port* port,
1047 const Candidate& c) {
1048 RTC_DCHECK_RUN_ON(network_thread_);
1049 PortData* data = FindPort(port);
1050 RTC_DCHECK(data != NULL);
1051 RTC_LOG(LS_INFO) << port->ToString()
1052 << ": Gathered candidate: " << c.ToSensitiveString();
1053 // Discarding any candidate signal if port allocation status is
1054 // already done with gathering.
1055 if (!data->inprogress()) {
1056 RTC_LOG(LS_WARNING)
1057 << "Discarding candidate because port is already done gathering.";
1058 return;
1059 }
1060
1061 // Mark that the port has a pairable candidate, either because we have a
1062 // usable candidate from the port, or simply because the port is bound to the
1063 // any address and therefore has no host candidate. This will trigger the port
1064 // to start creating candidate pairs (connections) and issue connectivity
1065 // checks. If port has already been marked as having a pairable candidate,
1066 // do nothing here.
1067 // Note: We should check whether any candidates may become ready after this
1068 // because there we will check whether the candidate is generated by the ready
1069 // ports, which may include this port.
1070 bool pruned = false;
1071 if (CandidatePairable(c, port) && !data->has_pairable_candidate()) {
1072 data->set_has_pairable_candidate(true);
1073
1074 if (port->Type() == RELAY_PORT_TYPE) {
1075 if (turn_port_prune_policy_ == webrtc::KEEP_FIRST_READY) {
1076 pruned = PruneNewlyPairableTurnPort(data);
1077 } else if (turn_port_prune_policy_ == webrtc::PRUNE_BASED_ON_PRIORITY) {
1078 pruned = PruneTurnPorts(port);
1079 }
1080 }
1081
1082 // If the current port is not pruned yet, SignalPortReady.
1083 if (!data->pruned()) {
1084 RTC_LOG(LS_INFO) << port->ToString() << ": Port ready.";
1085 SignalPortReady(this, port);
1086 port->KeepAliveUntilPruned();
1087 }
1088 }
1089
1090 if (data->ready() && CheckCandidateFilter(c)) {
1091 std::vector<Candidate> candidates;
1092 candidates.push_back(allocator_->SanitizeCandidate(c));
1093 SignalCandidatesReady(this, candidates);
1094 } else {
1095 RTC_LOG(LS_INFO) << "Discarding candidate because it doesn't match filter.";
1096 }
1097
1098 // If we have pruned any port, maybe need to signal port allocation done.
1099 if (pruned) {
1100 MaybeSignalCandidatesAllocationDone();
1101 }
1102 }
1103
OnCandidateError(Port * port,const IceCandidateErrorEvent & event)1104 void BasicPortAllocatorSession::OnCandidateError(
1105 Port* port,
1106 const IceCandidateErrorEvent& event) {
1107 RTC_DCHECK_RUN_ON(network_thread_);
1108 RTC_DCHECK(FindPort(port));
1109 if (event.address.empty()) {
1110 candidate_error_events_.push_back(event);
1111 } else {
1112 SignalCandidateError(this, event);
1113 }
1114 }
1115
GetBestTurnPortForNetwork(absl::string_view network_name) const1116 Port* BasicPortAllocatorSession::GetBestTurnPortForNetwork(
1117 absl::string_view network_name) const {
1118 RTC_DCHECK_RUN_ON(network_thread_);
1119 Port* best_turn_port = nullptr;
1120 for (const PortData& data : ports_) {
1121 if (data.port()->Network()->name() == network_name &&
1122 data.port()->Type() == RELAY_PORT_TYPE && data.ready() &&
1123 (!best_turn_port || ComparePort(data.port(), best_turn_port) > 0)) {
1124 best_turn_port = data.port();
1125 }
1126 }
1127 return best_turn_port;
1128 }
1129
PruneNewlyPairableTurnPort(PortData * newly_pairable_port_data)1130 bool BasicPortAllocatorSession::PruneNewlyPairableTurnPort(
1131 PortData* newly_pairable_port_data) {
1132 RTC_DCHECK_RUN_ON(network_thread_);
1133 RTC_DCHECK(newly_pairable_port_data->port()->Type() == RELAY_PORT_TYPE);
1134 // If an existing turn port is ready on the same network, prune the newly
1135 // pairable port.
