/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "android-base/properties.h" #if defined(__BIONIC__) #include #endif #include #include #include #include #include #include #include #include #include #if !defined(__BIONIC__) // Here lies a rudimentary implementation of system properties for non-Bionic // platforms. We are using weak symbols here because we want to allow // downstream users of libbase to override with their own implementation. // For example, on Ravenwood (host-side testing for platform development) // we'd love to be able to fully control system properties exposed to tests, // so we reimplement the entire system properties API there. #if defined(__linux__) // Weak symbols are not supported on Windows, and to prevent unnecessary // complications, we strictly limit the use of weak symbols to Linux. #define SYSPROP_WEAK __attribute__((weak)) #else #define SYSPROP_WEAK #endif #define PROP_VALUE_MAX 92 struct prop_info { std::string key; mutable std::string value; mutable uint32_t serial; prop_info(const char* key, const char* value) : key(key), value(value), serial(0) {} }; struct prop_info_cmp { using is_transparent = void; bool operator()(const prop_info& lhs, const prop_info& rhs) { return lhs.key < rhs.key; } bool operator()(std::string_view lhs, const prop_info& rhs) { return lhs < rhs.key; } bool operator()(const prop_info& lhs, std::string_view rhs) { return lhs.key < rhs; } }; static auto& g_properties_lock = *new std::mutex; static auto& g_properties GUARDED_BY(g_properties_lock) = *new std::set; SYSPROP_WEAK int __system_property_set(const char* key, const char* value) { if (key == nullptr || *key == '\0') return -1; if (value == nullptr) value = ""; bool read_only = !strncmp(key, "ro.", 3); if (!read_only && strlen(value) >= PROP_VALUE_MAX) return -1; std::lock_guard lock(g_properties_lock); auto [it, success] = g_properties.emplace(key, value); if (read_only) return success ? 0 : -1; if (!success) { it->value = value; ++it->serial; } return 0; } SYSPROP_WEAK int __system_property_get(const char* key, char* value) { std::lock_guard lock(g_properties_lock); auto it = g_properties.find(key); if (it == g_properties.end()) { *value = '\0'; return 0; } snprintf(value, PROP_VALUE_MAX, "%s", it->value.c_str()); return strlen(value); } SYSPROP_WEAK const prop_info* __system_property_find(const char* key) { std::lock_guard lock(g_properties_lock); auto it = g_properties.find(key); if (it == g_properties.end()) { return nullptr; } else { return &*it; } } SYSPROP_WEAK void __system_property_read_callback(const prop_info* pi, void (*callback)(void*, const char*, const char*, uint32_t), void* cookie) { std::lock_guard lock(g_properties_lock); callback(cookie, pi->key.c_str(), pi->value.c_str(), pi->serial); } #endif // __BIONIC__ namespace android { namespace base { bool GetBoolProperty(const std::string& key, bool default_value) { switch (ParseBool(GetProperty(key, ""))) { case ParseBoolResult::kError: return default_value; case ParseBoolResult::kFalse: return false; case ParseBoolResult::kTrue: return true; } __builtin_unreachable(); } template T GetIntProperty(const std::string& key, T default_value, T min, T max) { T result; std::string value = GetProperty(key, ""); if (!value.empty() && android::base::ParseInt(value, &result, min, max)) return result; return default_value; } template T GetUintProperty(const std::string& key, T default_value, T max) { T result; std::string value = GetProperty(key, ""); if (!value.empty() && android::base::ParseUint(value, &result, max)) return result; return default_value; } template int8_t GetIntProperty(const std::string&, int8_t, int8_t, int8_t); template int16_t GetIntProperty(const std::string&, int16_t, int16_t, int16_t); template int32_t GetIntProperty(const std::string&, int32_t, int32_t, int32_t); template int64_t GetIntProperty(const std::string&, int64_t, int64_t, int64_t); template uint8_t GetUintProperty(const std::string&, uint8_t, uint8_t); template uint16_t GetUintProperty(const std::string&, uint16_t, uint16_t); template uint32_t GetUintProperty(const std::string&, uint32_t, uint32_t); template uint64_t GetUintProperty(const std::string&, uint64_t, uint64_t); std::string GetProperty(const std::string& key, const std::string& default_value) { std::string property_value; const prop_info* pi = __system_property_find(key.c_str()); if (pi == nullptr) return default_value; __system_property_read_callback( pi, [](void* cookie, const char*, const char* value, unsigned) { auto property_value = reinterpret_cast(cookie); *property_value = value; }, &property_value); // If the property exists but is empty, also return the default value. // Since we can't remove system properties, "empty" is traditionally // the same as "missing" (this was true for cutils' property_get). return property_value.empty() ? default_value : property_value; } bool SetProperty(const std::string& key, const std::string& value) { return (__system_property_set(key.c_str(), value.c_str()) == 0); } #if defined(__BIONIC__) struct WaitForPropertyData { bool done; const std::string* expected_value; unsigned last_read_serial; }; static void WaitForPropertyCallback(void* data_ptr, const char*, const char* value, unsigned serial) { WaitForPropertyData* data = reinterpret_cast(data_ptr); if (*data->expected_value == value) { data->done = true; } else { data->last_read_serial = serial; } } // TODO: chrono_utils? static