/* * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #if NRFX_CHECK(NRFX_SAADC_ENABLED) #include #define NRFX_LOG_MODULE SAADC #include #define EVT_TO_STR(event) \ (event == NRF_SAADC_EVENT_STARTED ? "NRF_SAADC_EVENT_STARTED" : \ (event == NRF_SAADC_EVENT_END ? "NRF_SAADC_EVENT_END" : \ (event == NRF_SAADC_EVENT_DONE ? "NRF_SAADC_EVENT_DONE" : \ (event == NRF_SAADC_EVENT_RESULTDONE ? "NRF_SAADC_EVENT_RESULTDONE" : \ (event == NRF_SAADC_EVENT_CALIBRATEDONE ? "NRF_SAADC_EVENT_CALIBRATEDONE" : \ (event == NRF_SAADC_EVENT_STOPPED ? "NRF_SAADC_EVENT_STOPPED" : \ "UNKNOWN EVENT")))))) typedef enum { NRF_SAADC_STATE_IDLE = 0, NRF_SAADC_STATE_BUSY = 1, NRF_SAADC_STATE_CALIBRATION = 2 } nrf_saadc_state_t; typedef struct { nrf_saadc_input_t pselp; nrf_saadc_input_t pseln; } nrf_saadc_psel_buffer; /** @brief SAADC control block.*/ typedef struct { nrfx_saadc_event_handler_t event_handler; ///< Event handler function pointer. volatile nrf_saadc_value_t * p_buffer; ///< Sample buffer. volatile uint16_t buffer_size; ///< Size of the sample buffer. volatile nrf_saadc_value_t * p_secondary_buffer; ///< Secondary sample buffer. volatile nrf_saadc_state_t adc_state; ///< State of the SAADC. uint32_t limits_enabled_flags; ///< Enabled limits flags. uint16_t secondary_buffer_size; ///< Size of the secondary buffer. uint16_t buffer_size_left; ///< When low power mode is active indicates how many samples left to convert on current buffer. nrf_saadc_psel_buffer psel[NRF_SAADC_CHANNEL_COUNT]; ///< Pin configurations of SAADC channels. nrfx_drv_state_t state; ///< Driver initialization state. uint8_t active_channels; ///< Number of enabled SAADC channels. bool low_power_mode; ///< Indicates if low power mode is active. bool conversions_end; ///< When low power mode is active indicates end of conversions on current buffer. } nrfx_saadc_cb_t; static nrfx_saadc_cb_t m_cb; #define LOW_LIMIT_TO_FLAG(channel) ((2 * channel + 1)) #define HIGH_LIMIT_TO_FLAG(channel) ((2 * channel)) #define FLAG_IDX_TO_EVENT(idx) ((nrf_saadc_event_t)((uint32_t)NRF_SAADC_EVENT_CH0_LIMITH + \ 4 * idx)) #define LIMIT_EVENT_TO_CHANNEL(event) (uint8_t)(((uint32_t)event - \ (uint32_t)NRF_SAADC_EVENT_CH0_LIMITH) / 8) #define LIMIT_EVENT_TO_LIMIT_TYPE(event)((((uint32_t)event - (uint32_t)NRF_SAADC_EVENT_CH0_LIMITH) & 4) \ ? NRF_SAADC_LIMIT_LOW : NRF_SAADC_LIMIT_HIGH) #define HW_TIMEOUT 10000 void nrfx_saadc_irq_handler(void) { if (nrf_saadc_event_check(NRF_SAADC_EVENT_END)) { nrf_saadc_event_clear(NRF_SAADC_EVENT_END); NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_SAADC_EVENT_END)); if (!m_cb.low_power_mode || m_cb.conversions_end) { nrfx_saadc_evt_t evt; evt.type = NRFX_SAADC_EVT_DONE; evt.data.done.p_buffer = (nrf_saadc_value_t *)m_cb.p_buffer; evt.data.done.size = m_cb.buffer_size; if (m_cb.p_secondary_buffer == NULL) { m_cb.adc_state = NRF_SAADC_STATE_IDLE; } else { m_cb.buffer_size_left = m_cb.secondary_buffer_size; m_cb.p_buffer = m_cb.p_secondary_buffer; m_cb.buffer_size = m_cb.secondary_buffer_size; m_cb.p_secondary_buffer = NULL; if (!m_cb.low_power_mode) { nrf_saadc_task_trigger(NRF_SAADC_TASK_START); } } m_cb.event_handler(&evt); m_cb.conversions_end = false; } } if (m_cb.low_power_mode && nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED)) { nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED); NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_SAADC_EVENT_STARTED)); if (m_cb.buffer_size_left > m_cb.active_channels) { // More samples to convert than for single event. m_cb.buffer_size_left -= m_cb.active_channels; nrf_saadc_buffer_init((nrf_saadc_value_t *)&m_cb.p_buffer[m_cb.buffer_size - m_cb.buffer_size_left], m_cb.active_channels); } else if ((m_cb.buffer_size_left == m_cb.active_channels) && (m_cb.p_secondary_buffer != NULL)) { // Samples to convert for one event, prepare next buffer. m_cb.conversions_end = true; m_cb.buffer_size_left = 