1136 const std::string& network_name =
1137 newly_pairable_port_data->port()->Network()->name();
1138
1139 for (PortData& data : ports_) {
1140 if (data.port()->Network()->name() == network_name &&
1141 data.port()->Type() == RELAY_PORT_TYPE && data.ready() &&
1142 &data != newly_pairable_port_data) {
1143 RTC_LOG(LS_INFO) << "Port pruned: "
1144 << newly_pairable_port_data->port()->ToString();
1145 newly_pairable_port_data->Prune();
1146 return true;
1147 }
1148 }
1149 return false;
1150 }
1151
PruneTurnPorts(Port * newly_pairable_turn_port)1152 bool BasicPortAllocatorSession::PruneTurnPorts(Port* newly_pairable_turn_port) {
1153 RTC_DCHECK_RUN_ON(network_thread_);
1154 // Note: We determine the same network based only on their network names. So
1155 // if an IPv4 address and an IPv6 address have the same network name, they
1156 // are considered the same network here.
1157 const std::string& network_name = newly_pairable_turn_port->Network()->name();
1158 Port* best_turn_port = GetBestTurnPortForNetwork(network_name);
1159 // `port` is already in the list of ports, so the best port cannot be nullptr.
1160 RTC_CHECK(best_turn_port != nullptr);
1161
1162 bool pruned = false;
1163 std::vector<PortData*> ports_to_prune;
1164 for (PortData& data : ports_) {
1165 if (data.port()->Network()->name() == network_name &&
1166 data.port()->Type() == RELAY_PORT_TYPE && !data.pruned() &&
1167 ComparePort(data.port(), best_turn_port) < 0) {
1168 pruned = true;
1169 if (data.port() != newly_pairable_turn_port) {
1170 // These ports will be pruned in PrunePortsAndRemoveCandidates.
1171 ports_to_prune.push_back(&data);
1172 } else {
1173 data.Prune();
1174 }
1175 }
1176 }
1177
1178 if (!ports_to_prune.empty()) {
1179 RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size()
1180 << " low-priority TURN ports";
1181 PrunePortsAndRemoveCandidates(ports_to_prune);
1182 }
1183 return pruned;
1184 }
1185
PruneAllPorts()1186 void BasicPortAllocatorSession::PruneAllPorts() {
1187 RTC_DCHECK_RUN_ON(network_thread_);
1188 for (PortData& data : ports_) {
1189 data.Prune();
1190 }
1191 }
1192
OnPortComplete(Port * port)1193 void BasicPortAllocatorSession::OnPortComplete(Port* port) {
1194 RTC_DCHECK_RUN_ON(network_thread_);
1195 RTC_LOG(LS_INFO) << port->ToString()
1196 << ": Port completed gathering candidates.";
1197 PortData* data = FindPort(port);
1198 RTC_DCHECK(data != NULL);
1199
1200 // Ignore any late signals.
1201 if (!data->inprogress()) {
1202 return;
1203 }
1204
1205 // Moving to COMPLETE state.
1206 data->set_state(PortData::STATE_COMPLETE);
1207 // Send candidate allocation complete signal if this was the last port.
1208 MaybeSignalCandidatesAllocationDone();
1209 }
1210
OnPortError(Port * port)1211 void BasicPortAllocatorSession::OnPortError(Port* port) {
1212 RTC_DCHECK_RUN_ON(network_thread_);
1213 RTC_LOG(LS_INFO) << port->ToString()
1214 << ": Port encountered error while gathering candidates.";
1215 PortData* data = FindPort(port);
1216 RTC_DCHECK(data != NULL);
1217 // We might have already given up on this port and stopped it.
1218 if (!data->inprogress()) {
1219 return;
1220 }
1221
1222 // SignalAddressError is currently sent from StunPort/TurnPort.
1223 // But this signal itself is generic.
1224 data->set_state(PortData::STATE_ERROR);
1225 // Send candidate allocation complete signal if this was the last port.
1226 MaybeSignalCandidatesAllocationDone();
1227 }
1228
CheckCandidateFilter(const Candidate & c) const1229 bool BasicPortAllocatorSession::CheckCandidateFilter(const Candidate& c) const {
1230 RTC_DCHECK_RUN_ON(network_thread_);
1231
1232 return IsAllowedByCandidateFilter(c, candidate_filter_);
1233 }
1234
CandidatePairable(const Candidate & c,const Port * port) const1235 bool BasicPortAllocatorSession::CandidatePairable(const Candidate& c,
1236 const Port* port) const {
1237 RTC_DCHECK_RUN_ON(network_thread_);
1238
1239 bool candidate_signalable = CheckCandidateFilter(c);
1240
1241 // When device enumeration is disabled (to prevent non-default IP addresses
1242 // from leaking), we ping from some local candidates even though we don't
1243 // signal them. However, if host candidates are also disabled (for example, to
1244 // prevent even default IP addresses from leaking), we still don't want to
1245 // ping from them, even if device enumeration is disabled. Thus, we check for
1246 // both device enumeration and host candidates being disabled.
