/****************************************************************************** * * Copyright 2021 Google, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #include "ltpf.h" #include "tables.h" /* ---------------------------------------------------------------------------- * Resampling * -------------------------------------------------------------------------- */ /** * Resample to 12.8 KHz (cf. 3.3.9.3-4) Template * sr Samplerate source of the frame * hp50 State of the High-Pass 50 Hz filter * x [-d..-1] Previous, [0..ns-1] Current samples * y, n [0..n-1] Output `n` processed samples * * The number of previous samples `d` accessed on `x` is : * d: { 10, 20, 30, 40, 60 } - 1 for samplerates from 8KHz to 48KHz */ static inline void resample_12k8_template(const enum lc3_srate sr, struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n) { /* --- Parameters --- * p: Resampling factor, from 4 to 24 * w: Half width of polyphase filter * * bn, an: High-Pass Biquad coefficients, * with `bn` support of rescaling resampling factor. * Note that it's an High-Pass filter, so we have `b0 = b2`, * in the following steps we use `b0` as `b2`. */ const int p = 192 / LC3_SRATE_KHZ(sr); const int w = 5 * LC3_SRATE_KHZ(sr) / 8; const int b_scale = p >> (sr == LC3_SRATE_8K); const float a1 = -1.965293373, b1 = -1.965589417 * b_scale; const float a2 = 0.965885461, b2 = 0.982794708 * b_scale; /* --- Resampling --- * The value `15*8 * n` is divisible by all resampling factors `p`, * integer and fractionnal position can be determined at compilation * time while unrolling the loops by 8 samples. * The biquad filter implementation chosen in the `Direct Form 2`. */ const float *h = lc3_ltpf_h12k8 + 119; x -= w; for (int i = 0; i < n; i += 8, x += 120/p) for (int j = 0; j < 15*8; j += 15) { float un, yn; int e, f, k; e = j / p, f = j % p; for (un = 0, k = 1-w; k <= w; k++) un += x[e+k] * h[k*p - f]; yn = b2 * un + hp50->s1; hp50->s1 = b1 * un - a1 * yn + hp50->s2; hp50->s2 = b2 * un - a2 * yn; *(y++) = yn; } } /** * LTPF Resample to 12.8 KHz implementations for each samplerates */ static void resample_8k_12k8( struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n) { resample_12k8_template(LC3_SRATE_8K, hp50, x, y, n); } static void resample_16k_12k8( struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n) { resample_12k8_template(LC3_SRATE_16K, hp50, x, y, n); } static void resample_24k_12k8( struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n) { resample_12k8_template(LC3_SRATE_24K, hp50, x, y, n); } static void resample_32k_12k8( struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n) { resample_12k8_template(LC3_SRATE_32K, hp50, x, y, n); } static void resample_48k_12k8( struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n) { resample_12k8_template(LC3_SRATE_48K, hp50, x, y, n); } static void (* const resample_12k8[]) (struct lc3_ltpf_hp50_state *, const float *, float *, int ) = { [LC3_SRATE_8K ] = resample_8k_12k8, [LC3_SRATE_16K] = resample_16k_12k8, [LC3_SRATE_24K] = resample_24k_12k8, [LC3_SRATE_32K] = resample_32k_12k8, [LC3_SRATE_48K] = resample_48k_12k8, }; /** * Resample to 6.4 KHz (cf. 3.3.9.3-4) * x [-3..