/* * Copyright (C) 2009 by Matthias Ringwald * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * hci.c * * Created by Matthias Ringwald on 4/29/09. * */ #include "hci.h" #include #include #include #include #include "debug.h" #include "hci_dump.h" #include "../include/btstack/hci_cmds.h" #include "../include/btstack/version.h" // temp #include "l2cap.h" #define HCI_CONNECTION_TIMEOUT_MS 10000 // the STACK is here static hci_stack_t hci_stack; /** * get connection for a given handle * * @return connection OR NULL, if not found */ hci_connection_t * connection_for_handle(hci_con_handle_t con_handle){ linked_item_t *it; for (it = (linked_item_t *) hci_stack.connections; it ; it = it->next){ if ( ((hci_connection_t *) it)->con_handle == con_handle){ return (hci_connection_t *) it; } } return NULL; } static void hci_connection_timeout_handler(timer_source_t *timer){ hci_connection_t * connection = linked_item_get_user(&timer->item); struct timeval tv; gettimeofday(&tv, NULL); if (tv.tv_sec >= connection->timestamp.tv_sec + HCI_CONNECTION_TIMEOUT_MS/1000) { // connections might be timed out hci_emit_l2cap_check_timeout(connection); run_loop_set_timer(timer, HCI_CONNECTION_TIMEOUT_MS); } else { // next timeout check at timer->timeout.tv_sec = connection->timestamp.tv_sec + HCI_CONNECTION_TIMEOUT_MS/1000; } run_loop_add_timer(timer); } static void hci_connection_timestamp(hci_connection_t *connection){ gettimeofday(&connection->timestamp, NULL); } /** * create connection for given address * * @return connection OR NULL, if not found */ static hci_connection_t * create_connection_for_addr(bd_addr_t addr){ hci_connection_t * conn = malloc( sizeof(hci_connection_t) ); if (!conn) return NULL; BD_ADDR_COPY(conn->address, addr); conn->con_handle = 0xffff; conn->flags = 0; linked_item_set_user(&conn->timeout.item, conn); conn->timeout.process = hci_connection_timeout_handler; hci_connection_timestamp(conn); conn->acl_recombination_length = 0; conn->acl_recombination_pos = 0; conn->num_acl_packets_sent = 0; linked_list_add(&hci_stack.connections, (linked_item_t *) conn); return conn; } /** * get connection for given address * * @return connection OR NULL, if not found */ static hci_connection_t * connection_for_address(bd_addr_t address){ linked_item_t *it; for (it = (linked_item_t *) hci_stack.connections; it ; it = it->next){ if ( ! BD_ADDR_CMP( ((hci_connection_t *) it)->address, address) ){ return (hci_connection_t *) it; } } return NULL; } /** * count connections */ static int nr_hci_connections(){ int count = 0; linked_item_t *it; for (it = (linked_item_t *) hci_stack.connections; it ; it = it->next, count++); return count; } /** * Dummy handler called by HCI */ static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ } uint8_t hci_number_outgoing_packets(hci_con_handle_t handle){ hci_connection_t * connection = connection_for_handle(handle); if (!connection) { log_err("hci_number_outgoing_packets connectino for handle %u does not exist!\n", handle); return 0; } return connection->num_acl_packets_sent; } uint8_t hci_number_free_acl_slots(){ uint8_t free_slots = hci_stack.total_num_acl_packets; linked_item_t *it; for (it = (linked_item_t *) hci_stack.connections; it ; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; if (free_slots < connection->num_acl_packets_sent) { log_err("hci_number_free_acl_slots: sum of outgoing packets > total acl packets!\n"); return 0; } free_slots -= connection->num_acl_packets_sent; } return free_slots; } int hci_ready_to_send(hci_con_handle_t handle){ return hci_number_free_acl_slots() && hci_number_outgoing_packets(handle) < 2; } int hci_send_acl_packet(uint8_t *packet, int size){ // check for free places on BT module if (!hci_number_free_acl_slots()) return -1; hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); hci_connection_t *connection = connection_for_handle( con_handle); if (!connection) return 0; hci_connection_timestamp(connection); // count packet connection->num_acl_packets_sent++; // log_dbg("hci_send_acl_packet - handle %u, sent %u\n", connection->con_handle, connection->num_acl_packets_sent); // send packet - ignore errors hci_stack.hci_transport->send_packet(HCI_ACL_DATA_PACKET, packet, size); return 0; } static void acl_handler(uint8_t *packet, int size){ // get info hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); hci_connection_t *conn = connection_for_handle(con_handle); uint8_t acl_flags = READ_ACL_FLAGS(packet); uint16_t acl_length = READ_ACL_LENGTH(packet); // ignore non-registered handle if (!conn){ log_err( "hci.c: acl_handler called with non-registered handle %u!