1247 bool network_enumeration_disabled = c.address().IsAnyIP();
1248 bool can_ping_from_candidate =
1249 (port->SharedSocket() || c.protocol() == TCP_PROTOCOL_NAME);
1250 bool host_candidates_disabled = !(candidate_filter_ & CF_HOST);
1251
1252 return candidate_signalable ||
1253 (network_enumeration_disabled && can_ping_from_candidate &&
1254 !host_candidates_disabled);
1255 }
1256
OnPortAllocationComplete()1257 void BasicPortAllocatorSession::OnPortAllocationComplete() {
1258 RTC_DCHECK_RUN_ON(network_thread_);
1259 // Send candidate allocation complete signal if all ports are done.
1260 MaybeSignalCandidatesAllocationDone();
1261 }
1262
MaybeSignalCandidatesAllocationDone()1263 void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() {
1264 RTC_DCHECK_RUN_ON(network_thread_);
1265 if (CandidatesAllocationDone()) {
1266 if (pooled()) {
1267 RTC_LOG(LS_INFO) << "All candidates gathered for pooled session.";
1268 } else {
1269 RTC_LOG(LS_INFO) << "All candidates gathered for " << content_name()
1270 << ":" << component() << ":" << generation();
1271 }
1272 for (const auto& event : candidate_error_events_) {
1273 SignalCandidateError(this, event);
1274 }
1275 candidate_error_events_.clear();
1276 SignalCandidatesAllocationDone(this);
1277 }
1278 }
1279
OnPortDestroyed(PortInterface * port)1280 void BasicPortAllocatorSession::OnPortDestroyed(PortInterface* port) {
1281 RTC_DCHECK_RUN_ON(network_thread_);
1282 for (std::vector<PortData>::iterator iter = ports_.begin();
1283 iter != ports_.end(); ++iter) {
1284 if (port == iter->port()) {
1285 ports_.erase(iter);
1286 RTC_LOG(LS_INFO) << port->ToString() << ": Removed port from allocator ("
1287 << static_cast<int>(ports_.size()) << " remaining)";
1288 return;
1289 }
1290 }
1291 RTC_DCHECK_NOTREACHED();
1292 }
1293
FindPort(Port * port)1294 BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort(
1295 Port* port) {
1296 RTC_DCHECK_RUN_ON(network_thread_);
1297 for (std::vector<PortData>::iterator it = ports_.begin(); it != ports_.end();
1298 ++it) {
1299 if (it->port() == port) {
1300 return &*it;
1301 }
1302 }
1303 return NULL;
1304 }
1305
1306 std::vector<BasicPortAllocatorSession::PortData*>
GetUnprunedPorts(const std::vector<const rtc::Network * > & networks)1307 BasicPortAllocatorSession::GetUnprunedPorts(
1308 const std::vector<const rtc::Network*>& networks) {
1309 RTC_DCHECK_RUN_ON(network_thread_);
1310 std::vector<PortData*> unpruned_ports;
1311 for (PortData& port : ports_) {
1312 if (!port.pruned() &&
1313 absl::c_linear_search(networks, port.sequence()->network())) {
1314 unpruned_ports.push_back(&port);
1315 }
1316 }
1317 return unpruned_ports;
1318 }
1319
PrunePortsAndRemoveCandidates(const std::vector<PortData * > & port_data_list)1320 void BasicPortAllocatorSession::PrunePortsAndRemoveCandidates(
1321 const std::vector<PortData*>& port_data_list) {
1322 RTC_DCHECK_RUN_ON(network_thread_);
1323 std::vector<PortInterface*> pruned_ports;
1324 std::vector<Candidate> removed_candidates;
1325 for (PortData* data : port_data_list) {
1326 // Prune the port so that it may be destroyed.
1327 data->Prune();
1328 pruned_ports.push_back(data->port());
1329 if (data->has_pairable_candidate()) {
1330 GetCandidatesFromPort(*data, &removed_candidates);
1331 // Mark the port as having no pairable candidates so that its candidates
1332 // won't be removed multiple times.