-1] Previous, [0..n-1] Current samples * y, n [0..n-1] Output `n` processed samples */ static void resample_6k4(const float *x, float *y, int n) { static const float h[] = { 0.2819382921, 0.2353512128, 0.1236796411 }; float xn2 = x[-3], xn1 = x[-2], x0 = x[-1], x1, x2; for (const float *ye = y + n; y < ye; xn2 = x0, xn1 = x1, x0 = x2) { x1 = *(x++); x2 = *(x++); *(y++) = x0 * h[0] + (xn1 + x1) * h[1] + (xn2 + x2) * h[2]; } } /* ---------------------------------------------------------------------------- * Analysis * -------------------------------------------------------------------------- */ /** * Return dot product of 2 vectors * a, b, n The 2 vectors of size `n` * return sum( a[i] * b[i] ), i = [0..n-1] */ static inline float dot(const float *a, const float *b, int n) { float v = 0; while (n--) v += *(a++) * *(b++); return v; } /** * Return vector of correlations * a, b, n The 2 vector of size `n` to correlate * y, nc Output the correlation vector of size `nc` * * The size `n` of input vectors must be multiple of 16 */ static void correlate( const float *a, const float *b, int n, float *y, int nc) { for (const float *ye = y + nc; y < ye; ) *(y++) = dot(a, b--, n); } /** * Search the maximum value and returns its argument * x, n The input vector of size `n` * x_max Return the maximum value * return Return the argument of the maximum */ static int argmax(const float *x, int n, float *x_max) { int arg = 0; *x_max = x[arg = 0]; for (int i = 1; i < n; i++) if (*x_max < x[i]) *x_max = x[arg = i]; return arg; } /** * Search the maximum weithed value and returns its argument * x, n The input vector of size `n` * w_incr Increment of the weight * x_max, xw_max Return the maximum not weighted value * return Return the argument of the weigthed maximum */ static int argmax_weighted( const float *x, int n, float w_incr, float *x_max) { int arg; float xw_max = (*x_max = x[arg = 0]); float w = 1 + w_incr; for (int i = 1; i < n; i++, w += w_incr) if (xw_max < x[i] * w) xw_max = (*x_max = x[arg = i]) * w; return arg; } /** * Interpolate from pitch detected value (3.3.9.8) * x, n [-2..-1] Previous, [0..n] Current input * d The phase of interpolation (0 to 3) * return The interpolated vector * * The size `n` of vectors must be multiple of 4 */ static void interpolate(const float *x, int n, int d, float *y) { static const float h4[][8] = { { 2.09880463e-01, 5.83527575e-01, 2.09880463e-01 }, { 1.06999186e-01, 5.50075002e-01, 3.35690625e-01, 6.69885837e-03 }, { 3.96711478e-02, 4.59220930e-01, 4.59220930e-01, 3.96711478e-02 }, { 6.69885837e-03, 3.35690625e-01, 5.50075002e-01, 1.06999186e-01 }, }; const float *h = h4[d]; float x3 = x[-2], x2 = x[-1], x1, x0; x1 = (*x++); for (const float *ye = y + n; y < ye; ) { *(y++) = (x0 = *(x++)) * h[0] + x1 * h[1] + x2 * h[2] + x3 * h[3]; *(y++) = (x3 = *(x++)) * h[0] + x0 * h[1] + x1 * h[2] + x2 * h[3]; *(y++) = (x2 = *(x++)) * h[0] + x3 * h[1] + x0 * h[2] + x1 * h[3]; *(y++) = (x1 = *(x++)) * h[0] + x2 * h[1] + x3 * h[2] + x0 * h[3]; } } /** * Interpolate autocorrelation (3.3.9.7) * x [-4..