\n" , con_handle); return; } // update idle timestamp hci_connection_timestamp(conn); // handle different packet types switch (acl_flags & 0x03) { case 0x01: // continuation fragment // sanity check if (conn->acl_recombination_pos == 0) { log_err( "ACL Cont Fragment but no first fragment for handle 0x%02x\n", con_handle); return; } // append fragment payload (header already stored) memcpy(&conn->acl_recombination_buffer[conn->acl_recombination_pos], &packet[4], acl_length ); conn->acl_recombination_pos += acl_length; // log_err( "ACL Cont Fragment: acl_len %u, combined_len %u, l2cap_len %u\n", // acl_length, connection->acl_recombination_pos, connection->acl_recombination_length); // forward complete L2CAP packet if complete. if (conn->acl_recombination_pos >= conn->acl_recombination_length + 4 + 4){ // pos already incl. ACL header hci_stack.packet_handler(HCI_ACL_DATA_PACKET, conn->acl_recombination_buffer, conn->acl_recombination_pos); // reset recombination buffer conn->acl_recombination_length = 0; conn->acl_recombination_pos = 0; } break; case 0x02: { // first fragment // sanity check if (conn->acl_recombination_pos) { log_err( "ACL First Fragment but data in buffer for handle 0x%02x\n", con_handle); return; } // peek into L2CAP packet! uint16_t l2cap_length = READ_L2CAP_LENGTH( packet ); // compare fragment size to L2CAP packet size if (acl_length >= l2cap_length + 4){ // forward fragment as L2CAP packet hci_stack.packet_handler(HCI_ACL_DATA_PACKET, packet, acl_length + 4); } else { // store first fragment and tweak acl length for complete package memcpy(conn->acl_recombination_buffer, packet, acl_length + 4); conn->acl_recombination_pos = acl_length + 4; conn->acl_recombination_length = l2cap_length; bt_store_16(conn->acl_recombination_buffer, 2, acl_length +4); // log_err( "ACL First Fragment: acl_len %u, l2cap_len %u\n", acl_length, l2cap_length); } break; } default: log_err( "hci.c: acl_handler called with invalid packet boundary flags %u\n", acl_flags & 0x03); return; } // execute main loop hci_run(); } static void event_handler(uint8_t *packet, int size){ bd_addr_t addr; hci_con_handle_t handle; hci_connection_t * conn; int i; // get num_cmd_packets if (packet[0] == HCI_EVENT_COMMAND_COMPLETE || packet[0] == HCI_EVENT_COMMAND_STATUS){ // Get Num_HCI_Command_Packets hci_stack.num_cmd_packets = packet[2]; } switch (packet[0]) { case HCI_EVENT_COMMAND_COMPLETE: if (COMMAND_COMPLETE_EVENT(packet, hci_read_buffer_size)){ // from offset 5 // status hci_stack.acl_data_packet_length = READ_BT_16(packet, 6); // ignore: SCO data packet len (8) hci_stack.total_num_acl_packets = packet[9]; // ignore: total num SCO packets if (hci_stack.state == HCI_STATE_INITIALIZING){ log_dbg("hci_read_buffer_size: size %u, count %u\n", hci_stack.acl_data_packet_length, hci_stack.total_num_acl_packets); } } break; case HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS: for (i=0; inum_acl_packets_sent -= num_packets; // log_dbg("hci_number_completed_packet %u processed for handle %u, outstanding %u\n", num_packets, handle, conn->num_acl_packets_sent); } break; case HCI_EVENT_CONNECTION_REQUEST: bt_flip_addr(addr, &packet[2]); // TODO: eval COD 8-10 uint8_t link_type = packet[11]; log_dbg("Connection_incoming: "); print_bd_addr(addr); log_dbg(", type %u\n", link_type); if (link_type == 1) { // ACL conn = connection_for_address(addr); if (!conn) { conn = create_connection_for_addr(addr); } // TODO: check for malloc failure conn->state = ACCEPTED_CONNECTION_REQUEST; hci_send_cmd(&hci_accept_connection_request, addr, 1); } else { // TODO: decline request } break; case HCI_EVENT_CONNECTION_COMPLETE: // Connection management