/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ #include #include "btstack_tlv.h" #include "mesh/mesh_foundation.h" #include "mesh_upper_transport.h" #include "mesh/mesh.h" #include "mesh/mesh_proxy.h" #include "mesh/mesh_node.h" #define BTSTACK_FILE__ "mesh_upper_transport.c" #include "mesh/mesh_upper_transport.h" #include #include #include #include "btstack_util.h" #include "btstack_memory.h" #include "btstack_debug.h" #include "btstack_bool.h" #include "mesh/beacon.h" #include "mesh/mesh_iv_index_seq_number.h" #include "mesh/mesh_keys.h" #include "mesh/mesh_lower_transport.h" #include "mesh/mesh_peer.h" #include "mesh/mesh_virtual_addresses.h" // TODO: extract mesh_pdu functions into lower transport or network #include "mesh/mesh_access.h" // MESH_ACCESS_MESH_NETWORK_PAYLOAD_MAX (384) / MESH_NETWORK_PAYLOAD_MAX (29) = 13.24.. < 14 #define MESSAGE_BUILDER_MAX_NUM_NETWORK_PDUS (14) // combined key x address iterator for upper transport decryption typedef struct { // state mesh_transport_key_iterator_t key_it; mesh_virtual_address_iterator_t address_it; // elements const mesh_transport_key_t * key; const mesh_virtual_address_t * address; // address - might be virtual uint16_t dst; // key info } mesh_transport_key_and_virtual_address_iterator_t; static void mesh_upper_transport_run(void); static void mesh_upper_transport_schedule_send_requests(void); static void mesh_upper_transport_validate_access_message(void); // upper transport callbacks - in access layer static void (*mesh_access_message_handler)( mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu); static void (*mesh_control_message_handler)( mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu); // static int crypto_active; static uint8_t application_nonce[13]; static btstack_crypto_ccm_t ccm; static mesh_transport_key_and_virtual_address_iterator_t mesh_transport_key_it; // incoming segmented (mesh_segmented_pdu_t) or unsegmented (network_pdu_t) static mesh_pdu_t * incoming_access_encrypted; // multi-purpose union: segmented control reassembly, decrypted access pdu static union { mesh_control_pdu_t control; mesh_access_pdu_t access; } incoming_pdu_singleton; // pointer to incoming_pdu_singleton.access static mesh_access_pdu_t * incoming_access_decrypted; // pointer to incoming_pdu_singleton.access static mesh_control_pdu_t * incoming_control_pdu; // incoming incoming_access_decrypted ready to be deliverd static bool incoming_access_pdu_ready; // incoming unsegmented (network) and segmented (transport) control and access messages static btstack_linked_list_t upper_transport_incoming; // outgoing unsegmented and segmented control and access messages static btstack_linked_list_t upper_transport_outgoing; // outgoing upper transport messages that have been sent to lower transport and wait for sent event static btstack_linked_list_t upper_transport_outgoing_active; // outgoing send requests static btstack_linked_list_t upper_transport_send_requests; // message builder buffers static mesh_upper_transport_pdu_t * message_builder_reserved_upper_pdu; static uint8_t message_builder_num_network_pdus_reserved; static btstack_linked_list_t message_builder_reserved_network_pdus; // requets network pdus for outgoing send requests and outgoing run static bool upper_transport_need_pdu_for_send_requests; static bool upper_transport_need_pdu_for_run_outgoing; // TODO: higher layer define used for assert #define MESH_ACCESS_OPCODE_NOT_SET 0xFFFFFFFEu static void mesh_print_hex(const char * name, const uint8_t * data, uint16_t len){ printf("%-20s ", name); printf_hexdump(data, len); } // static void mesh_print_x(const char * name, uint32_t value){ // printf("%20s: 0x%x", name, (int) value); // } static void mesh_transport_key_and_virtual_address_iterator_init(mesh_transport_key_and_virtual_address_iterator_t *it, uint16_t dst, uint16_t netkey_index, uint8_t akf, uint8_t aid) { printf("KEY_INIT: dst %04x, akf %x, aid %x\n", dst, akf, aid); // config it->dst = dst; // init elements it->key = NULL; it->address = NULL; // init element iterators mesh_transport_key_aid_iterator_init(&it->key_it, netkey_index, akf, aid); // init address iterator if (mesh_network_address_virtual(it->dst)){ mesh_virtual_address_iterator_init(&it->address_it, dst); // get first key if (mesh_transport_key_aid_iterator_has_more(&it->key_it)) { it->key = mesh_transport_key_aid_iterator_get_next(&it->key_it); } } } // cartesian product: keys x addressses static int mesh_transport_key_and_virtual_address_iterator_has_more(mesh_transport_key_and_virtual_address_iterator_t * it){ if (mesh_network_address_virtual(it->dst)) { // find next valid entry while (true){ if (mesh_virtual_address_iterator_has_more(&it->address_it)) return 1; if (!mesh_transport_key_aid_iterator_has_more(&it->key_it)) return 0; // get next key it->key = mesh_transport_key_aid_iterator_get_next(&it->key_it); mesh_virtual_address_iterator_init(&it->address_it, it->dst); } } else { return mesh_transport_key_aid_iterator_has_more(&it->key_it); } } static void mesh_transport_key_and_virtual_address_iterator_next(mesh_transport_key_and_virtual_address_iterator_t * it){ if (mesh_network_address_virtual(it->dst)) { it->address = mesh_virtual_address_iterator_get_next(&it->address_it); } else { it->key = mesh_transport_key_aid_iterator_get_next(&it->key_it); } } // UPPER TRANSPORT static void mesh_segmented_pdu_flatten(btstack_linked_list_t * segments, uint8_t segment_len, uint8_t * buffer) { // assemble payload btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, segments); while (btstack_linked_list_iterator_has_next(&it)) { mesh_network_pdu_t *segment = (mesh_network_pdu_t *) btstack_linked_list_iterator_next(&it); btstack_assert(segment->pdu_header.pdu_type == MESH_PDU_TYPE_NETWORK); uint8_t offset = 0; while (offset < segment->len){ uint8_t seg_o = segment->data[offset++]; (void) memcpy(&buffer[seg_o * segment_len], &segment->data[offset], segment_len); offset += segment_len; } } } static uint16_t mesh_upper_pdu_flatten(mesh_upper_transport_pdu_t * upper_pdu, uint8_t * buffer, uint16_t buffer_len) { // assemble payload btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &upper_pdu->segments); uint16_t offset = 0; while (btstack_linked_list_iterator_has_next(&it)) { mesh_network_pdu_t *segment = (mesh_network_pdu_t *) btstack_linked_list_iterator_next(&it); btstack_assert(segment->pdu_header.pdu_type == MESH_PDU_TYPE_NETWORK); btstack_assert((offset + segment->len) <= buffer_len); (void) memcpy(&buffer[offset], segment->data, segment->len); offset += segment->len; } return offset; } // store payload in provided list of network pdus static void mesh_segmented_store_payload(const uint8_t * payload, uint16_t payload_len, btstack_linked_list_t * in_segments, btstack_linked_list_t * out_segments){ uint16_t payload_offset = 0; uint16_t bytes_current_segment = 0; mesh_network_pdu_t * network_pdu = NULL; while (payload_offset < payload_len){ if (bytes_current_segment == 0){ network_pdu = (mesh_network_pdu_t *) btstack_linked_list_pop(in_segments); btstack_assert(network_pdu != NULL); btstack_linked_list_add_tail(out_segments, (btstack_linked_item_t *) network_pdu); bytes_current_segment = MESH_NETWORK_PAYLOAD_MAX; } uint16_t bytes_to_copy = btstack_min(bytes_current_segment, payload_len - payload_offset); (void) memcpy(&network_pdu->data[network_pdu->len], &payload[payload_offset], bytes_to_copy); bytes_current_segment -= bytes_to_copy; // on enter, bytes_current_segment = 0 => network_pdu = pop (in segements) + assert (network != NULL) // cppcheck-suppress nullPointer network_pdu->len += bytes_to_copy; payload_offset += bytes_to_copy; } } // tries allocate and add enough segments to store payload of given size static bool mesh_segmented_allocate_segments(btstack_linked_list_t * segments, uint16_t payload_len){ uint16_t storage_size = btstack_linked_list_count(segments) * MESH_NETWORK_PAYLOAD_MAX; while (storage_size < payload_len){ mesh_network_pdu_t * network_pdu = mesh_network_pdu_get(); if (network_pdu == NULL) break; storage_size += MESH_NETWORK_PAYLOAD_MAX; btstack_linked_list_add(segments, (btstack_linked_item_t *) network_pdu); } return (storage_size >= payload_len); } // stub lower transport static void mesh_upper_transport_dump_pdus(const char *name, btstack_linked_list_t *list){ printf("List: %s:\n", name); btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, list); while (btstack_linked_list_iterator_has_next(&it)){ mesh_pdu_t * pdu = (mesh_pdu_t*) btstack_linked_list_iterator_next(&it); printf("- %p\n", pdu); // printf_hexdump( mesh_pdu_data(pdu), mesh_pdu_len(pdu)); } } static void mesh_upper_transport_reset_pdus(btstack_linked_list_t *list){ while (!btstack_linked_list_empty(list)){ mesh_upper_transport_pdu_free((mesh_pdu_t *) btstack_linked_list_pop(list)); } } void mesh_upper_transport_dump(void){ mesh_upper_transport_dump_pdus("upper_transport_incoming", &upper_transport_incoming); } void mesh_upper_transport_reset(void){ crypto_active = 0; mesh_upper_transport_reset_pdus(&upper_transport_incoming); mesh_upper_transport_reset_pdus(&upper_transport_outgoing); message_builder_num_network_pdus_reserved = 0; mesh_upper_transport_reset_pdus(&message_builder_reserved_network_pdus); if (message_builder_reserved_upper_pdu != NULL){ btstack_memory_mesh_upper_transport_pdu_free(message_builder_reserved_upper_pdu); message_builder_reserved_upper_pdu = NULL; } } static mesh_transport_key_t * mesh_upper_transport_get_outgoing_appkey(uint16_t netkey_index, uint16_t appkey_index){ // Device Key is fixed if (appkey_index == MESH_DEVICE_KEY_INDEX) { return mesh_transport_key_get(appkey_index); } // Get key refresh state from subnet mesh_subnet_t * subnet = mesh_subnet_get_by_netkey_index(netkey_index); if (subnet == NULL) return NULL; // identify old and new app keys for given appkey_index mesh_transport_key_t * old_key = NULL; mesh_transport_key_t * new_key = NULL; mesh_transport_key_iterator_t it; mesh_transport_key_iterator_init(&it, netkey_index); while (mesh_transport_key_iterator_has_more(&it)){ mesh_transport_key_t * transport_key = mesh_transport_key_iterator_get_next(&it); if (transport_key->appkey_index != appkey_index) continue; if (transport_key->old_key == 0) { new_key = transport_key; } else { old_key = transport_key; } } // if no key is marked as old, just use the current one if (old_key == NULL) return new_key; // use new key if it exists in phase two if ((subnet->key_refresh == MESH_KEY_REFRESH_SECOND_PHASE) && (new_key != NULL)){ return new_key; } else { return old_key; } } static uint32_t iv_index_for_ivi_nid(uint8_t ivi_nid){ // get IV Index and IVI uint32_t iv_index = mesh_get_iv_index(); int ivi = ivi_nid >> 7; // if least significant bit differs, use previous IV Index if ((iv_index & 1 ) ^ ivi){ iv_index--; } return iv_index; } static void transport_segmented_setup_nonce(uint8_t * nonce, const mesh_pdu_t * pdu){ mesh_access_pdu_t * access_pdu; mesh_upper_transport_pdu_t * upper_pdu; switch (pdu->pdu_type){ case MESH_PDU_TYPE_ACCESS: access_pdu = (mesh_access_pdu_t *) pdu; nonce[1] = ((access_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 0x80 : 0x00; big_endian_store_24(nonce, 2, access_pdu->seq); big_endian_store_16(nonce, 5, access_pdu->src); big_endian_store_16(nonce, 7, access_pdu->dst); big_endian_store_32(nonce, 9, iv_index_for_ivi_nid(access_pdu->ivi_nid)); break; case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: upper_pdu = (mesh_upper_transport_pdu_t *) pdu; nonce[1] = ((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 0x80 : 0x00; // 'network header' big_endian_store_24(nonce, 2, upper_pdu->seq); big_endian_store_16(nonce, 5, upper_pdu->src); big_endian_store_16(nonce, 7, upper_pdu->dst); big_endian_store_32(nonce, 9, iv_index_for_ivi_nid(upper_pdu->ivi_nid)); break; default: btstack_assert(0); break; } } static void transport_segmented_setup_application_nonce(uint8_t * nonce, const mesh_pdu_t * pdu){ nonce[0] = 0x01; transport_segmented_setup_nonce(nonce, pdu); mesh_print_hex("AppNonce", nonce, 13); } static void transport_segmented_setup_device_nonce(uint8_t * nonce, const