1333 data->set_has_pairable_candidate(false);
1334 }
1335 }
1336 if (!pruned_ports.empty()) {
1337 SignalPortsPruned(this, pruned_ports);
1338 }
1339 if (!removed_candidates.empty()) {
1340 RTC_LOG(LS_INFO) << "Removed " << removed_candidates.size()
1341 << " candidates";
1342 SignalCandidatesRemoved(this, removed_candidates);
1343 }
1344 }
1345
SetVpnList(const std::vector<rtc::NetworkMask> & vpn_list)1346 void BasicPortAllocator::SetVpnList(
1347 const std::vector<rtc::NetworkMask>& vpn_list) {
1348 network_manager_->set_vpn_list(vpn_list);
1349 }
1350
1351 // AllocationSequence
1352
AllocationSequence(BasicPortAllocatorSession * session,const rtc::Network * network,PortConfiguration * config,uint32_t flags,std::function<void ()> port_allocation_complete_callback)1353 AllocationSequence::AllocationSequence(
1354 BasicPortAllocatorSession* session,
1355 const rtc::Network* network,
1356 PortConfiguration* config,
1357 uint32_t flags,
1358 std::function<void()> port_allocation_complete_callback)
1359 : session_(session),
1360 network_(network),
1361 config_(config),
1362 state_(kInit),
1363 flags_(flags),
1364 udp_socket_(),
1365 udp_port_(NULL),
1366 phase_(0),
1367 port_allocation_complete_callback_(
1368 std::move(port_allocation_complete_callback)) {}
1369
Init()1370 void AllocationSequence::Init() {
1371 if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
1372 udp_socket_.reset(session_->socket_factory()->CreateUdpSocket(
1373 rtc::SocketAddress(network_->GetBestIP(), 0),
1374 session_->allocator()->min_port(), session_->allocator()->max_port()));
1375 if (udp_socket_) {
1376 udp_socket_->SignalReadPacket.connect(this,
1377 &AllocationSequence::OnReadPacket);
1378 }
1379 // Continuing if `udp_socket_` is NULL, as local TCP and RelayPort using TCP
1380 // are next available options to setup a communication channel.
1381 }
1382 }
1383
Clear()1384 void AllocationSequence::Clear() {
1385 TRACE_EVENT0("webrtc", "AllocationSequence::Clear");
1386 udp_port_ = NULL;
1387 relay_ports_.clear();
1388 }
1389
OnNetworkFailed()1390 void AllocationSequence::OnNetworkFailed() {
1391 RTC_DCHECK(!network_failed_);
1392 network_failed_ = true;
1393 // Stop the allocation sequence if its network failed.
1394 Stop();
1395 }
1396
DisableEquivalentPhases(const rtc::Network * network,PortConfiguration * config,uint32_t * flags)1397 void AllocationSequence::DisableEquivalentPhases(const rtc::Network* network,
1398 PortConfiguration* config,
1399 uint32_t* flags) {
1400 if (network_failed_) {
1401 // If the network of this allocation sequence has ever become failed,
1402 // it won't be equivalent to the new network.
1403 return;
1404 }
1405
1406 if (!((network == network_) && (previous_best_ip_ == network->GetBestIP()))) {
1407 // Different network setup; nothing is equivalent.
1408 return;
1409 }
1410
1411 // Else turn off the stuff that we've already got covered.
1412
1413 // Every config implicitly specifies local, so turn that off right away if we
1414 // already have a port of the corresponding type. Look for a port that
1415 // matches this AllocationSequence's network, is the right protocol, and
1416 // hasn't encountered an error.
1417 // TODO(deadbeef): This doesn't take into account that there may be another
1418 // AllocationSequence that's ABOUT to allocate a UDP port, but hasn't yet.
1419 // This can happen if, say, there's a network change event right before an
1420 // application-triggered ICE restart. Hopefully this problem will just go
1421 // away if we get rid of the gathering "phases" though, which is planned.
1422 //
1423 //
1424 // PORTALLOCATOR_DISABLE_UDP is used to disable a Port from gathering the host
1425 // candidate (and srflx candidate if Port::SharedSocket()), and we do not want
1426 // to disable the gathering of these candidates just becaue of an existing
1427 // Port over PROTO_UDP, namely a TurnPort over UDP.
1428 if (absl::c_any_of(session_->ports_,
1429 [this](const BasicPortAllocatorSession::PortData& p) {
1430 return !p.pruned() && p.port()->Network() == network_ &&
1431 p.port()->GetProtocol() == PROTO_UDP &&
1432 p.port()->Type() == LOCAL_PORT_TYPE && !p.error();
1433 })) {
1434 *flags |= PORTALLOCATOR_DISABLE_UDP;
1435 }
1436 // Similarly we need to check both the protocol used by an existing Port and
1437 // its type.