bt_flip_addr(addr, &packet[5]); log_dbg("Connection_complete (status=%u)", packet[2]); print_bd_addr(addr); log_dbg("\n"); conn = connection_for_address(addr); if (conn) { if (!packet[2]){ conn->state = OPEN; conn->con_handle = READ_BT_16(packet, 3); conn->flags = 0; gettimeofday(&conn->timestamp, NULL); run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); run_loop_add_timer(&conn->timeout); log_dbg("New connection: handle %u, ", conn->con_handle); print_bd_addr( conn->address ); log_dbg("\n"); hci_emit_nr_connections_changed(); } else { // connection failed, remove entry linked_list_remove(&hci_stack.connections, (linked_item_t *) conn); free( conn ); } } break; case HCI_EVENT_DISCONNECTION_COMPLETE: if (!packet[2]){ handle = READ_BT_16(packet, 3); hci_connection_t * conn = connection_for_handle(handle); if (conn) { log_dbg("Connection closed: handle %u, ", conn->con_handle); print_bd_addr( conn->address ); log_dbg("\n"); run_loop_remove_timer(&conn->timeout); linked_list_remove(&hci_stack.connections, (linked_item_t *) conn); free( conn ); hci_emit_nr_connections_changed(); } } break; default: break; } // handle BT initialization if (hci_stack.state == HCI_STATE_INITIALIZING){ // handle H4 synchronization loss on restart // if (hci_stack.substate == 1 && packet[0] == HCI_EVENT_HARDWARE_ERROR){ // hci_stack.substate = 0; // } // handle normal init sequence if (hci_stack.substate % 2){ // odd: waiting for event if (packet[0] == HCI_EVENT_COMMAND_COMPLETE){ hci_stack.substate++; } } } hci_stack.packet_handler(HCI_EVENT_PACKET, packet, size); // execute main loop hci_run(); } void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ switch (packet_type) { case HCI_EVENT_PACKET: event_handler(packet, size); break; case HCI_ACL_DATA_PACKET: acl_handler(packet, size); break; default: break; } } /** Register HCI packet handlers */ void hci_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ hci_stack.packet_handler = handler; } void hci_init(hci_transport_t *transport, void *config, bt_control_t *control){ // reference to use transport layer implementation hci_stack.hci_transport = transport; // references to used control implementation hci_stack.control = control; // reference to used config hci_stack.config = config; // no connections yet hci_stack.connections = NULL; // empty cmd buffer hci_stack.hci_cmd_buffer = malloc(3+255); // higher level handler hci_stack.packet_handler = dummy_handler; // register packet handlers with transport transport->register_packet_handler(&packet_handler); } int hci_power_control(HCI_POWER_MODE power_mode){ if (power_mode == HCI_POWER_ON && hci_stack.state == HCI_STATE_OFF) { // power on int err = 0; if (hci_stack.control && hci_stack.control->on){ err = (*hci_stack.control->on)(hci_stack.config); } if (err){ log_err( "POWER_ON failed\n"); hci_emit_hci_open_failed(); return err; } // open low-level device err = hci_stack.hci_transport->open(hci_stack.config); if (err){ log_err( "HCI_INIT failed, turning Bluetooth off again\n"); if (hci_stack.control && hci_stack.control->off){ (*hci_stack.control->off)(hci_stack.config); } hci_emit_hci_open_failed(); return err; } // set up state machine hci_stack.num_cmd_packets = 1; // assume that one cmd can be sent hci_stack.state = HCI_STATE_INITIALIZING; hci_stack.substate = 0; } else if (power_mode == HCI_POWER_OFF && hci_stack.state == HCI_STATE_WORKING){ // close low-level device hci_stack.hci_transport->close(hci_stack.config); // power off if (hci_stack.control && hci_stack.control->off){ (*hci_stack.control->off)(hci_stack.config); } // we're off now hci_stack.state = HCI_STATE_OFF; } // create internal event hci_emit_state(); // trigger next/first action hci_run(); return 0; } void hci_run(){ switch (hci_stack.state){ case HCI_STATE_INITIALIZING: if (hci_stack.substate % 2) { // odd: waiting for command completion return; } if (hci_stack.num_cmd_packets == 0) { // cannot send command yet return; } switch (hci_stack.substate >> 1){ case 0: hci_send_cmd(&hci_reset); break; case 1: // custom initialization if (hci_stack.control && hci_stack.control->next_command){ uint8_t * cmd = (*hci_stack.control->next_command)(hci_stack.config); if (cmd) { int size = 3 + cmd[2]; hci_stack.hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, cmd, size); hci_stack.substate = 0; // more init commands break; } } // otherwise continue hci_send_cmd(&hci_read_bd_addr); break; case 2: hci_send_cmd(&hci_read_buffer_size); break; case 3: // ca. 15 sec hci_send_cmd(&hci_write_page_timeout, 0x6000); break; case 4: hci_send_cmd(&hci_write_scan_enable, 3); // 3 inq scan + page scan break; case 5: // done. hci_stack.state = HCI_STATE_WORKING; hci_emit_state(); break; default: break; } hci_stack.substate++; break; default: break; } } int hci_send_cmd_packet(uint8_t *packet, int size){ bd_addr_t addr; hci_connection_t * conn; // house-keeping // create_connection? if (IS_COMMAND(packet, hci_create_connection)){ bt_flip_addr(addr, &packet[3]); log_dbg("Create_connection to "); print_bd_addr(addr); log_dbg("\n"); conn = connection_for_address(addr); if (conn) { // if connection exists if (conn->state == OPEN) { // if OPEN, emit connection complete command hci_emit_connection_complete(conn); } // otherwise, just ignore return 0; // don't sent packet to controller } else{ conn = create_connection_for_addr(addr); if (conn){ // create connection struct and register, state = SENT_CREATE_CONNECTION conn->state = SENT_CREATE_CONNECTION; } } } // accept connection // reject connection // close_connection? // set state = SENT_DISCONNECT hci_stack.num_cmd_packets--; return hci_stack.hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size); } /** * pre: numcmds >= 0 - it's allowed to send a command to the controller */ int hci_send_cmd(const hci_cmd_t *cmd, ...){ va_list argptr; va_start(argptr, cmd); uint8_t * hci_cmd_buffer = hci_stack.hci_cmd_buffer; uint16_t size = hci_create_cmd_internal(hci_stack.hci_cmd_buffer, cmd, argptr); va_end(argptr); return hci_send_cmd_packet(hci_cmd_buffer, size); } // Create various non-HCI events. // TODO: generalize, use table similar to hci_create_command void hci_emit_state(){ uint8_t len = 3; uint8_t event[len]; event[0] = BTSTACK_EVENT_STATE; event[1] = len - 3; event[2] = hci_stack.state; hci_dump_packet( HCI_EVENT_PACKET, 0, event, len); hci_stack.packet_handler(HCI_EVENT_PACKET, event, len); } void hci_emit_connection_complete(hci_connection_t *conn){ uint8_t len = 13; uint8_t event[len]; event[0] = HCI_EVENT_CONNECTION_COMPLETE; event[1] = len - 3; event[2] = 0; // status = OK bt_store_16(event, 3, conn->con_handle); bt_flip_addr(&event[5], conn->address); event[11] = 1; // ACL connection event[12] = 0; // encryption disabled hci_dump_packet( HCI_EVENT_PACKET, 0, event, len); hci_stack.packet_handler(HCI_EVENT_PACKET, event, len); } void hci_emit_l2cap_check_timeout(hci_connection_t *conn){ uint8_t len = 4; uint8_t event[len]; event[0] = L2CAP_EVENT_TIMEOUT_CHECK; event[1] = len - 2; bt_store_16(event, 2, conn->con_handle); hci_dump_packet( HCI_EVENT_PACKET, 0, event, len); hci_stack.packet_handler(HCI_EVENT_PACKET, event, len); } void hci_emit_nr_connections_changed(){ uint8_t len = 3; uint8_t event[len]; event[0] = BTSTACK_EVENT_NR_CONNECTIONS_CHANGED; event[1] = len - 2; event[2] = nr_hci_connections(); hci_dump_packet( HCI_EVENT_PACKET, 0, event, len); hci_stack.packet_handler(HCI_EVENT_PACKET, event, len); } void hci_emit_hci_open_failed(){ uint8_t len = 2; uint8_t event[len]; event[0] = BTSTACK_EVENT_POWERON_FAILED; event[1] = len - 2; hci_dump_packet( HCI_EVENT_PACKET, 0, event, len); hci_stack.packet_handler(HCI_EVENT_PACKET, event, len); } void hci_emit_btstack_version() { uint8_t len = 6; uint8_t event[len]; event[0] = BTSTACK_EVENT_VERSION; event[1] = len - 2; event[len++] = BTSTACK_MAJOR; event[len++] = BTSTACK_MINOR; bt_store_16(event, len, BTSTACK_REVISION); hci_dump_packet( HCI_EVENT_PACKET, 0, event, len); hci_stack.packet_handler(HCI_EVENT_PACKET, event, len); } void hci_emit_system_bluetooth_enabled(uint8_t enabled){ uint8_t len = 3; uint8_t event[len]; event[0] = BTSTACK_EVENT_SYSTEM_BLUETOOTH_ENABLED; event[1] = len - 2; event[2] = enabled; hci_dump_packet( HCI_EVENT_PACKET, 0, event, len); hci_stack.packet_handler(HCI_EVENT_PACKET, event, len); }