// // Copyright (C) 2018 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_consumer/verity_writer_android.h" #include #include #include #include #include #include #include extern "C" { #include } #include "update_engine/common/utils.h" #include "update_engine/payload_consumer/cached_file_descriptor.h" #include "update_engine/payload_consumer/file_descriptor.h" namespace chromeos_update_engine { bool IncrementalEncodeFEC::Init(const uint64_t _data_offset, const uint64_t _data_size, const uint64_t _fec_offset, const uint64_t _fec_size, const uint64_t _fec_roots, const uint64_t _block_size, const bool _verify_mode) { current_step_ = EncodeFECStep::kInitFDStep; data_offset_ = _data_offset; data_size_ = _data_size; fec_offset_ = _fec_offset; fec_size_ = _fec_size; fec_roots_ = _fec_roots; block_size_ = _block_size; verify_mode_ = _verify_mode; current_round_ = 0; // This is the N in RS(M, N), which is the number of bytes for each rs block. rs_n_ = FEC_RSM - fec_roots_; rs_char_.reset(init_rs_char(FEC_PARAMS(fec_roots_))); rs_blocks_.resize(block_size_ * rs_n_); buffer_.resize(block_size_, 0); fec_.resize(block_size_ * fec_roots_); fec_read_.resize(fec_.size()); TEST_AND_RETURN_FALSE(data_size_ % block_size_ == 0); TEST_AND_RETURN_FALSE(fec_roots_ >= 0 && fec_roots_ < FEC_RSM); num_rounds_ = utils::DivRoundUp(data_size_ / block_size_, rs_n_); TEST_AND_RETURN_FALSE(num_rounds_ * fec_roots_ * block_size_ == fec_size_); TEST_AND_RETURN_FALSE(rs_char_ != nullptr); return true; } bool IncrementalEncodeFEC::Compute(FileDescriptor* _read_fd, FileDescriptor* _write_fd) { if (current_step_ == EncodeFECStep::kInitFDStep) { read_fd_ = _read_fd; write_fd_ = _write_fd; cache_fd_.SetFD(write_fd_); write_fd_ = &cache_fd_; } else if (current_step_ == EncodeFECStep::kEncodeRoundStep) { // Encodes |block_size| number of rs blocks each round so that we can read // one block each time instead of 1 byte to increase random read // performance. This uses about 1 MiB memory for 4K block size. for (uint64_t j = 0; j < rs_n_; j++) { uint64_t offset = fec_ecc_interleave( current_round_ * rs_n_ * block_size_ + j, rs_n_, num_rounds_); // Don't read past |data_size|, treat them as 0. if (offset >= data_size_) { std::fill(buffer_.begin(), buffer_.end(), 0); } else { ssize_t bytes_read = 0; TEST_AND_RETURN_FALSE(utils::PReadAll(read_fd_, buffer_.data(), buffer_.size(), data_offset_ + offset, &bytes_read)); TEST_AND_RETURN_FALSE(bytes_read >= 0); TEST_AND_RETURN_FALSE(static_cast(bytes_read) == buffer_.size()); } for (uint64_t k = 0; k < buffer_.size(); k++) { rs_blocks_[k * rs_n_ + j] = buffer_[k]; } } for (uint64_t j = 0; j < block_size_; j++) { // Encode [j * rs_n_ : (j + 1) * rs_n_) in |rs_blocks| and write // |fec_roots| number of parity bytes to |j * fec_roots| in |fec|. encode_rs_char(rs_char_.get(), rs_blocks_.data() + j * rs_n_, fec_.data() + j * fec_roots_); } if (verify_mode_) { ssize_t bytes_read = 0; TEST_AND_RETURN_FALSE(utils::PReadAll(read_fd_, fec_read_.data(), fec_read_.size(), fec_offset_, &bytes_read)); TEST_AND_RETURN_FALSE(bytes_read >= 0); TEST_AND_RETURN_FALSE(static_cast(bytes_read) == fec_read_.size()); TEST_AND_RETURN_FALSE(fec_ == fec_read_); } else { CHECK(write_fd_); write_fd_->Seek(fec_offset_, SEEK_SET); if (!utils::WriteAll(write_fd_, fec_.data(), fec_.size())) { PLOG(ERROR) << "EncodeFEC write() failed"; return false; } } fec_offset_ += fec_.size(); current_round_++; } else if (current_step_ == EncodeFECStep::kWriteStep) { write_fd_->Flush(); } UpdateState(); return true; } // update the current state of EncodeFEC. Can be changed to have smaller steps void IncrementalEncodeFEC::UpdateState() { if (current_step_ == EncodeFECStep::kInitFDStep) { current_step_ = EncodeFECStep::kEncodeRoundStep; } else if (current_step_ == EncodeFECStep::kEncodeRoundStep && current_round_ == num_rounds_) { current_step_ = EncodeFECStep::kWriteStep; } else if (current_step_ == EncodeFECStep::kWriteStep) { current_step_ = EncodeFECStep::kComplete; } } bool IncrementalEncodeFEC::Finished() const { return current_step_ == EncodeFECStep::kComplete; } double IncrementalEncodeFEC::ReportProgress() const { if (num_rounds_ == 0) { return 1.0; } return