1438 if (absl::c_any_of(session_->ports_,
1439 [this](const BasicPortAllocatorSession::PortData& p) {
1440 return !p.pruned() && p.port()->Network() == network_ &&
1441 p.port()->GetProtocol() == PROTO_TCP &&
1442 p.port()->Type() == LOCAL_PORT_TYPE && !p.error();
1443 })) {
1444 *flags |= PORTALLOCATOR_DISABLE_TCP;
1445 }
1446
1447 if (config_ && config) {
1448 // We need to regather srflx candidates if either of the following
1449 // conditions occurs:
1450 // 1. The STUN servers are different from the previous gathering.
1451 // 2. We will regather host candidates, hence possibly inducing new NAT
1452 // bindings.
1453 if (config_->StunServers() == config->StunServers() &&
1454 (*flags & PORTALLOCATOR_DISABLE_UDP)) {
1455 // Already got this STUN servers covered.
1456 *flags |= PORTALLOCATOR_DISABLE_STUN;
1457 }
1458 if (!config_->relays.empty()) {
1459 // Already got relays covered.
1460 // NOTE: This will even skip a _different_ set of relay servers if we
1461 // were to be given one, but that never happens in our codebase. Should
1462 // probably get rid of the list in PortConfiguration and just keep a
1463 // single relay server in each one.
1464 *flags |= PORTALLOCATOR_DISABLE_RELAY;
1465 }
1466 }
1467 }
1468
Start()1469 void AllocationSequence::Start() {
1470 state_ = kRunning;
1471
1472 session_->network_thread()->PostTask(
1473 SafeTask(safety_.flag(), [this, epoch = epoch_] { Process(epoch); }));
1474 // Take a snapshot of the best IP, so that when DisableEquivalentPhases is
1475 // called next time, we enable all phases if the best IP has since changed.
1476 previous_best_ip_ = network_->GetBestIP();
1477 }
1478
Stop()1479 void AllocationSequence::Stop() {
1480 // If the port is completed, don't set it to stopped.
1481 if (state_ == kRunning) {
1482 state_ = kStopped;
1483 // Cause further Process calls in the previous epoch to be ignored.
1484 ++epoch_;
1485 }
1486 }
1487
Process(int epoch)1488 void AllocationSequence::Process(int epoch) {
1489 RTC_DCHECK(rtc::Thread::Current() == session_->network_thread());
1490 const char* const PHASE_NAMES[kNumPhases] = {"Udp", "Relay", "Tcp"};
1491
1492 if (epoch != epoch_)
1493 return;
1494
1495 // Perform all of the phases in the current step.
1496 RTC_LOG(LS_INFO) << network_->ToString()
1497 << ": Allocation Phase=" << PHASE_NAMES[phase_];
1498
1499 switch (phase_) {
1500 case PHASE_UDP:
1501 CreateUDPPorts();
1502 CreateStunPorts();
1503 break;
1504
1505 case PHASE_RELAY:
1506 CreateRelayPorts();
1507 break;
1508
1509 case PHASE_TCP:
1510 CreateTCPPorts();
1511 state_ = kCompleted;
1512 break;
1513
1514 default:
1515 RTC_DCHECK_NOTREACHED();
1516 }
1517
1518 if (state() == kRunning) {
1519 ++phase_;
1520 session_->network_thread()->PostDelayedTask(
1521 SafeTask(safety_.flag(), [this, epoch = epoch_] { Process(epoch); }),
1522 TimeDelta::Millis(session_->allocator()->step_delay()));
1523 } else {
1524 // No allocation steps needed further if all phases in AllocationSequence
1525 // are completed. Cause further Process calls in the previous epoch to be
1526 // ignored.
1527 ++epoch_;
1528 port_allocation_complete_callback_();
1529 }
1530 }
1531
CreateUDPPorts()1532 void AllocationSequence::CreateUDPPorts() {
1533 if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) {
1534 RTC_LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping.";
1535 return;
1536 }
1537
1538 // TODO(mallinath) - Remove UDPPort creating socket after shared socket
1539 // is enabled completely.