0; nrf_saadc_buffer_init((nrf_saadc_value_t *)m_cb.p_secondary_buffer, m_cb.active_channels); } else if (m_cb.buffer_size_left == m_cb.active_channels) { // Samples to convert for one event, but no second buffer. m_cb.conversions_end = true; m_cb.buffer_size_left = 0; } nrf_saadc_event_clear(NRF_SAADC_EVENT_END); nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE); } if (nrf_saadc_event_check(NRF_SAADC_EVENT_CALIBRATEDONE)) { nrf_saadc_event_clear(NRF_SAADC_EVENT_CALIBRATEDONE); NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_SAADC_EVENT_CALIBRATEDONE)); m_cb.adc_state = NRF_SAADC_STATE_IDLE; nrfx_saadc_evt_t evt; evt.type = NRFX_SAADC_EVT_CALIBRATEDONE; m_cb.event_handler(&evt); } if (nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED)) { nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED); NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_SAADC_EVENT_STOPPED)); m_cb.adc_state = NRF_SAADC_STATE_IDLE; } else { uint32_t limit_flags = m_cb.limits_enabled_flags; uint32_t flag_idx; nrf_saadc_event_t event; while (limit_flags) { flag_idx = __CLZ(limit_flags); limit_flags &= ~((1UL << 31) >> flag_idx); event = FLAG_IDX_TO_EVENT(flag_idx); if (nrf_saadc_event_check(event)) { nrf_saadc_event_clear(event); nrfx_saadc_evt_t evt; evt.type = NRFX_SAADC_EVT_LIMIT; evt.data.limit.channel = LIMIT_EVENT_TO_CHANNEL(event); evt.data.limit.limit_type = LIMIT_EVENT_TO_LIMIT_TYPE(event); NRFX_LOG_DEBUG("Event limit, channel: %d, limit type: %d.", evt.data.limit.channel, evt.data.limit.limit_type); m_cb.event_handler(&evt); } } } } nrfx_err_t nrfx_saadc_init(nrfx_saadc_config_t const * p_config, nrfx_saadc_event_handler_t event_handler) { NRFX_ASSERT(p_config); NRFX_ASSERT(event_handler); nrfx_err_t err_code; if (m_cb.state != NRFX_DRV_STATE_UNINITIALIZED) { err_code = NRFX_ERROR_INVALID_STATE; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } m_cb.event_handler = event_handler; nrf_saadc_resolution_set(p_config->resolution); nrf_saadc_oversample_set(p_config->oversample); m_cb.low_power_mode = p_config->low_power_mode; m_cb.state = NRFX_DRV_STATE_INITIALIZED; m_cb.adc_state = NRF_SAADC_STATE_IDLE; m_cb.active_channels = 0; m_cb.limits_enabled_flags = 0; m_cb.conversions_end = false; nrf_saadc_int_disable(NRF_SAADC_INT_ALL); nrf_saadc_event_clear(NRF_SAADC_EVENT_END); nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED); NRFX_IRQ_PRIORITY_SET(SAADC_IRQn, p_config->interrupt_priority); NRFX_IRQ_ENABLE(SAADC_IRQn); nrf_saadc_int_enable(NRF_SAADC_INT_END); if (m_cb.low_power_mode) { nrf_saadc_int_enable(NRF_SAADC_INT_STARTED); } nrf_saadc_enable(); err_code = NRFX_SUCCESS; NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } void nrfx_saadc_uninit(void) { NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED); nrf_saadc_int_disable(NRF_SAADC_INT_ALL); NRFX_IRQ_DISABLE(SAADC_IRQn); nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP); // Wait for ADC being stopped. bool result; NRFX_WAIT_FOR(nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED), HW_TIMEOUT, 0, result); NRFX_ASSERT(result); nrf_saadc_disable(); m_cb.adc_state = NRF_SAADC_STATE_IDLE; for (uint32_t channel = 0; channel < NRF_SAADC_CHANNEL_COUNT; ++channel) { if (m_cb.psel[channel].pselp != NRF_SAADC_INPUT_DISABLED) { nrfx_err_t err_code = nrfx_saadc_channel_uninit(channel); NRFX_ASSERT(err_code == NRFX_SUCCESS); } } m_cb.state = NRFX_DRV_STATE_UNINITIALIZED; } nrfx_err_t nrfx_saadc_channel_init(uint8_t channel, nrf_saadc_channel_config_t const * const p_config) { NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED); NRFX_ASSERT(channel < NRF_SAADC_CHANNEL_COUNT); // Oversampling can be used only with one channel. NRFX_ASSERT((nrf_saadc_oversample_get() == NRF_SAADC_OVERSAMPLE_DISABLED) || (m_cb.active_channels == 0)); NRFX_ASSERT((p_config->pin_p <= NRF_SAADC_INPUT_VDD) && (p_config->pin_p > NRF_SAADC_INPUT_DISABLED)); NRFX_ASSERT(p_config->pin_n <= NRF_SAADC_INPUT_VDD); nrfx_err_t err_code; // A channel can only be initialized if the driver is in the idle state. if (m_cb.adc_state != NRF_SAADC_STATE_IDLE) { err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } #ifdef NRF52_PAN_74 if ((p_config->acq_time == NRF_SAADC_ACQTIME_3US) || (p_config->acq_time == NRF_SAADC_ACQTIME_5US)) { nrf_saadc_disable(); } #endif //NRF52_PAN_74 if (m_cb.psel[channel].pselp == NRF_SAADC_INPUT_DISABLED) { ++m_cb.active_channels; } m_cb.psel[channel].pselp = p_config->pin_p; m_cb.psel[channel].pseln = p_config->pin_n; nrf_saadc_channel_init(channel, p_config); #ifdef NRF52_PAN_74 if ((p_config->acq_time == NRF_SAADC_ACQTIME_3US) || (p_config->acq_time == NRF_SAADC_ACQTIME_5US)) { nrf_saadc_enable(); } #endif //NRF52_PAN_74 NRFX_LOG_INFO("Channel initialized: %d.", channel); err_code = NRFX_SUCCESS; NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } nrfx_err_t nrfx_saadc_channel_uninit(uint8_t channel) { NRFX_ASSERT(channel < NRF_SAADC_CHANNEL_COUNT); NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED); nrfx_err_t err_code; // A channel can only be uninitialized if the driver is in the idle state. if (m_cb.adc_state != NRF_SAADC_STATE_IDLE) { err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } if (m_cb.psel[channel].pselp != NRF_SAADC_INPUT_DISABLED) { --m_cb.active_channels; } m_cb.psel[channel].pselp = NRF_SAADC_INPUT_DISABLED; m_cb.psel[channel].pseln = NRF_SAADC_INPUT_DISABLED; nrf_saadc_channel_input_set(channel, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED); nrfx_saadc_limits_set(channel, NRFX_SAADC_LIMITL_DISABLED, NRFX_SAADC_LIMITH_DISABLED); NRFX_LOG_INFO("Channel denitialized: %d.", channel); err_code = NRFX_SUCCESS; NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } uint32_t nrfx_saadc_sample_task_get(void) { return nrf_saadc_task_address_get( m_cb.low_power_mode ? NRF_SAADC_TASK_START : NRF_SAADC_TASK_SAMPLE); } nrfx_err_t nrfx_saadc_sample_convert(uint8_t channel, nrf_saadc_value_t * p_value) { nrfx_err_t err_code; if (m_cb.adc_state != NRF_SAADC_STATE_IDLE) { err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } m_cb.adc_state = NRF_SAADC_STATE_BUSY; nrf_saadc_int_disable(NRF_SAADC_INT_STARTED | NRF_SAADC_INT_END); nrf_saadc_buffer_init(p_value, 1); if (m_cb.active_channels > 1) { for (uint32_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i) { nrf_saadc_channel_input_set(i, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED); } } nrf_saadc_channel_input_set(channel, m_cb.psel[channel].pselp, m_cb.psel[channel].pseln); nrf_saadc_task_trigger(NRF_SAADC_TASK_START); nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE); bool result; NRFX_WAIT_FOR(nrf_saadc_event_check(NRF_SAADC_EVENT_END), HW_TIMEOUT, 0, result); NRFX_ASSERT(result); nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED); nrf_saadc_event_clear(NRF_SAADC_EVENT_END); NRFX_LOG_INFO("Conversion value: %d, channel %d.", *p_value, channel); if (m_cb.active_channels > 1) { for (uint32_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i) { nrf_saadc_channel_input_set(i, m_cb.psel[i].pselp, m_cb.psel[i].pseln); } } if (m_cb.low_power_mode) { nrf_saadc_int_enable(NRF_SAADC_INT_STARTED | NRF_SAADC_INT_END); } else { nrf_saadc_int_enable(NRF_SAADC_INT_END); } m_cb.adc_state = NRF_SAADC_STATE_IDLE; err_code = NRFX_SUCCESS; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } nrfx_err_t nrfx_saadc_buffer_convert(nrf_saadc_value_t * p_buffer, uint16_t size) { NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED); NRFX_ASSERT((size % m_cb.active_channels) == 0); nrfx_err_t err_code; nrf_saadc_int_disable(NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE); if (m_cb.adc_state == NRF_SAADC_STATE_CALIBRATION) { nrf_saadc_int_enable(NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE); err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } if (m_cb.adc_state == NRF_SAADC_STATE_BUSY) { if ( m_cb.p_secondary_buffer) { nrf_saadc_int_enable(NRF_SAADC_INT_END); err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } else { m_cb.p_secondary_buffer = p_buffer; m_cb.secondary_buffer_size = size; if (!m_cb.low_power_mode) { while (nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED) == 0); nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED); nrf_saadc_buffer_init(p_buffer, size); } nrf_saadc_int_enable(NRF_SAADC_INT_END); err_code = NRFX_SUCCESS; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } } nrf_saadc_int_enable(NRF_SAADC_INT_END); m_cb.adc_state = NRF_SAADC_STATE_BUSY; m_cb.p_buffer = p_buffer; m_cb.buffer_size = size; m_cb.p_secondary_buffer = NULL; NRFX_LOG_INFO("Function: %s, buffer length: %d, active channels: %d.", __func__, size, m_cb.active_channels); if (m_cb.low_power_mode) { m_cb.buffer_size_left = size; nrf_saadc_buffer_init(p_buffer, m_cb.active_channels); } else { nrf_saadc_buffer_init(p_buffer, size); nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED); nrf_saadc_task_trigger(NRF_SAADC_TASK_START); } err_code = NRFX_SUCCESS; NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } nrfx_err_t nrfx_saadc_sample() { NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED); nrfx_err_t err_code = NRFX_SUCCESS; if (m_cb.adc_state != NRF_SAADC_STATE_BUSY) { err_code = NRFX_ERROR_INVALID_STATE; } else if (m_cb.low_power_mode) { nrf_saadc_task_trigger(NRF_SAADC_TASK_START); } else { nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE); } NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } nrfx_err_t nrfx_saadc_calibrate_offset() { NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED); nrfx_err_t err_code; if (m_cb.adc_state != NRF_SAADC_STATE_IDLE) { err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } m_cb.adc_state = NRF_SAADC_STATE_CALIBRATION; nrf_saadc_event_clear(NRF_SAADC_EVENT_CALIBRATEDONE); nrf_saadc_int_enable(NRF_SAADC_INT_CALIBRATEDONE); nrf_saadc_task_trigger(NRF_SAADC_TASK_CALIBRATEOFFSET); err_code = NRFX_SUCCESS; NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } bool nrfx_saadc_is_busy(void) { return (m_cb.adc_state != NRF_SAADC_STATE_IDLE); } void nrfx_saadc_abort(void) { if (nrfx_saadc_is_busy()) { nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED); nrf_saadc_int_enable(NRF_SAADC_INT_STOPPED); nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP); if (m_cb.adc_state == NRF_SAADC_STATE_CALIBRATION) { m_cb.adc_state = NRF_SAADC_STATE_IDLE; } else { // Wait for ADC being stopped. bool result; NRFX_WAIT_FOR((m_cb.adc_state != NRF_SAADC_STATE_IDLE), HW_TIMEOUT, 0, result); NRFX_ASSERT(result); } nrf_saadc_int_disable(NRF_SAADC_INT_STOPPED); m_cb.p_buffer = 0; m_cb.p_secondary_buffer = 0; NRFX_LOG_INFO("Conversion aborted."); } } void nrfx_saadc_limits_set(uint8_t channel, int16_t limit_low, int16_t limit_high) { NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED); NRFX_ASSERT(m_cb.event_handler); // only non blocking mode supported NRFX_ASSERT(limit_low >= NRFX_SAADC_LIMITL_DISABLED); NRFX_ASSERT(limit_high <= NRFX_SAADC_LIMITH_DISABLED); NRFX_ASSERT(limit_low < limit_high); nrf_saadc_channel_limits_set(channel, limit_low, limit_high); uint32_t int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_LOW); if (limit_low == NRFX_SAADC_LIMITL_DISABLED) { m_cb.limits_enabled_flags &= ~(0x80000000 >> LOW_LIMIT_TO_FLAG(channel)); nrf_saadc_int_disable(int_mask); } else { m_cb.limits_enabled_flags |= (0x80000000 >> LOW_LIMIT_TO_FLAG(channel)); nrf_saadc_int_enable(int_mask); } int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_HIGH); if (limit_high == NRFX_SAADC_LIMITH_DISABLED) { m_cb.limits_enabled_flags &= ~(0x80000000 >> HIGH_LIMIT_TO_FLAG(channel)); nrf_saadc_int_disable(int_mask); } else { m_cb.limits_enabled_flags |= (0x80000000 >> HIGH_LIMIT_TO_FLAG(channel)); nrf_saadc_int_enable(int_mask); } } #endif // NRFX_CHECK(NRFX_SAADC_ENABLED)