-1] Previous, [0..4] Current input * d The phase of interpolation (-3 to 3) * return The interpolated value */ static float interpolate_4(const float *x, int d) { static const float h4[][8] = { { 1.53572770e-02, -4.72963246e-02, 8.35788573e-02, 8.98638285e-01, 8.35788573e-02, -4.72963246e-02, 1.53572770e-02, }, { 2.74547165e-03, 4.59833449e-03, -7.54404636e-02, 8.17488686e-01, 3.30182571e-01, -1.05835916e-01, 2.86823405e-02, -2.87456116e-03 }, { -3.00125103e-03, 2.95038503e-02, -1.30305021e-01, 6.03297008e-01, 6.03297008e-01, -1.30305021e-01, 2.95038503e-02, -3.00125103e-03 }, { -2.87456116e-03, 2.86823405e-02, -1.05835916e-01, 3.30182571e-01, 8.17488686e-01, -7.54404636e-02, 4.59833449e-03, 2.74547165e-03 }, }; const float *h = h4[(4+d) % 4]; float y = d < 0 ? x[-4] * *(h++) : d > 0 ? x[ 4] * *(h+7) : 0; y += x[-3] * h[0] + x[-2] * h[1] + x[-1] * h[2] + x[0] * h[3] + x[ 1] * h[4] + x[ 2] * h[5] + x[ 3] * h[6]; return y; } /** * Pitch detection algorithm (3.3.9.5-6) * ltpf Context of analysis * x, n [-114..-17] Previous, [0..n-1] Current 6.4KHz samples * tc Return the pitch-lag estimation * return True when pitch present */ static bool detect_pitch( struct lc3_ltpf_analysis *ltpf, const float *x, int n, int *tc) { float rm1, rm2; float r[98]; const int r0 = 17, nr = 98; int k0 = LC3_MAX( 0, ltpf->tc-4); int nk = LC3_MIN(nr-1, ltpf->tc+4) - k0 + 1; correlate(x, x - r0, n, r, nr); int t1 = argmax_weighted(r, nr, -.5/(nr-1), &rm1); int t2 = k0 + argmax(r + k0, nk, &rm2); const float *x1 = x - (r0 + t1); const float *x2 = x - (r0 + t2); float nc1 = rm1 <= 0 ? 0 : rm1 / sqrtf(dot(x, x, n) * dot(x1, x1, n)); float nc2 = rm2 <= 0 ? 0 : rm2 / sqrtf(dot(x, x, n) * dot(x2, x2, n)); int t1sel = nc2 <= 0.85 * nc1; ltpf->tc = (t1sel ? t1 : t2); *tc = r0 + ltpf->tc; return (t1sel ? nc1 : nc2) > 0.6; } /** * Pitch-lag parameter (3.3.9.7) * x, n [-232..-28] Previous, [0..n-1] Current 12.8KHz samples * tc Pitch-lag estimation * pitch The pitch value, in fixed .4 * return The bitstream pitch index value */ static int refine_pitch(const float *x, int n, int tc, int *pitch) { float r[17], rm; int e, f; int r0 = LC3_MAX( 32, 2*tc - 4); int nr = LC3_MIN(228, 2*tc + 4) - r0 + 1; correlate(x, x - (r0 - 4), n, r, nr + 8); e = r0 + argmax(r + 4, nr, &rm); const float *re = r + (e - (r0 - 4)); float dm = interpolate_4(re, f = 0); for (int i = 1; i <= 3; i++) { float d; if (e >= 127 && ((i & 1) | (e >= 157))) continue; if ((d = interpolate_4(re, i)) > dm) dm = d, f = i; if (e > 32 && (d = interpolate_4(re, -i)) > dm) dm = d, f = -i; } e -= (f < 0); f += 4*(f < 0); *pitch = 4*e + f; return e < 127 ? 4*e + f - 128 : e < 157 ? 2*e + (f >> 1) + 126 : e + 283; } /** * LTPF Analysis */ bool lc3_ltpf_analyse(enum lc3_dt dt, enum lc3_srate sr, struct lc3_ltpf_analysis *ltpf, const float *x, struct lc3_ltpf_data *data) { /* --- Resampling to 12.8 KHz --- */ int z_12k8 = sizeof(ltpf->x_12k8) / sizeof(float); int n_12k8 = dt == LC3_DT_7M5 ? 