1540 std::unique_ptr<UDPPort> port;
1541 bool emit_local_candidate_for_anyaddress =
1542 !IsFlagSet(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
1543 if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) {
1544 port = UDPPort::Create(
1545 session_->network_thread(), session_->socket_factory(), network_,
1546 udp_socket_.get(), session_->username(), session_->password(),
1547 emit_local_candidate_for_anyaddress,
1548 session_->allocator()->stun_candidate_keepalive_interval(),
1549 session_->allocator()->field_trials());
1550 } else {
1551 port = UDPPort::Create(
1552 session_->network_thread(), session_->socket_factory(), network_,
1553 session_->allocator()->min_port(), session_->allocator()->max_port(),
1554 session_->username(), session_->password(),
1555 emit_local_candidate_for_anyaddress,
1556 session_->allocator()->stun_candidate_keepalive_interval(),
1557 session_->allocator()->field_trials());
1558 }
1559
1560 if (port) {
1561 port->SetIceTiebreaker(session_->ice_tiebreaker());
1562 // If shared socket is enabled, STUN candidate will be allocated by the
1563 // UDPPort.
1564 if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
1565 udp_port_ = port.get();
1566 port->SubscribePortDestroyed(
1567 [this](PortInterface* port) { OnPortDestroyed(port); });
1568
1569 // If STUN is not disabled, setting stun server address to port.
1570 if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
1571 if (config_ && !config_->StunServers().empty()) {
1572 RTC_LOG(LS_INFO)
1573 << "AllocationSequence: UDPPort will be handling the "
1574 "STUN candidate generation.";
1575 port->set_server_addresses(config_->StunServers());
1576 }
1577 }
1578 }
1579
1580 session_->AddAllocatedPort(port.release(), this);
1581 }
1582 }
1583
CreateTCPPorts()1584 void AllocationSequence::CreateTCPPorts() {
1585 if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) {
1586 RTC_LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping.";
1587 return;
1588 }
1589
1590 std::unique_ptr<Port> port = TCPPort::Create(
1591 session_->network_thread(), session_->socket_factory(), network_,
1592 session_->allocator()->min_port(), session_->allocator()->max_port(),
1593 session_->username(), session_->password(),
1594 session_->allocator()->allow_tcp_listen(),
1595 session_->allocator()->field_trials());
1596 if (port) {
1597 port->SetIceTiebreaker(session_->ice_tiebreaker());
1598 session_->AddAllocatedPort(port.release(), this);
1599 // Since TCPPort is not created using shared socket, `port` will not be
1600 // added to the dequeue.
1601 }
1602 }
1603
CreateStunPorts()1604 void AllocationSequence::CreateStunPorts() {
1605 if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
1606 RTC_LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping.";
1607 return;
1608 }
1609
1610 if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
1611 return;
1612 }
1613
1614 if (!(config_ && !config_->StunServers().empty())) {
1615 RTC_LOG(LS_WARNING)
1616 << "AllocationSequence: No STUN server configured, skipping.";
1617 return;
1618 }
1619
1620 std::unique_ptr<StunPort> port = StunPort::Create(
1621 session_->network_thread(), session_->socket_factory(), network_,
1622 session_->allocator()->min_port(), session_->allocator()->max_port(),
1623 session_->username(), session_->password(), config_->StunServers(),
1624 session_->allocator()->stun_candidate_keepalive_interval(),
1625 session_->allocator()->field_trials());
1626 if (port) {
1627 port->SetIceTiebreaker(session_->ice_tiebreaker());
1628 session_->AddAllocatedPort(port.release(), this);
1629 // Since StunPort is not created using shared socket, `port` will not be
1630 // added to the dequeue.
1631 }
1632 }
1633
CreateRelayPorts()1634 void AllocationSequence::CreateRelayPorts() {
1635 if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) {
1636 RTC_LOG(LS_VERBOSE)
1637 << "AllocationSequence: Relay ports disabled, skipping.";
1638 return;
1639 }
1640
1641 // If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we
1642 // ought to have a relay list for them here.
1643 RTC_DCHECK(config_);
1644 RTC_DCHECK(!config_->relays.empty());
1645 if (!(config_ && !config_->relays.empty())) {
1646 RTC_LOG(LS_WARNING)
1647 << "AllocationSequence: No relay server configured, skipping.";
1648 return;
1649 }
1650
1651 // Relative priority of candidates from this TURN server in relation
1652 // to the candidates from other servers. Required because ICE priorities
1653 // need to be unique.