mesh_pdu_t * pdu){ nonce[0] = 0x02; transport_segmented_setup_nonce(nonce, pdu); mesh_print_hex("DeviceNonce", nonce, 13); } static void mesh_upper_transport_process_access_message_done(mesh_access_pdu_t *access_pdu){ crypto_active = 0; btstack_assert((access_pdu->ctl_ttl & 0x80) == 0); mesh_lower_transport_message_processed_by_higher_layer(incoming_access_encrypted); incoming_access_encrypted = NULL; incoming_access_decrypted = NULL; mesh_upper_transport_run(); } static void mesh_upper_transport_process_control_message_done(mesh_control_pdu_t * control_pdu){ UNUSED(control_pdu); crypto_active = 0; incoming_control_pdu = NULL; mesh_upper_transport_run(); } static void mesh_upper_transport_network_pdu_freed(void){ // call both while prioritizing run outgoing // both functions will trigger request for network pdu if needed if (upper_transport_need_pdu_for_run_outgoing){ upper_transport_need_pdu_for_run_outgoing = false; mesh_upper_transport_run(); } if (upper_transport_need_pdu_for_send_requests){ upper_transport_need_pdu_for_send_requests = false; mesh_upper_transport_schedule_send_requests(); } } static void mesh_upper_transport_need_pdu_for_send_requests(void) { bool waiting = upper_transport_need_pdu_for_send_requests || upper_transport_need_pdu_for_run_outgoing; upper_transport_need_pdu_for_send_requests = true; if (waiting == false) { mesh_network_notify_on_freed_pdu(&mesh_upper_transport_network_pdu_freed); } } static void mesh_upper_transport_need_pdu_for_run_outgoing(void) { bool waiting = upper_transport_need_pdu_for_send_requests || upper_transport_need_pdu_for_run_outgoing; upper_transport_need_pdu_for_run_outgoing = true; if (waiting == false) { mesh_network_notify_on_freed_pdu(&mesh_upper_transport_network_pdu_freed); } } static void mesh_upper_transport_deliver_access_message(void) { incoming_access_pdu_ready = false; mesh_access_message_handler(MESH_TRANSPORT_PDU_RECEIVED, MESH_TRANSPORT_STATUS_SUCCESS, (mesh_pdu_t *) incoming_access_decrypted); } static bool mesh_upper_transport_send_requests_pending(void){ if (incoming_access_pdu_ready) { return true; } return btstack_linked_list_empty(&upper_transport_send_requests) == false; } static void mesh_upper_transport_schedule_send_requests(void){ while (mesh_upper_transport_send_requests_pending()){ // get ready bool message_builder_ready = mesh_upper_transport_message_reserve(); if (message_builder_ready == false){ // waiting for free upper pdu, we will get called again on pdu free if (message_builder_reserved_upper_pdu == NULL){ return; } // request callback on network pdu free mesh_upper_transport_need_pdu_for_send_requests(); return; } // process send requests // incoming access pdu if (incoming_access_pdu_ready){ // message builder ready = one outgoing pdu is guaranteed, deliver access pdu mesh_upper_transport_deliver_access_message(); continue; } // regular send request btstack_context_callback_registration_t * send_request = (btstack_context_callback_registration_t *) btstack_linked_list_pop(&upper_transport_send_requests); btstack_assert(send_request != NULL); (*send_request->callback)(send_request->context); } } void mesh_upper_transport_request_to_send(btstack_context_callback_registration_t * request){ btstack_linked_list_add_tail(&upper_transport_send_requests, (btstack_linked_item_t *) request); mesh_upper_transport_schedule_send_requests(); } static void mesh_upper_transport_validate_access_message_ccm(void * arg){ UNUSED(arg); uint8_t transmic_len = ((incoming_access_decrypted->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4; uint8_t * upper_transport_pdu = incoming_access_decrypted->data; uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - transmic_len; mesh_print_hex("Decrypted PDU", upper_transport_pdu, upper_transport_pdu_len); // store TransMIC uint8_t trans_mic[8]; btstack_crypto_ccm_get_authentication_value(&ccm, trans_mic); mesh_print_hex("TransMIC", trans_mic, transmic_len); if (memcmp(trans_mic, &upper_transport_pdu[upper_transport_pdu_len], transmic_len) == 0){ printf("TransMIC matches\n"); // remove TransMIC from payload incoming_access_decrypted->len -= transmic_len; // if virtual address, update dst to pseudo_dst if (mesh_network_address_virtual(incoming_access_decrypted->dst)){ incoming_access_decrypted->dst = mesh_transport_key_it.address->pseudo_dst; } // pass to upper layer incoming_access_pdu_ready = true; mesh_upper_transport_schedule_send_requests(); } else { uint8_t akf = incoming_access_decrypted->akf_aid_control & 0x40; if (akf){ printf("TransMIC does not match, try next key\n"); mesh_upper_transport_validate_access_message(); } else { printf("TransMIC does not match device key, done\n"); // done mesh_upper_transport_process_access_message_done(incoming_access_decrypted); } } } static void mesh_upper_transport_validate_access_message_digest(void * arg){ UNUSED(arg); uint8_t transmic_len = ((incoming_access_decrypted->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4; uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - transmic_len; uint8_t * upper_transport_pdu_data_out = incoming_access_decrypted->data; mesh_network_pdu_t * unsegmented_pdu = NULL; mesh_segmented_pdu_t * segmented_pdu = NULL; switch (incoming_access_encrypted->pdu_type){ case MESH_PDU_TYPE_SEGMENTED: segmented_pdu = (mesh_segmented_pdu_t *) incoming_access_encrypted; mesh_segmented_pdu_flatten(&segmented_pdu->segments, 12, upper_transport_pdu_data_out); mesh_print_hex("Encrypted Payload:", upper_transport_pdu_data_out, upper_transport_pdu_len); btstack_crypto_ccm_decrypt_block(&ccm, upper_transport_pdu_len, upper_transport_pdu_data_out, upper_transport_pdu_data_out, &mesh_upper_transport_validate_access_message_ccm, NULL); break; case MESH_PDU_TYPE_UNSEGMENTED: unsegmented_pdu = (mesh_network_pdu_t *) incoming_access_encrypted; (void)memcpy(upper_transport_pdu_data_out, &unsegmented_pdu->data[10], incoming_access_decrypted->len); btstack_crypto_ccm_decrypt_block(&ccm, upper_transport_pdu_len, upper_transport_pdu_data_out, upper_transport_pdu_data_out, &mesh_upper_transport_validate_access_message_ccm, NULL); break; default: btstack_assert(false); break; } } static void mesh_upper_transport_validate_access_message(void){ uint8_t transmic_len = ((incoming_access_decrypted->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4; uint8_t * upper_transport_pdu_data = incoming_access_decrypted->data; uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - transmic_len; if (!mesh_transport_key_and_virtual_address_iterator_has_more(&mesh_transport_key_it)){ printf("No valid transport key found\n"); mesh_upper_transport_process_access_message_done(incoming_access_decrypted); return; } mesh_transport_key_and_virtual_address_iterator_next(&mesh_transport_key_it); const mesh_transport_key_t * message_key = mesh_transport_key_it.key; if (message_key->akf){ transport_segmented_setup_application_nonce(application_nonce, (mesh_pdu_t *) incoming_access_decrypted); } else { transport_segmented_setup_device_nonce(application_nonce, (mesh_pdu_t *) incoming_access_decrypted); } // store application / device key index mesh_print_hex("AppOrDevKey", message_key->key, 16); incoming_access_decrypted->appkey_index = message_key->appkey_index; mesh_print_hex("EncAccessPayload", upper_transport_pdu_data, upper_transport_pdu_len); // decrypt ccm crypto_active = 1; uint16_t aad_len = 0; if (mesh_network_address_virtual(incoming_access_decrypted->dst)){ aad_len = 16; } btstack_crypto_ccm_init(&ccm, message_key->key, application_nonce, upper_transport_pdu_len, aad_len, transmic_len); if (aad_len){ btstack_crypto_ccm_digest(&ccm, (uint8_t *) mesh_transport_key_it.address->label_uuid, aad_len, &mesh_upper_transport_validate_access_message_digest, NULL); } else { mesh_upper_transport_validate_access_message_digest(NULL); } } static void mesh_upper_transport_process_access_message(void){ uint8_t transmic_len = ((incoming_access_decrypted->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4; uint8_t * upper_transport_pdu = incoming_access_decrypted->data; uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - transmic_len; mesh_print_hex("Upper Transport pdu", upper_transport_pdu, upper_transport_pdu_len); uint8_t aid = incoming_access_decrypted->akf_aid_control & 0x3f; uint8_t akf = (incoming_access_decrypted->akf_aid_control & 0x40) >> 6; printf("AKF: %u\n", akf); printf("AID: %02x\n", aid); mesh_transport_key_and_virtual_address_iterator_init(&mesh_transport_key_it, incoming_access_decrypted->dst, incoming_access_decrypted->netkey_index, akf, aid); mesh_upper_transport_validate_access_message(); } static void mesh_upper_transport_message_received(mesh_pdu_t * pdu){ btstack_linked_list_add_tail(&upper_transport_incoming, (btstack_linked_item_t*) pdu); mesh_upper_transport_run(); } static void mesh_upper_transport_send_access_segmented(mesh_upper_transport_pdu_t * upper_pdu){ mesh_segmented_pdu_t * segmented_pdu = (mesh_segmented_pdu_t *) upper_pdu->lower_pdu; segmented_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_SEGMENTED; // convert mesh_access_pdu_t into mesh_segmented_pdu_t btstack_linked_list_t free_segments = segmented_pdu->segments; segmented_pdu->segments = NULL; mesh_segmented_store_payload(incoming_pdu_singleton.access.data, upper_pdu->len, &free_segments, &segmented_pdu->segments); // copy meta segmented_pdu->len = upper_pdu->len; segmented_pdu->netkey_index = upper_pdu->netkey_index; segmented_pdu->akf_aid_control = upper_pdu->akf_aid_control; segmented_pdu->flags = upper_pdu->flags; // setup segmented_pdu header // (void)memcpy(segmented_pdu->network_header, upper_pdu->network_header, 9); // TODO: use fields in mesh_segmented_pdu_t and setup network header in lower transport segmented_pdu->ivi_nid = upper_pdu->ivi_nid; segmented_pdu->ctl_ttl = upper_pdu->ctl_ttl; segmented_pdu->seq = upper_pdu->seq; segmented_pdu->src = upper_pdu->src; segmented_pdu->dst = upper_pdu->dst; // queue up upper_pdu->lower_pdu = (mesh_pdu_t *) segmented_pdu; btstack_linked_list_add(&upper_transport_outgoing_active, (btstack_linked_item_t *) upper_pdu); mesh_lower_transport_send_pdu((mesh_pdu_t*) segmented_pdu); } static void mesh_upper_transport_send_access_unsegmented(mesh_upper_transport_pdu_t * upper_pdu){ // provide segment mesh_network_pdu_t * network_pdu = (mesh_network_pdu_t *) upper_pdu->lower_pdu; // setup network pdu network_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS; network_pdu->data[0] = upper_pdu->ivi_nid; network_pdu->data[1] = upper_pdu->ctl_ttl; big_endian_store_24(network_pdu->data, 2, upper_pdu->seq); big_endian_store_16(network_pdu->data, 5, upper_pdu->src); big_endian_store_16(network_pdu->data, 7, upper_pdu->dst); network_pdu->netkey_index = upper_pdu->netkey_index; // setup access message network_pdu->data[9] = upper_pdu->akf_aid_control; btstack_assert(upper_pdu->len < 15); (void)memcpy(&network_pdu->data[10], &incoming_pdu_singleton.access.data, upper_pdu->len); network_pdu->len = 10 + upper_pdu->len; network_pdu->flags = 0; // queue up btstack_linked_list_add(&upper_transport_outgoing_active, (btstack_linked_item_t *) upper_pdu); mesh_lower_transport_send_pdu((mesh_pdu_t*) network_pdu); } static void mesh_upper_transport_send_access_ccm(void * arg){ crypto_active = 0; mesh_upper_transport_pdu_t * upper_pdu = (mesh_upper_transport_pdu_t *) arg; mesh_print_hex("EncAccessPayload", incoming_pdu_singleton.access.data, upper_pdu->len); // store TransMIC btstack_crypto_ccm_get_authentication_value(&ccm, &incoming_pdu_singleton.access.data[upper_pdu->len]); uint8_t transmic_len = ((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4; mesh_print_hex("TransMIC", &incoming_pdu_singleton.access.data[upper_pdu->len], transmic_len); upper_pdu->len += transmic_len; mesh_print_hex("UpperTransportPDU", incoming_pdu_singleton.access.data, upper_pdu->len); switch (upper_pdu->pdu_header.pdu_type){ case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: mesh_upper_transport_send_access_unsegmented(upper_pdu); break; case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: mesh_upper_transport_send_access_segmented(upper_pdu); break; default: btstack_assert(false); } } static void mesh_upper_transport_send_access_digest(void *arg){ mesh_upper_transport_pdu_t * upper_pdu = (mesh_upper_transport_pdu_t *) arg; uint16_t access_pdu_len = upper_pdu->len; btstack_crypto_ccm_encrypt_block(&ccm, access_pdu_len, incoming_pdu_singleton.access.data, incoming_pdu_singleton.access.data, &mesh_upper_transport_send_access_ccm, upper_pdu); } static void mesh_upper_transport_send_access(mesh_upper_transport_pdu_t * upper_pdu){ // if dst is virtual address, lookup label uuid and hash uint16_t aad_len = 0; mesh_virtual_address_t * virtual_address = NULL; if (mesh_network_address_virtual(upper_pdu->dst)){ virtual_address = mesh_virtual_address_for_pseudo_dst(upper_pdu->dst); if (!virtual_address){ printf("No virtual address register for pseudo dst %4x\n", upper_pdu->dst); mesh_access_message_handler(MESH_TRANSPORT_PDU_SENT, MESH_TRANSPORT_STATUS_SEND_FAILED, (mesh_pdu_t *) upper_pdu); return; } // printf("Using hash %4x with LabelUUID: ", virtual_address->hash); // printf_hexdump(virtual_address->label_uuid, 16); aad_len = 16; upper_pdu->dst = virtual_address->hash; } // get app or device key uint16_t appkey_index = upper_pdu->appkey_index; const mesh_transport_key_t * appkey = mesh_upper_transport_get_outgoing_appkey(upper_pdu->netkey_index, appkey_index); if (appkey == NULL){ printf("AppKey %04x not found, drop message\n", appkey_index); mesh_access_message_handler(MESH_TRANSPORT_PDU_SENT, MESH_TRANSPORT_STATUS_SEND_FAILED, (mesh_pdu_t *) upper_pdu); return; } // reserve slot mesh_lower_transport_reserve_slot(); // reserve one sequence number, which is also used to encrypt access payload uint32_t seq = mesh_sequence_number_next(); upper_pdu->flags |= MESH_TRANSPORT_FLAG_SEQ_RESERVED; upper_pdu->seq = seq; // also reserves crypto_buffer crypto_active = 1; // flatten segmented pdu into crypto buffer uint16_t payload_len = mesh_upper_pdu_flatten(upper_pdu, incoming_pdu_singleton.access.data, sizeof(incoming_pdu_singleton.access.data)); btstack_assert(payload_len == upper_pdu->len); UNUSED(payload_len); // Dump PDU printf("[+] Upper transport, send upper (un)segmented Access PDU - dest %04x, seq %06x\n", upper_pdu->dst, upper_pdu->seq); mesh_print_hex("Access Payload", incoming_pdu_singleton.access.data, upper_pdu->len); // setup nonce - uses dst, so after pseudo address translation if (appkey_index == MESH_DEVICE_KEY_INDEX){ transport_segmented_setup_device_nonce(application_nonce, (mesh_pdu_t *) upper_pdu); } else { transport_segmented_setup_application_nonce(application_nonce, (mesh_pdu_t *) upper_pdu); } // Dump key mesh_print_hex("AppOrDevKey", appkey->key, 16); // encrypt ccm uint8_t transmic_len = ((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4; uint16_t access_pdu_len = upper_pdu->len; btstack_crypto_ccm_init(&ccm, appkey->key, application_nonce, access_pdu_len, aad_len, transmic_len); if (virtual_address){ mesh_print_hex("LabelUUID", virtual_address->label_uuid, 16); btstack_crypto_ccm_digest(&ccm, virtual_address->label_uuid, 16, &mesh_upper_transport_send_access_digest, upper_pdu); } else { mesh_upper_transport_send_access_digest(upper_pdu); } } static void mesh_upper_transport_send_unsegmented_control_pdu(mesh_network_pdu_t * network_pdu){ // reserve slot mesh_lower_transport_reserve_slot(); // reserve sequence number uint32_t seq = mesh_sequence_number_next(); mesh_network_pdu_set_seq(network_pdu, seq); // Dump PDU uint8_t opcode = network_pdu->data[9]; printf("[+] Upper transport, send unsegmented Control PDU %p - seq %06x opcode %02x\n", network_pdu, seq, opcode); mesh_print_hex("Access Payload", &network_pdu->data[10], network_pdu->len - 10); // send mesh_lower_transport_send_pdu((mesh_pdu_t *) network_pdu); } static void mesh_upper_transport_send_segmented_control_pdu(mesh_upper_transport_pdu_t * upper_pdu){ // reserve slot mesh_lower_transport_reserve_slot(); // reserve sequence number uint32_t seq = mesh_sequence_number_next(); upper_pdu->flags |= MESH_TRANSPORT_FLAG_SEQ_RESERVED; upper_pdu->seq = seq; // Dump PDU // uint8_t opcode = upper_pdu->data[0]; // printf("[+] Upper transport, send segmented Control PDU %p - seq %06x opcode %02x\n", upper_pdu, seq, opcode); // mesh_print_hex("Access Payload", &upper_pdu->data[1], upper_pdu->len - 1); // send mesh_segmented_pdu_t * segmented_pdu = (mesh_segmented_pdu_t *) upper_pdu->lower_pdu; segmented_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_SEGMENTED; // lend segments to lower transport pdu segmented_pdu->segments = upper_pdu->segments; upper_pdu->segments = NULL; // copy meta segmented_pdu->len = upper_pdu->len; segmented_pdu->netkey_index = upper_pdu->netkey_index; segmented_pdu->akf_aid_control = upper_pdu->akf_aid_control; segmented_pdu->flags = upper_pdu->flags; btstack_assert((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) == 0); // setup segmented_pdu header // TODO: use fields in mesh_segmented_pdu_t and setup network header in lower transport segmented_pdu->ivi_nid = upper_pdu->ivi_nid; segmented_pdu->ctl_ttl = upper_pdu->ctl_ttl; segmented_pdu->seq = upper_pdu->seq; segmented_pdu->src = upper_pdu->src; segmented_pdu->dst = upper_pdu->dst; // queue up upper_pdu->lower_pdu = (mesh_pdu_t *) segmented_pdu; btstack_linked_list_add(&upper_transport_outgoing_active, (btstack_linked_item_t *) upper_pdu); mesh_lower_transport_send_pdu((mesh_pdu_t *) segmented_pdu); } static void mesh_upper_transport_run(void){ while(!btstack_linked_list_empty(&upper_transport_incoming)){ if (crypto_active) return; // get next message mesh_pdu_t * pdu = (mesh_pdu_t *) btstack_linked_list_pop(&upper_transport_incoming); mesh_network_pdu_t * network_pdu; mesh_segmented_pdu_t * segmented_pdu; switch (pdu->pdu_type){ case MESH_PDU_TYPE_UNSEGMENTED: network_pdu = (mesh_network_pdu_t *) pdu; // control? if (mesh_network_control(network_pdu)) { incoming_control_pdu = &incoming_pdu_singleton.control; incoming_control_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_CONTROL; incoming_control_pdu->len = network_pdu->len; incoming_control_pdu->netkey_index = network_pdu->netkey_index; uint8_t * lower_transport_pdu = mesh_network_pdu_data(network_pdu); incoming_control_pdu->akf_aid_control = lower_transport_pdu[0]; incoming_control_pdu->len = network_pdu->len - 10; // 9 header + 1 opcode (void)memcpy(incoming_control_pdu->data, &lower_transport_pdu[1], incoming_control_pdu->len); // copy meta data into encrypted pdu buffer incoming_control_pdu->ivi_nid = network_pdu->data[0]; incoming_control_pdu->ctl_ttl = network_pdu->data[1]; incoming_control_pdu->seq = big_endian_read_24(network_pdu->data, 2); incoming_control_pdu->src = big_endian_read_16(network_pdu->data, 5); incoming_control_pdu->dst = big_endian_read_16(network_pdu->data, 7); mesh_print_hex("Assembled payload", incoming_control_pdu->data, incoming_control_pdu->len); // free mesh message mesh_lower_transport_message_processed_by_higher_layer(pdu); btstack_assert(mesh_control_message_handler != NULL); mesh_control_message_handler(MESH_TRANSPORT_PDU_RECEIVED, MESH_TRANSPORT_STATUS_SUCCESS, (mesh_pdu_t*) incoming_control_pdu); } else { incoming_access_encrypted = (mesh_pdu_t *) network_pdu; incoming_access_decrypted = &incoming_pdu_singleton.access; incoming_access_decrypted->pdu_header.pdu_type = MESH_PDU_TYPE_ACCESS; incoming_access_decrypted->flags = 0; incoming_access_decrypted->netkey_index = network_pdu->netkey_index; incoming_access_decrypted->akf_aid_control = network_pdu->data[9]; incoming_access_decrypted->len = network_pdu->len - 10; // 9 header + 1 AID incoming_access_decrypted->ivi_nid = network_pdu->data[0]; incoming_access_decrypted->ctl_ttl = network_pdu->data[1]; incoming_access_decrypted->seq = big_endian_read_24(network_pdu->data, 2); incoming_access_decrypted->src = big_endian_read_16(network_pdu->data, 5); incoming_access_decrypted->dst = big_endian_read_16(network_pdu->data, 7); mesh_upper_transport_process_access_message(); } break; case MESH_PDU_TYPE_SEGMENTED: segmented_pdu = (mesh_segmented_pdu_t *) pdu; uint8_t ctl = segmented_pdu->ctl_ttl >> 7; if (ctl){ incoming_control_pdu= &incoming_pdu_singleton.control; incoming_control_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_CONTROL; // flatten mesh_segmented_pdu_flatten(&segmented_pdu->segments, 8, incoming_control_pdu->data); // copy meta data into encrypted pdu buffer incoming_control_pdu->flags = 0; incoming_control_pdu->len = segmented_pdu->len; incoming_control_pdu->netkey_index = segmented_pdu->netkey_index; incoming_control_pdu->akf_aid_control = segmented_pdu->akf_aid_control; incoming_control_pdu->ivi_nid = segmented_pdu->ivi_nid; incoming_control_pdu->ctl_ttl = segmented_pdu->ctl_ttl; incoming_control_pdu->seq = segmented_pdu->seq; incoming_control_pdu->src = segmented_pdu->src; incoming_control_pdu->dst = segmented_pdu->dst; mesh_print_hex("Assembled payload", incoming_control_pdu->data, incoming_control_pdu->len); // free mesh message mesh_lower_transport_message_processed_by_higher_layer((mesh_pdu_t *)segmented_pdu); btstack_assert(mesh_control_message_handler != NULL); mesh_control_message_handler(MESH_TRANSPORT_PDU_RECEIVED, MESH_TRANSPORT_STATUS_SUCCESS, (mesh_pdu_t*) incoming_control_pdu); } else { incoming_access_encrypted = (mesh_pdu_t *) segmented_pdu; incoming_access_decrypted = &incoming_pdu_singleton.access; incoming_access_decrypted->pdu_header.pdu_type = MESH_PDU_TYPE_ACCESS; incoming_access_decrypted->flags = segmented_pdu->flags; incoming_access_decrypted->len = segmented_pdu->len; incoming_access_decrypted->netkey_index = segmented_pdu->netkey_index; incoming_access_decrypted->akf_aid_control = segmented_pdu->akf_aid_control; incoming_access_decrypted->ivi_nid = segmented_pdu->ivi_nid; incoming_access_decrypted->ctl_ttl = segmented_pdu->ctl_ttl; incoming_access_decrypted->seq = segmented_pdu->seq; incoming_access_decrypted->src = segmented_pdu->src; incoming_access_decrypted->dst = segmented_pdu->dst; mesh_upper_transport_process_access_message(); } break; default: btstack_assert(0); break; } } btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &upper_transport_outgoing); while (btstack_linked_list_iterator_has_next(&it)){ if (crypto_active) break; mesh_pdu_t * pdu = (mesh_pdu_t *) btstack_linked_list_iterator_next(&it); if (mesh_lower_transport_can_send_to_dest(mesh_pdu_dst(pdu)) == false) { // skip pdu for now continue; } mesh_upper_transport_pdu_t * upper_pdu; mesh_segmented_pdu_t * segmented_pdu; uint8_t transmic_len; bool ok; bool abort_outgoing_loop = false; switch (pdu->pdu_type){ case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL: // control pdus can go through directly btstack_assert(mesh_pdu_ctl(pdu) != 0); btstack_linked_list_iterator_remove(&it); mesh_upper_transport_send_unsegmented_control_pdu((mesh_network_pdu_t *) pdu); break; case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: // control pdus can go through directly btstack_assert(mesh_pdu_ctl(pdu) != 0); btstack_linked_list_iterator_remove(&it); mesh_upper_transport_send_segmented_control_pdu((mesh_upper_transport_pdu_t *) pdu); break; case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: // segmented access pdus required a mesh-segmented-pdu upper_pdu = (mesh_upper_transport_pdu_t *) pdu; if (upper_pdu->lower_pdu == NULL){ upper_pdu->lower_pdu = (mesh_pdu_t *) btstack_memory_mesh_segmented_pdu_get(); } if (upper_pdu->lower_pdu == NULL){ mesh_upper_transport_need_pdu_for_run_outgoing(); abort_outgoing_loop = true; break; } segmented_pdu = (mesh_segmented_pdu_t *) upper_pdu->lower_pdu; segmented_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_SEGMENTED; // and a mesh-network-pdu for each segment in upper pdu transmic_len = ((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4; ok = mesh_segmented_allocate_segments(&segmented_pdu->segments, upper_pdu->len + transmic_len); if (!ok) { abort_outgoing_loop = true; break; } // all buffers available, get started btstack_linked_list_iterator_remove(&it); mesh_upper_transport_send_access(upper_pdu); break; case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: // unsegmented access pdus require a single