static_cast(current_round_) / num_rounds_; } namespace verity_writer { std::unique_ptr CreateVerityWriter() { return std::make_unique(); } } // namespace verity_writer bool VerityWriterAndroid::Init(const InstallPlan::Partition& partition) { partition_ = &partition; LOG(INFO) << "Initializing Incremental EncodeFEC"; TEST_AND_RETURN_FALSE(encodeFEC_.Init(partition_->fec_data_offset, partition_->fec_data_size, partition_->fec_offset, partition_->fec_size, partition_->fec_roots, partition_->block_size, false /* verify_mode */)); hash_tree_written_ = false; if (partition_->hash_tree_size != 0) { auto hash_function = HashTreeBuilder::HashFunction(partition_->hash_tree_algorithm); if (hash_function == nullptr) { LOG(ERROR) << "Verity hash algorithm not supported: " << partition_->hash_tree_algorithm; return false; } hash_tree_builder_ = std::make_unique( partition_->block_size, hash_function); TEST_AND_RETURN_FALSE(hash_tree_builder_->Initialize( partition_->hash_tree_data_size, partition_->hash_tree_salt)); if (hash_tree_builder_->CalculateSize(partition_->hash_tree_data_size) != partition_->hash_tree_size) { LOG(ERROR) << "Verity hash tree size does not match, stored: " << partition_->hash_tree_size << ", calculated: " << hash_tree_builder_->CalculateSize( partition_->hash_tree_data_size); return false; } } total_offset_ = 0; return true; } bool VerityWriterAndroid::Update(const uint64_t offset, const uint8_t* buffer, size_t size) { if (offset != total_offset_) { LOG(ERROR) << "Sequential read expected, expected to read at: " << total_offset_ << " actual read occurs at: " << offset; return false; } if (partition_->hash_tree_size != 0) { const uint64_t hash_tree_data_end = partition_->hash_tree_data_offset + partition_->hash_tree_data_size; const uint64_t start_offset = std::max(offset, partition_->hash_tree_data_offset); if (offset + size > hash_tree_data_end) { LOG(WARNING) << "Reading past hash_tree_data_end, something is probably " "wrong, might cause incorrect hash of partitions. offset: " << offset << " size: " << size << " hash_tree_data_end: " << hash_tree_data_end; } const uint64_t end_offset = std::min(offset + size, hash_tree_data_end); if (start_offset < end_offset) { TEST_AND_RETURN_FALSE(hash_tree_builder_->Update( buffer + start_offset - offset, end_offset - start_offset)); if (end_offset == hash_tree_data_end) { LOG(INFO) << "Read everything before hash tree. Ready to write hash tree."; } } } total_offset_ += size; return true; } bool VerityWriterAndroid::Finalize(FileDescriptor* read_fd, FileDescriptor* write_fd) { const auto hash_tree_data_end = partition_->hash_tree_data_offset + partition_->hash_tree_data_size; if (total_offset_ < hash_tree_data_end) { LOG(ERROR) << "Read up to " << total_offset_ << " when we are expecting to read everything " "before " << hash_tree_data_end; return false; } // All hash tree data blocks has been hashed, write hash tree to disk. LOG(INFO) << "Writing verity hash tree to " << partition_->readonly_target_path; if (hash_tree_builder_) { TEST_AND_RETURN_FALSE(hash_tree_builder_->BuildHashTree()); TEST_AND_RETURN_FALSE_ERRNO( write_fd->Seek(partition_->hash_tree_offset, SEEK_SET)); auto success = hash_tree_builder_->WriteHashTree([write_fd](auto data, auto size) { return utils::WriteAll(write_fd, data, size); }); // hashtree builder already prints error messages. TEST_AND_RETURN_FALSE(success); hash_tree_builder_.reset(); } if (partition_->fec_size != 0) { LOG(INFO) << "Writing verity FEC to " << partition_->readonly_target_path; TEST_AND_RETURN_FALSE(EncodeFEC(read_fd, write_fd, partition_->fec_data_offset, partition_->fec_data_size, partition_->fec_offset, partition_->fec_size, partition_->fec_roots, partition_->block_size, false /* verify_mode */)); } return true; } bool VerityWriterAndroid::IncrementalFinalize(FileDescriptor* read_fd, FileDescriptor* write_fd) { if (!hash_tree_written_) { LOG(INFO) << "Completing prework in Finalize"; const auto hash_tree_data_end = partition_->hash_tree_data_offset + partition_->hash_tree_data_size; if (total_offset_ < hash_tree_data_end) { LOG(ERROR) << "Read up to " << total_offset_ << " when we are expecting to read everything " "before " << hash_tree_data_end; return false; } // All