1654 int relative_priority = config_->relays.size();
1655 for (RelayServerConfig& relay : config_->relays) {
1656 CreateTurnPort(relay, relative_priority--);
1657 }
1658 }
1659
CreateTurnPort(const RelayServerConfig & config,int relative_priority)1660 void AllocationSequence::CreateTurnPort(const RelayServerConfig& config,
1661 int relative_priority) {
1662 PortList::const_iterator relay_port;
1663 for (relay_port = config.ports.begin(); relay_port != config.ports.end();
1664 ++relay_port) {
1665 // Skip UDP connections to relay servers if it's disallowed.
1666 if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP_RELAY) &&
1667 relay_port->proto == PROTO_UDP) {
1668 continue;
1669 }
1670
1671 // Do not create a port if the server address family is known and does
1672 // not match the local IP address family.
1673 int server_ip_family = relay_port->address.ipaddr().family();
1674 int local_ip_family = network_->GetBestIP().family();
1675 if (server_ip_family != AF_UNSPEC && server_ip_family != local_ip_family) {
1676 RTC_LOG(LS_INFO)
1677 << "Server and local address families are not compatible. "
1678 "Server address: "
1679 << relay_port->address.ipaddr().ToSensitiveString()
1680 << " Local address: " << network_->GetBestIP().ToSensitiveString();
1681 continue;
1682 }
1683
1684 CreateRelayPortArgs args;
1685 args.network_thread = session_->network_thread();
1686 args.socket_factory = session_->socket_factory();
1687 args.network = network_;
1688 args.username = session_->username();
1689 args.password = session_->password();
1690 args.server_address = &(*relay_port);
1691 args.config = &config;
1692 args.turn_customizer = session_->allocator()->turn_customizer();
1693 args.field_trials = session_->allocator()->field_trials();
1694 args.relative_priority = relative_priority;
1695
1696 std::unique_ptr<cricket::Port> port;
1697 // Shared socket mode must be enabled only for UDP based ports. Hence
1698 // don't pass shared socket for ports which will create TCP sockets.
1699 // TODO(mallinath) - Enable shared socket mode for TURN ports. Disabled
1700 // due to webrtc bug https://code.google.com/p/webrtc/issues/detail?id=3537
1701 if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) &&
1702 relay_port->proto == PROTO_UDP && udp_socket_) {
1703 port = session_->allocator()->relay_port_factory()->Create(
1704 args, udp_socket_.get());
1705
1706 if (!port) {
1707 RTC_LOG(LS_WARNING) << "Failed to create relay port with "
1708 << args.server_address->address.ToSensitiveString();
1709 continue;
1710 }
1711
1712 relay_ports_.push_back(port.get());
1713 // Listen to the port destroyed signal, to allow AllocationSequence to
1714 // remove the entry from it's map.
1715 port->SubscribePortDestroyed(
1716 [this](PortInterface* port) { OnPortDestroyed(port); });
1717
1718 } else {
1719 port = session_->allocator()->relay_port_factory()->Create(
1720 args, session_->allocator()->min_port(),
1721 session_->allocator()->max_port());
1722
1723 if (!port) {
1724 RTC_LOG(LS_WARNING) << "Failed to create relay port with "
1725 << args.server_address->address.ToSensitiveString();
1726 continue;
1727 }
1728 }
1729 RTC_DCHECK(port != NULL);
1730 port->SetIceTiebreaker(session_->ice_tiebreaker());
1731 session_->AddAllocatedPort(port.release(), this);
1732 }
1733 }
1734
OnReadPacket(rtc::AsyncPacketSocket * socket,const char * data,size_t size,const rtc::SocketAddress & remote_addr,const int64_t & packet_time_us)1735 void AllocationSequence::OnReadPacket(rtc::AsyncPacketSocket* socket,
1736 const char* data,
1737 size_t size,
1738 const rtc::SocketAddress& remote_addr,
1739 const int64_t& packet_time_us) {
1740 RTC_DCHECK(socket == udp_socket_.get());
1741
1742 bool turn_port_found = false;
1743
1744 // Try to find the TurnPort that matches the remote address. Note that the
1745 // message could be a STUN binding response if the TURN server is also used as
1746 // a STUN server. We don't want to parse every message here to check if it is
1747 // a STUN binding response, so we pass the message to TurnPort regardless of
1748 // the message type. The TurnPort will just ignore the message since it will
1749 // not find any request by transaction ID.