96 : 128; memmove(ltpf->x_12k8, ltpf->x_12k8 + n_12k8, (z_12k8 - n_12k8) * sizeof(float)); float *x_12k8 = ltpf->x_12k8 + (z_12k8 - n_12k8); resample_12k8[sr](<pf->hp50, x, x_12k8, n_12k8); x_12k8 -= (dt == LC3_DT_7M5 ? 44 : 24); /* --- Resampling to 6.4 KHz --- */ int z_6k4 = sizeof(ltpf->x_6k4) / sizeof(float); int n_6k4 = n_12k8 >> 1; memmove(ltpf->x_6k4, ltpf->x_6k4 + n_6k4, (z_6k4 - n_6k4) * sizeof(float)); float *x_6k4 = ltpf->x_6k4 + (z_6k4 - n_6k4); resample_6k4(x_12k8, x_6k4, n_6k4); /* --- Pitch detection --- */ int tc, pitch = 0; float nc = 0; bool pitch_present = detect_pitch(ltpf, x_6k4, n_6k4, &tc); if (pitch_present) { float u[n_12k8], v[n_12k8]; data->pitch_index = refine_pitch(x_12k8, n_12k8, tc, &pitch); interpolate(x_12k8, n_12k8, 0, u); interpolate(x_12k8 - (pitch >> 2), n_12k8, pitch & 3, v); nc = dot(u, v, n_12k8) / sqrtf(dot(u, u, n_12k8) * dot(v, v, n_12k8)); } /* --- Activation --- */ if (ltpf->active) { int pitch_diff = LC3_MAX(pitch, ltpf->pitch) - LC3_MIN(pitch, ltpf->pitch); float nc_diff = nc - ltpf->nc[0]; data->active = pitch_present && ((nc > 0.9) || (nc > 0.84 && pitch_diff < 8 && nc_diff > -0.1)); } else { data->active = pitch_present && ( (dt == LC3_DT_10M || ltpf->nc[1] > 0.94) && (ltpf->nc[0] > 0.94 && nc > 0.94) ); } ltpf->active = data->active; ltpf->pitch = pitch; ltpf->nc[1] = ltpf->nc[0]; ltpf->nc[0] = nc; return pitch_present; } /* ---------------------------------------------------------------------------- * Synthesis * -------------------------------------------------------------------------- */ /** * Synthesis filter template * ym [-w/2..0] Previous, [0..w-1] Current pitch samples * xm w-1 previous input samples * x, n Current samples as input, filtered as output * c, w Coefficients by pair (num, den), and count of pairs * fade Fading mode of filter -1: Out 1: In 0: None */ static inline void synthesize_template(const float *ym, const float *xm, float *x, int n, const float (*c)[2], const int w, int fade) { float g = (float)(fade <= 0); float g_incr = (float)((fade > 0) - (fade < 0)) / n; float u[w]; int i; ym -= (w >> 1); /* --- Load previous samples --- */ for (i = 1-w; i < 0; i++) { float xi = *(xm++), yi = *(ym++); u[i + w-1] = 0; for (int k = w-1; k+i >= 0; k--) u[i+k] += xi * c[k][0] - yi * c[k][1]; } u[w-1] = 0; /* --- Process --- */ for (; i < n; i += w) { for (int j = 0; j < w; j++, g += g_incr) { float xi = *x, yi = *(ym++); for (int k = w-1; k >= 0; k--) u[(j+k)%w] += xi * c[k][0] - yi * c[k][1]; *(x++) = xi - g * u[j]; u[j] = 0; } } } /** * Synthesis filter for each samplerates (width of filter) */ static void synthesize_4(const float *ym, const float *xm, float *x, int n, const float (*c)[2], int fade) { synthesize_template(ym, xm, x, n, c, 4, fade); } static void synthesize_6(const float *ym, const float *xm, float *x, int n, const float (*c)[2], int fade) { synthesize_template(ym, xm, x, n, c, 6, fade); } static void synthesize_8(const float *ym, const float *xm, float *x, int n, const float (*c)[2], int fade) { synthesize_template(ym, xm, x, n, c, 8, fade); } static void synthesize_12(const float *ym, const float *xm, float *x, int n, const float (*c)[2], int fade) { synthesize_template(ym, xm, x, n, c, 12, fade); } static void (* const synthesize[])( const float *, const float *, float *, int, const float (*)[2], int) = { [LC3_SRATE_8K ] = synthesize_4, [LC3_SRATE_16K] = synthesize_4, [LC3_SRATE_24K] = synthesize_6, [LC3_SRATE_32K] = synthesize_8, [LC3_SRATE_48K] = synthesize_12, }; /** * LTPF Synthesis */ void lc3_ltpf_synthesize(enum lc3_dt dt, enum lc3_srate sr, int nbytes, struct lc3_ltpf_synthesis *ltpf, const struct lc3_ltpf_data *data, float *x) { int dt_us = LC3_DT_US(dt); /* --- Filter parameters --- */ int p_idx = data ? data->pitch_index : 0; int pitch = p_idx >= 440 ? (((p_idx ) - 283) << 2) : p_idx >= 380 ? (((p_idx >> 1) - 63) << 2) + (((p_idx & 1)) << 1) : (((p_idx >> 2) + 32) << 2) + (((p_idx & 3)) << 0) ; pitch = (pitch * LC3_SRATE_KHZ(sr) * 10 + 64) / 128; int nbits = (nbytes*8 * 10000 + (dt_us/2)) / dt_us; int g_idx = LC3_MAX(nbits / 80, 3 + (int)sr) - (3 + sr); bool active = data && data->active && g_idx < 4; int w = LC3_MAX(4, LC3_SRATE_KHZ(sr) / 4); float c[w][2]; for (int i = 0; i < w; i++) { float g = active ? 0.4f - 0.05f * g_idx : 0; c[i][0] = active ? 0.85f * g * lc3_ltpf_cnum[sr][g_idx][i] : 0; c[i][1] = active ? g * lc3_ltpf_cden[sr][pitch & 3][i] : 0; } /* --- Transition handling --- */ int ns = LC3_NS(dt, sr); int nt = ns / (4 - (dt == LC3_DT_7M5)); float xm[12]; if (active) memcpy(xm, x + nt-(w-1), (w-1) * sizeof(float)); if (!ltpf->active && active) synthesize[sr](x - pitch/4, ltpf->x, x, nt, c, 1); else if (ltpf->active && !active) synthesize[sr](x - ltpf->pitch/4, ltpf->x, x, nt, ltpf->c, -1); else if (ltpf->active && active && ltpf->pitch == pitch) synthesize[sr](x - pitch/4, ltpf->x, x, nt, c, 0); else if (ltpf->active && active) { synthesize[sr](x - ltpf->pitch/4, ltpf->x, x, nt, ltpf->c, -1); synthesize[sr](x - pitch/4, x - (w-1), x, nt, c, 1); } /* --- Remainder --- */ memcpy(ltpf->x, x + ns-(w-1), (w-1) * sizeof(float)); if (active) synthesize[sr](x - pitch/4 + nt, xm, x + nt, ns-nt, c, 0); /* --- Update state --- */ ltpf->active = active; ltpf->pitch = pitch; memcpy(ltpf->c, c, w * sizeof(ltpf->c[0])); } /* ---------------------------------------------------------------------------- * Bitstream data * -------------------------------------------------------------------------- */ /** * LTPF disable */ void lc3_ltpf_disable(struct lc3_ltpf_data *data) { data->active = false; } /** * Return number of bits coding the bitstream data */ int lc3_ltpf_get_nbits(bool pitch) { return 1 + 10 * pitch; } /** * Put bitstream data */ void lc3_ltpf_put_data(lc3_bits_t *bits, const struct lc3_ltpf_data *data) { lc3_put_bit(bits, data->active); lc3_put_bits(bits, data->pitch_index, 9); } /** * Get bitstream data */ void lc3_ltpf_get_data(lc3_bits_t *bits, struct lc3_ltpf_data *data) { data->active = lc3_get_bit(bits); data->pitch_index = lc3_get_bits(bits, 9); }