mesh-network-dpu upper_pdu = (mesh_upper_transport_pdu_t *) pdu; if (upper_pdu->lower_pdu == NULL){ upper_pdu->lower_pdu = (mesh_pdu_t *) mesh_network_pdu_get(); } if (upper_pdu->lower_pdu == NULL) { mesh_upper_transport_need_pdu_for_run_outgoing(); abort_outgoing_loop = true; break; } btstack_linked_list_iterator_remove(&it); mesh_upper_transport_send_access((mesh_upper_transport_pdu_t *) pdu); break; default: btstack_assert(false); break; } if (abort_outgoing_loop) { break; } } } static mesh_upper_transport_pdu_t * mesh_upper_transport_find_and_remove_pdu_for_lower(mesh_pdu_t * pdu_to_find){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &upper_transport_outgoing_active); mesh_upper_transport_pdu_t * upper_pdu; while (btstack_linked_list_iterator_has_next(&it)){ mesh_pdu_t * mesh_pdu = (mesh_pdu_t *) btstack_linked_list_iterator_next(&it); switch (mesh_pdu->pdu_type){ case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: upper_pdu = (mesh_upper_transport_pdu_t *) mesh_pdu; if (upper_pdu->lower_pdu == pdu_to_find){ btstack_linked_list_iterator_remove(&it); return upper_pdu; } break; default: break; } } return NULL; } static void mesh_upper_transport_pdu_handler(mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu){ mesh_upper_transport_pdu_t * upper_pdu; mesh_segmented_pdu_t * segmented_pdu; switch (callback_type){ case MESH_TRANSPORT_PDU_RECEIVED: mesh_upper_transport_message_received(pdu); break; case MESH_TRANSPORT_PDU_SENT: switch (pdu->pdu_type){ case MESH_PDU_TYPE_SEGMENTED: // try to find in outgoing active upper_pdu = mesh_upper_transport_find_and_remove_pdu_for_lower(pdu); btstack_assert(upper_pdu != NULL); segmented_pdu = (mesh_segmented_pdu_t *) pdu; // free chunks while (!btstack_linked_list_empty(&segmented_pdu->segments)){ mesh_network_pdu_t * chunk_pdu = (mesh_network_pdu_t *) btstack_linked_list_pop(&segmented_pdu->segments); mesh_network_pdu_free(chunk_pdu); } // free segmented pdu btstack_memory_mesh_segmented_pdu_free(segmented_pdu); upper_pdu->lower_pdu = NULL; switch (upper_pdu->pdu_header.pdu_type){ case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: mesh_control_message_handler(callback_type, status, (mesh_pdu_t *) upper_pdu); break; case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: mesh_access_message_handler(callback_type, status, (mesh_pdu_t *) upper_pdu); break; default: btstack_assert(false); break; } break; case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: // find corresponding upper transport pdu and free single segment upper_pdu = mesh_upper_transport_find_and_remove_pdu_for_lower(pdu); btstack_assert(upper_pdu != NULL); btstack_assert(upper_pdu->lower_pdu == (mesh_pdu_t *) pdu); mesh_network_pdu_free((mesh_network_pdu_t *) pdu); upper_pdu->lower_pdu = NULL; mesh_access_message_handler(callback_type, status, (mesh_pdu_t*) upper_pdu); break; case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL: mesh_access_message_handler(callback_type, status, pdu); break; default: btstack_assert(false); break; } mesh_upper_transport_run(); break; default: break; } } void mesh_upper_transport_pdu_free(mesh_pdu_t * pdu){ btstack_assert(pdu != NULL); mesh_network_pdu_t * network_pdu; mesh_segmented_pdu_t * message_pdu; mesh_upper_transport_pdu_t * upper_pdu; switch (pdu->pdu_type) { case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL: case MESH_PDU_TYPE_NETWORK: network_pdu = (mesh_network_pdu_t *) pdu; mesh_network_pdu_free(network_pdu); break; case MESH_PDU_TYPE_SEGMENTED: message_pdu = (mesh_segmented_pdu_t *) pdu; mesh_segmented_pdu_free(message_pdu); break; case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: upper_pdu = (mesh_upper_transport_pdu_t *) pdu; while (upper_pdu->segments) { mesh_network_pdu_t *segment = (mesh_network_pdu_t *) btstack_linked_list_pop(&upper_pdu->segments); mesh_network_pdu_free(segment); } btstack_memory_mesh_upper_transport_pdu_free(upper_pdu); // check if send request can be handled now mesh_upper_transport_schedule_send_requests(); break; default: btstack_assert(false); break; } } void mesh_upper_transport_message_processed_by_higher_layer(mesh_pdu_t * pdu){ crypto_active = 0; switch (pdu->pdu_type){ case MESH_PDU_TYPE_ACCESS: mesh_upper_transport_process_access_message_done((mesh_access_pdu_t *) pdu); break; case MESH_PDU_TYPE_CONTROL: mesh_upper_transport_process_control_message_done((mesh_control_pdu_t *) pdu); break; default: btstack_assert(0); break; } } void mesh_upper_transport_send_access_pdu(mesh_pdu_t *pdu){ switch (pdu->pdu_type){ case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: break; default: btstack_assert(false); break; } btstack_assert(((mesh_upper_transport_pdu_t *) pdu)->lower_pdu == NULL); btstack_linked_list_add_tail(&upper_transport_outgoing, (btstack_linked_item_t*) pdu); mesh_upper_transport_run(); } void mesh_upper_transport_send_control_pdu(mesh_pdu_t * pdu){ switch (pdu->pdu_type){ case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: break; case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL: btstack_assert( ((mesh_network_pdu_t *) pdu)->len >= 9); break; default: btstack_assert(false); break; } btstack_linked_list_add_tail(&upper_transport_outgoing, (btstack_linked_item_t*) pdu); mesh_upper_transport_run(); } uint8_t mesh_upper_transport_setup_unsegmented_control_pdu(mesh_network_pdu_t * network_pdu, uint16_t netkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t opcode, const uint8_t * control_pdu_data, uint16_t control_pdu_len){ btstack_assert(network_pdu != NULL); btstack_assert(control_pdu_len <= 11); const mesh_network_key_t * network_key = mesh_network_key_list_get(netkey_index); if (!network_key) return 1; uint8_t transport_pdu_data[12]; transport_pdu_data[0] = opcode; (void)memcpy(&transport_pdu_data[1], control_pdu_data, control_pdu_len); uint16_t transport_pdu_len = control_pdu_len + 1; // setup network_pdu network_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL; mesh_network_setup_pdu(network_pdu, netkey_index, network_key->nid, 1, ttl, 0, src, dest, transport_pdu_data, transport_pdu_len); return 