1750 for (auto* port : relay_ports_) {
1751 if (port->CanHandleIncomingPacketsFrom(remote_addr)) {
1752 if (port->HandleIncomingPacket(socket, data, size, remote_addr,
1753 packet_time_us)) {
1754 return;
1755 }
1756 turn_port_found = true;
1757 }
1758 }
1759
1760 if (udp_port_) {
1761 const ServerAddresses& stun_servers = udp_port_->server_addresses();
1762
1763 // Pass the packet to the UdpPort if there is no matching TurnPort, or if
1764 // the TURN server is also a STUN server.
1765 if (!turn_port_found ||
1766 stun_servers.find(remote_addr) != stun_servers.end()) {
1767 RTC_DCHECK(udp_port_->SharedSocket());
1768 udp_port_->HandleIncomingPacket(socket, data, size, remote_addr,
1769 packet_time_us);
1770 }
1771 }
1772 }
1773
OnPortDestroyed(PortInterface * port)1774 void AllocationSequence::OnPortDestroyed(PortInterface* port) {
1775 if (udp_port_ == port) {
1776 udp_port_ = NULL;
1777 return;
1778 }
1779
1780 auto it = absl::c_find(relay_ports_, port);
1781 if (it != relay_ports_.end()) {
1782 relay_ports_.erase(it);
1783 } else {
1784 RTC_LOG(LS_ERROR) << "Unexpected OnPortDestroyed for nonexistent port.";
1785 RTC_DCHECK_NOTREACHED();
1786 }
1787 }
1788
PortConfiguration(const ServerAddresses & stun_servers,absl::string_view username,absl::string_view password,const webrtc::FieldTrialsView * field_trials)1789 PortConfiguration::PortConfiguration(
1790 const ServerAddresses& stun_servers,
1791 absl::string_view username,
1792 absl::string_view password,
1793 const webrtc::FieldTrialsView* field_trials)
1794 : stun_servers(stun_servers), username(username), password(password) {
1795 if (!stun_servers.empty())
1796 stun_address = *(stun_servers.begin());
1797 // Note that this won't change once the config is initialized.
1798 if (field_trials) {
1799 use_turn_server_as_stun_server_disabled =
1800 field_trials->IsDisabled("WebRTC-UseTurnServerAsStunServer");
1801 }
1802 }
1803
StunServers()1804 ServerAddresses PortConfiguration::StunServers() {
1805 if (!stun_address.IsNil() &&
1806 stun_servers.find(stun_address) == stun_servers.end()) {
1807 stun_servers.insert(stun_address);
1808 }
1809
1810 if (!stun_servers.empty() && use_turn_server_as_stun_server_disabled) {
1811 return stun_servers;
1812 }
1813
1814 // Every UDP TURN server should also be used as a STUN server if
1815 // use_turn_server_as_stun_server is not disabled or the stun servers are
1816 // empty.
1817 ServerAddresses turn_servers = GetRelayServerAddresses(PROTO_UDP);
1818 for (const rtc::SocketAddress& turn_server : turn_servers) {
1819 if (stun_servers.find(turn_server) == stun_servers.end()) {
1820 stun_servers.insert(turn_server);
1821 }
1822 }
1823 return stun_servers;
1824 }
1825
AddRelay(const RelayServerConfig & config)1826 void PortConfiguration::AddRelay(const RelayServerConfig& config) {
1827 relays.push_back(config);
1828 }
1829
SupportsProtocol(const RelayServerConfig & relay,ProtocolType type) const1830 bool PortConfiguration::SupportsProtocol(const RelayServerConfig& relay,
1831 ProtocolType type) const {
1832 PortList::const_iterator relay_port;
1833 for (relay_port = relay.ports.begin(); relay_port != relay.ports.end();
1834 ++relay_port) {
1835 if (relay_port->proto == type)
1836 return true;
1837 }
1838 return false;
1839 }
1840
SupportsProtocol(ProtocolType type) const1841 bool PortConfiguration::SupportsProtocol(ProtocolType type) const {
1842 for (size_t i = 0; i < relays.size(); ++i) {
1843 if (SupportsProtocol(relays[i], type))
1844 return true;
1845 }
1846 return false;
1847 }
1848
GetRelayServerAddresses(ProtocolType type) const1849 ServerAddresses PortConfiguration::GetRelayServerAddresses(
1850 ProtocolType type) const {
1851 ServerAddresses servers;
1852 for (size_t i = 0; i < relays.size(); ++i) {
1853 if (SupportsProtocol(relays[i], type)) {
1854 servers.insert(relays[i].ports.front().address);
1855 }
1856 }
1857 return servers;
1858 }
1859
1860 } // namespace cricket
1861