hash tree data blocks has been hashed, write hash tree to disk. LOG(INFO) << "Writing verity hash tree to " << partition_->readonly_target_path; if (hash_tree_builder_) { TEST_AND_RETURN_FALSE(hash_tree_builder_->BuildHashTree()); TEST_AND_RETURN_FALSE_ERRNO( write_fd->Seek(partition_->hash_tree_offset, SEEK_SET)); auto success = hash_tree_builder_->WriteHashTree([write_fd](auto data, auto size) { return utils::WriteAll(write_fd, data, size); }); // hashtree builder already prints error messages. TEST_AND_RETURN_FALSE(success); hash_tree_builder_.reset(); } hash_tree_written_ = true; if (partition_->fec_size != 0) { LOG(INFO) << "Writing verity FEC to " << partition_->readonly_target_path; } } if (partition_->fec_size != 0) { TEST_AND_RETURN_FALSE(encodeFEC_.Compute(read_fd, write_fd)); } return true; } bool VerityWriterAndroid::FECFinished() const { if ((encodeFEC_.Finished() || partition_->fec_size == 0) && hash_tree_written_) { return true; } return false; } double VerityWriterAndroid::GetProgress() { return encodeFEC_.ReportProgress(); } bool VerityWriterAndroid::EncodeFEC(FileDescriptor* read_fd, FileDescriptor* write_fd, uint64_t data_offset, uint64_t data_size, uint64_t fec_offset, uint64_t fec_size, uint32_t fec_roots, uint32_t block_size, bool verify_mode) { TEST_AND_RETURN_FALSE(data_size % block_size == 0); TEST_AND_RETURN_FALSE(fec_roots >= 0 && fec_roots < FEC_RSM); // This is the N in RS(M, N), which is the number of bytes for each rs // block. size_t rs_n = FEC_RSM - fec_roots; uint64_t rounds = utils::DivRoundUp(data_size / block_size, rs_n); TEST_AND_RETURN_FALSE(rounds * fec_roots * block_size == fec_size); std::unique_ptr rs_char( init_rs_char(FEC_PARAMS(fec_roots)), &free_rs_char); TEST_AND_RETURN_FALSE(rs_char != nullptr); // Cache at most 1MB of fec data, in VABC, we need to re-open fd if we // perform a read() operation after write(). So reduce the number of writes // can save unnecessary re-opens. UnownedCachedFileDescriptor cache_fd(write_fd, 1 * (1 << 20)); write_fd = &cache_fd; for (size_t i = 0; i < rounds; i++) { // Encodes |block_size| number of rs blocks each round so that we can read // one block each time instead of 1 byte to increase random read // performance. This uses about 1 MiB memory for 4K block size. brillo::Blob rs_blocks(block_size * rs_n); for (size_t j = 0; j < rs_n; j++) { brillo::Blob buffer(block_size, 0); uint64_t offset = fec_ecc_interleave(i * rs_n * block_size + j, rs_n, rounds); // Don't read past |data_size|, treat them as 0. if (offset < data_size) { ssize_t bytes_read = 0; TEST_AND_RETURN_FALSE(utils::PReadAll(read_fd, buffer.data(), buffer.size(), data_offset + offset, &bytes_read)); TEST_AND_RETURN_FALSE(bytes_read >= 0); TEST_AND_RETURN_FALSE(static_cast(bytes_read) == buffer.size()); } for (size_t k = 0; k < buffer.size(); k++) { rs_blocks[k * rs_n + j] = buffer[k]; } } brillo::Blob fec(block_size * fec_roots); for (size_t j = 0; j < block_size; j++) { // Encode [j * rs_n : (j + 1) * rs_n) in |rs_blocks| and write // |fec_roots| number of parity bytes to |j * fec_roots| in |fec|. encode_rs_char(rs_char.get(), rs_blocks.data() + j * rs_n, fec.data() + j * fec_roots); } if (verify_mode) { brillo::Blob fec_read(fec.size()); ssize_t bytes_read = 0; TEST_AND_RETURN_FALSE(utils::PReadAll( read_fd, fec_read.data(), fec_read.size(), fec_offset, &bytes_read)); TEST_AND_RETURN_FALSE(bytes_read >= 0); TEST_AND_RETURN_FALSE(static_cast(bytes_read) == fec_read.size()); TEST_AND_RETURN_FALSE(fec == fec_read); } else { CHECK(write_fd); write_fd->Seek(fec_offset, SEEK_SET); if (!utils::WriteAll(write_fd, fec.data(), fec.size())) { PLOG(ERROR) << "EncodeFEC write() failed"; return false; } } fec_offset += fec.size(); } write_fd->Flush(); return true; } bool VerityWriterAndroid::EncodeFEC(const std::string& path, uint64_t data_offset, uint64_t data_size, uint64_t fec_offset, uint64_t fec_size, uint32_t fec_roots, uint32_t block_size, bool verify_mode) { EintrSafeFileDescriptor fd; TEST_AND_RETURN_FALSE(fd.Open(path.c_str(), verify_mode ? O_RDONLY : O_RDWR)); return EncodeFEC(&fd, &fd, data_offset, data_size, fec_offset, fec_size, fec_roots, block_size, verify_mode); } } // namespace chromeos_update_engine