0; } uint8_t mesh_upper_transport_setup_segmented_control_pdu_header(mesh_upper_transport_pdu_t * upper_pdu, uint16_t netkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t opcode){ const mesh_network_key_t * network_key = mesh_network_key_list_get(netkey_index); if (!network_key) return 1; upper_pdu->ivi_nid = network_key->nid | ((mesh_get_iv_index_for_tx() & 1) << 7); upper_pdu->ctl_ttl = ttl; upper_pdu->src = src; upper_pdu->dst = dest; upper_pdu->netkey_index = netkey_index; upper_pdu->akf_aid_control = opcode; return 0; } static uint8_t mesh_upper_transport_setup_upper_access_pdu_header(mesh_upper_transport_pdu_t * upper_pdu, uint16_t netkey_index, uint16_t appkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t szmic){ // get app or device key const mesh_transport_key_t *appkey; appkey = mesh_transport_key_get(appkey_index); if (appkey == NULL) { printf("[!] Upper transport, setup segmented Access PDU - appkey_index %x unknown\n", appkey_index); return 1; } uint8_t akf_aid = (appkey->akf << 6) | appkey->aid; // lookup network by netkey_index const mesh_network_key_t *network_key = mesh_network_key_list_get(netkey_index); if (!network_key) return 1; if (network_key == NULL) { printf("[!] Upper transport, setup segmented Access PDU - netkey_index %x unknown\n", appkey_index); return 1; } // store in transport pdu upper_pdu->ivi_nid = network_key->nid | ((mesh_get_iv_index_for_tx() & 1) << 7); upper_pdu->ctl_ttl = ttl; upper_pdu->src = src; upper_pdu->dst = dest; upper_pdu->netkey_index = netkey_index; upper_pdu->appkey_index = appkey_index; upper_pdu->akf_aid_control = akf_aid; if (szmic) { upper_pdu->flags |= MESH_TRANSPORT_FLAG_TRANSMIC_64; } return 0; } uint8_t mesh_upper_transport_setup_access_pdu_header(mesh_pdu_t * pdu, uint16_t netkey_index, uint16_t appkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t szmic){ switch (pdu->pdu_type){ case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: return mesh_upper_transport_setup_upper_access_pdu_header((mesh_upper_transport_pdu_t *) pdu, netkey_index, appkey_index, ttl, src, dest, szmic); default: btstack_assert(false); return 1; } } void mesh_upper_transport_register_access_message_handler(void (*callback)(mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu)) { mesh_access_message_handler = callback; } void mesh_upper_transport_register_control_message_handler(void (*callback)(mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu)){ mesh_control_message_handler = callback; } void mesh_upper_transport_init(){ mesh_lower_transport_set_higher_layer_handler(&mesh_upper_transport_pdu_handler); } bool mesh_upper_transport_message_reserve(void){ if (message_builder_reserved_upper_pdu == NULL){ message_builder_reserved_upper_pdu = btstack_memory_mesh_upper_transport_pdu_get(); } if (message_builder_reserved_upper_pdu == NULL){ return false; } while (message_builder_num_network_pdus_reserved < MESSAGE_BUILDER_MAX_NUM_NETWORK_PDUS){ mesh_network_pdu_t * network_pdu = mesh_network_pdu_get(); if (network_pdu == NULL){ return false; } btstack_linked_list_add(&message_builder_reserved_network_pdus, (btstack_linked_item_t *) network_pdu); message_builder_num_network_pdus_reserved++; } return true; } void mesh_upper_transport_message_init(mesh_upper_transport_builder_t * builder, mesh_pdu_type_t pdu_type) { btstack_assert(builder != NULL); // use reserved buffer if available if (message_builder_reserved_upper_pdu != NULL){ builder->pdu = message_builder_reserved_upper_pdu; message_builder_reserved_upper_pdu = NULL; } else { builder->pdu = btstack_memory_mesh_upper_transport_pdu_get(); } if (!builder->pdu) return; builder->segment = NULL; builder->pdu->pdu_header.pdu_type = pdu_type; builder->pdu->ack_opcode = MESH_ACCESS_OPCODE_NOT_SET; } void mesh_upper_transport_message_add_data(mesh_upper_transport_builder_t * builder, const uint8_t * data, uint16_t data_len){ btstack_assert(builder != NULL); if (builder->pdu == NULL) return; builder->pdu->len += data_len; uint16_t bytes_current_segment = 0; if (builder->segment){ bytes_current_segment = MESH_NETWORK_PAYLOAD_MAX - builder->segment->len; } while (data_len > 0){ if (bytes_current_segment == 0){ // use reserved buffer if available if (message_builder_num_network_pdus_reserved > 0){ message_builder_num_network_pdus_reserved--; builder->segment = (mesh_network_pdu_t *) btstack_linked_list_pop(&message_builder_reserved_network_pdus); } else { builder->segment = (mesh_network_pdu_t *) mesh_network_pdu_get(); } if (builder->segment == NULL) { mesh_upper_transport_pdu_free((mesh_pdu_t *) builder->pdu); builder->pdu = NULL; return; } btstack_linked_list_add_tail(&builder->pdu->segments, (btstack_linked_item_t *) builder->segment); bytes_current_segment = MESH_NETWORK_PAYLOAD_MAX; } uint16_t bytes_to_copy = btstack_min(bytes_current_segment, data_len); (void) memcpy(&builder->segment->data[builder->segment->len], data, bytes_to_copy); builder->segment->len += bytes_to_copy; bytes_current_segment -= bytes_to_copy; data += bytes_to_copy; data_len -= bytes_to_copy; } } void mesh_upper_transport_message_add_uint8(mesh_upper_transport_builder_t * builder, uint8_t value){ mesh_upper_transport_message_add_data(builder, &value, 1); } void mesh_upper_transport_message_add_uint16(mesh_upper_transport_builder_t * builder, uint16_t value){ uint8_t buffer[2]; little_endian_store_16(buffer, 0, value); mesh_upper_transport_message_add_data(builder, buffer, sizeof(buffer)); } void mesh_upper_transport_message_add_uint24(mesh_upper_transport_builder_t * builder, uint32_t value){ uint8_t buffer[3]; little_endian_store_24(buffer, 0, value); mesh_upper_transport_message_add_data(builder, buffer, sizeof(buffer)); } void mesh_upper_transport_message_add_uint32(mesh_upper_transport_builder_t * builder, uint32_t value){ uint8_t buffer[4]; little_endian_store_32(buffer, 0, value); mesh_upper_transport_message_add_data(builder, buffer, sizeof(buffer)); } mesh_upper_transport_pdu_t * mesh_upper_transport_message_finalize(mesh_upper_transport_builder_t * builder){ return builder->pdu; }