/****************************************************************************** * * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /** * LC3 - Mathematics function approximation */ #ifndef __LC3_FASTMATH_H #define __LC3_FASTMATH_H #include #include /** * Fast 2^n approximation * x Operand, range -8 to 8 * return 2^x approximation (max relative error ~ 7e-6) */ static inline float fast_exp2f(float x) { float y; /* --- Polynomial approx in range -0.5 to 0.5 --- */ static const float c[] = { 1.27191277e-09, 1.47415221e-07, 1.35510312e-05, 9.38375815e-04, 4.33216946e-02 }; y = ( c[0]) * x; y = (y + c[1]) * x; y = (y + c[2]) * x; y = (y + c[3]) * x; y = (y + c[4]) * x; y = (y + 1.f); /* --- Raise to the power of 16 --- */ y = y*y; y = y*y; y = y*y; y = y*y; return y; } /** * Fast log2(x) approximation * x Operand, greater than 0 * return log2(x) approximation (max absolute error ~ 1e-4) */ static inline float fast_log2f(float x) { float y; int e; /* --- Polynomial approx in range 0.5 to 1 --- */ static const float c[] = { -1.29479677, 5.11769018, -8.42295281, 8.10557963, -3.50567360 }; x = frexpf(x, &e); y = ( c[0]) * x; y = (y + c[1]) * x; y = (y + c[2]) * x; y = (y + c[3]) * x; y = (y + c[4]); /* --- Add log2f(2^e) and return --- */ return e + y; } /** * Fast log10(x) approximation * x Operand, greater than 0 * return log10(x) approximation (max absolute error ~ 1e-4) */ static inline float fast_log10f(float x) { return log10f(2) * fast_log2f(x); } /** * Fast `10 * log10(x)` (or dB) approximation in fixed Q16 * x Operand, in range 2^-63 to 2^63 (1e-19 to 1e19) * return 10 * log10(x) in fixed Q16 (-190 to 192 dB) * * - The 0 value is accepted and return the minimum value ~ -191dB * - This function assumed that float 32 bits is coded IEEE 754 */ static inline int32_t fast_db_q16(float x) { /* --- Table in Q15 --- */ static const uint16_t t[][2] = { /* [n][0] = 10 * log10(2) * log2(1 + n/32), with n = [0..15] */ /* [n][1] = [n+1][0] - [n][0] (while defining [16][0]) */ { 0, 4379 }, { 4379, 4248 }, { 8627, 4125 }, { 12753, 4009 }, { 16762, 3899 }, { 20661, 3795 }, { 24456, 3697 }, { 28153, 3603 }, { 31755, 3514 }, { 35269, 3429 }, { 38699, 3349 }, { 42047, 3272 }, { 45319, 3198 }, { 48517, 3128 }, { 51645, 3061 }, { 54705, 2996 }, /* [n][0] = 10 * log10(2) * log2(1 + n/32) - 10 * log10(2) / 2, */ /* with n = [16..31] */ /* [n][1] = [n+1][0] - [n][0] (while defining [32][0]) */ { 8381, 2934 }, { 11315, 2875 }, { 14190, 2818 }, { 17008, 2763 }, { 19772, 2711 }, { 22482, 2660 }, { 25142, 2611 }, { 27754, 2564 }, { 30318, 2519 }, { 32837, 2475 }, { 35312, 2433 }, { 37744, 2392 }, { 40136, 2352 }, { 42489, 2314 }, { 44803, 2277 }, { 47080, 2241 }, }; /* --- Approximation --- * * 10 * log10(x^2) = 10 * log10(2) * log2(x^2) * * And log2(x^2) = 2 * log2( (1 + m) * 2^e ) * = 2 * (e + log2(1 + m)) , with m in range [0..1] * * Split the float values in : * e2 Double value of the exponent (2 * e + k) * hi High 5 bits of mantissa, for precalculated result `t[hi][0]` * lo Low 16 bits of mantissa, for linear interpolation `t[hi][1]` * * Two cases, from the range of the mantissa : * 0 to 0.5 `k = 0`, use 1st part of the table * 0.5 to 1 `k = 1`, use 2nd part of the table */ union { float f; uint32_t u; } x2 = { .f = x*x }; int e2 = (int)(x2.u >> 22) - 2*127; int hi = (x2.u >> 18) & 0x1f; int lo = (x2.u >> 2) & 0xffff; return e2 * 49321 + t[hi][0] + ((t[hi][1] * lo) >> 16); } #endif /* __LC3_FASTMATH_H */