void DurationToTimeSpec(timespec& ts, const std::chrono::milliseconds d) { auto s = std::chrono::duration_cast(d); auto ns = std::chrono::duration_cast(d - s); ts.tv_sec = std::min(s.count(), std::numeric_limits::max()); ts.tv_nsec = ns.count(); } using AbsTime = std::chrono::time_point; static void UpdateTimeSpec(timespec& ts, std::chrono::milliseconds relative_timeout, const AbsTime& start_time) { auto now = std::chrono::steady_clock::now(); auto time_elapsed = std::chrono::duration_cast(now - start_time); if (time_elapsed >= relative_timeout) { ts = { 0, 0 }; } else { auto remaining_timeout = relative_timeout - time_elapsed; DurationToTimeSpec(ts, remaining_timeout); } } // Waits for the system property `key` to be created. // Times out after `relative_timeout`. // Sets absolute_timeout which represents absolute time for the timeout. // Returns nullptr on timeout. static const prop_info* WaitForPropertyCreation(const std::string& key, const std::chrono::milliseconds& relative_timeout, const AbsTime& start_time) { // Find the property's prop_info*. const prop_info* pi; unsigned global_serial = 0; while ((pi = __system_property_find(key.c_str())) == nullptr) { // The property doesn't even exist yet. // Wait for a global change and then look again. timespec ts; UpdateTimeSpec(ts, relative_timeout, start_time); if (!__system_property_wait(nullptr, global_serial, &global_serial, &ts)) return nullptr; } return pi; } bool WaitForProperty(const std::string& key, const std::string& expected_value, std::chrono::milliseconds relative_timeout) { auto start_time = std::chrono::steady_clock::now(); const prop_info* pi = WaitForPropertyCreation(key, relative_timeout, start_time); if (pi == nullptr) return false; WaitForPropertyData data; data.expected_value = &expected_value; data.done = false; while (true) { timespec ts; // Check whether the property has the value we're looking for? __system_property_read_callback(pi, WaitForPropertyCallback, &data); if (data.done) return true; // It didn't, so wait for the property to change before checking again. UpdateTimeSpec(ts, relative_timeout, start_time); uint32_t unused; if (!__system_property_wait(pi, data.last_read_serial, &unused, &ts)) return false; } } bool WaitForPropertyCreation(const std::string& key, std::chrono::milliseconds relative_timeout) { auto start_time = std::chrono::steady_clock::now(); return (WaitForPropertyCreation(key, relative_timeout, start_time) != nullptr); } CachedProperty::CachedProperty(std::string property_name) : property_name_(std::move(property_name)), prop_info_(nullptr), cached_area_serial_(0), cached_property_serial_(0), is_read_only_(android::base::StartsWith(property_name, "ro.")), read_only_property_(nullptr) { static_assert(sizeof(cached_value_) == PROP_VALUE_MAX); } CachedProperty::CachedProperty(const char* property_name) : CachedProperty(std::string(property_name)) {} const char* CachedProperty::Get(bool* changed) { std::optional initial_property_serial = cached_property_serial_; // Do we have a `struct prop_info` yet? if (prop_info_ == nullptr) { // `__system_property_find` is expensive, so only retry if a property // has been created since last time we checked. uint32_t property_area_serial = __system_property_area_serial(); if (property_area_serial != cached_area_serial_) { prop_info_ = __system_property_find(property_name_.c_str()); cached_area_serial_ = property_area_serial; } } if (prop_info_ != nullptr) { // Only bother re-reading the property if it's actually changed since last time. uint32_t property_serial = __system_property_serial(prop_info_); if (property_serial != cached_property_serial_) { __system_property_read_callback( prop_info_, [](void* data, const char*, const char* value, uint32_t serial) { CachedProperty* instance = reinterpret_cast(data); instance->cached_property_serial_ = serial; // Read only properties can be larger than PROP_VALUE_MAX, but also never change value // or location, thus we return the pointer from the shared memory directly. if (instance->is_read_only_) { instance->read_only_property_ = value; } else { strlcpy(instance->cached_value_, value, PROP_VALUE_MAX); } }, this); } } if (changed) { *changed = cached_property_serial_ != initial_property_serial; } if (is_read_only_) { return read_only_property_; } else { return cached_value_; } } const char* CachedProperty::WaitForChange(std::chrono::milliseconds relative_timeout) { if (!prop_info_) { auto start_time = std::chrono::steady_clock::now(); prop_info_ = WaitForPropertyCreation(property_name_, relative_timeout, start_time); if (!prop_info_) { return nullptr; } } else { timespec ts; DurationToTimeSpec(ts, relative_timeout); uint32_t old_serial = cached_property_serial_.value_or(0); uint32_t new_serial; if (!__system_property_wait(prop_info_, old_serial, &new_serial, &ts)) return nullptr; } return Get(nullptr); } CachedBoolProperty::CachedBoolProperty(std::string property_name) : cached_parsed_property_(std::move(property_name), [](const char* value) -> std::optional { switch (ParseBool(value)) { case ParseBoolResult::kError: return std::nullopt; case ParseBoolResult::kFalse: return false; case ParseBoolResult::kTrue: return true; } }) {} std::optional CachedBoolProperty::GetOptional() { return cached_parsed_property_.Get(); } bool CachedBoolProperty::Get(bool default_value) { return GetOptional().value_or(default_value); } #endif } // namespace base } // namespace android