9[ >jVC">;V=r=.FaLf%bj= b[)&=凾k=-*9>=!ug>먾ڽ*) >zGJ!>n*~>pdwM< >A>u9{:(tT>#S?= ٽM=|xTt>Kg=#<"3>Yw$Hov%38ӥy>nt^><<܁>)Nϴy0Yr5efVC>h7xE_[u>&j>Zv~=ZZb=i#ڏj sD5o<:>/=p<:s_=۽=<⮾D=L/h>;ͽY,=g^=}=Ms>"F>o=O)显;>/n=PE+E>il>=V[=<'et'WP]ŽMVpF\~EJSu>Z>17f=9 h۽1^>bKw8>|k8;{ >.=9=-i5p2|M= z= =HŽQ<='TH&;=Y=\6>ϫ>WW^>I>ĽϾ=>E'e== =/];JýKL˾[;4=A985D>"+=b7@SꅾH{>Pl<5f>OL[=^P$LMtT>M=&8!oc>Y=v=>yγ=e{; 4+->>n*;7LϏ>|;D=D et>12>>#<->$ =WI;R=G<6e2p=== n4>">a$='a2JFT<\I!NMn=4O=5=in>2tz >y>n Q>^<>M>?@>ڒ{2y> H>>>GErq=x;Y>M$5HM>Dɚ<)%>:^=w]=DF>CG>="˧~>fy4>\~oՇ>G >>/Y]6FC^>8=8!>$>v,=-=<׽.>wB>>t0b1>ZN>ډm=Wg=]l=MlAԒZ>=b->>5=/\>f_= =s=@pr<=Ծ0=l!W= > w7=p+DW|CD~><4ܽ d<=Mf=dֈ>A8 = M:=lX=TsUj=|нtCp=<Ӂ5ZD=>,'=hPq>Qdʽ>VH=>%yhƽwu=Ik1h>%8=[>%T=i<=m> W޼ 2Ȋ*Y=!I>~FAн͚=>.m*>?rqć-B)F>2=;=> ~={[ν=ق׀MyY<[;8Hb~f&3>8z/a̢=">)>6=S$=>T> =k w>j=_d==^ּOUuJ;<==n>v9A\m=S=U5=$|s>B=j#>B>24>ټ~<DZq=A~Լ~==N>|<n潋@=W>>=Ҧ]!<D>k*>Os=8=V+>(s9{<91=c=p%>L=ݕ{J t$='*eOMR&E;r>5L> 1@=Q/d&>>Ŋ(=dXD=e> qx=2^>=-)Np}0Nĺu >oͽ.[˽W>j@H|ʽ->>>üCcc e=͍?>r1栽T$$^Ac<=$0O=|. >p1>3}|=l Jh=21!>K{L>gW Y# >_bL=o9G>fM>>09DS=}#>L,G>=^>GH ѧ @\4N=;=N>L=C,:>T<ҨO3/>.틼 6=wG=>, =}=9Es3~޽oԽ+P:=[`ч<#.=ٗ>ԧ>Ӽ9t>V-=gך͌=p>B+v= wh >lZᆽcɼdŽ0L6eܼ3*6Ͻ" x==I<$>u粽vuwF >"j=lEk >D*= >~=;=mn~=jn>,W<>Ա‹hR>Hf=< 4=>Z=OM0-==G=W>.ҽy=d=jc =޶FI=Xv<>A=<k3XNfg>5-P<~XW>"=>* ;G=7>5ɽk<_=8J=Wct> ]^=A<6Aq>X>Sv@:Xz="gRhM>Exb>N=1>(ٽ눿=罅 Ppᣩ"=_6tk">TR,P<>t)O:ִu5R=$;nrҁ(;>GX=vsz=aka=K)>N?>҆i j:K?`+>c5E=X,>L =:>;4>gqB38ub.!=+{;>7Qɾ닾85S?LPIf>W qI?A1>q= HowQF==]%c\hPs.> {JQU=]&=gkU=ZY{;3>-U>yHZ)<טH䥦 bѽ,HΪa>"J=νCǽ0]=)Ƙ=붽n񴝾@f=*+>#)rb g>_v5zB@q@=Z#Ec"ri>)=&`ra/.,=6v^Q?>ݩӻkIe1xv>_=Yx=O/=<6=󖾌;&8 Խ=;5v=,6>zK~> =P=Iy?B=3<0½d\,3'>ڶjO=9ѝ>r<=a`=G<%sB\n= Q>ݭ=<)^b=!`T>}Nф:>=Op9Ԩo> tq==i5B0@>ka >_>ĺ:b>fՖ==JY"o{ V>=Tc=>=i;U0=Qp=Aؖ"<={r"Pj=fx=ǔͽ~SG'f== hڽ=N4d="=OϩKɼX[>˂GC@CG=>S?H=?dK@pܽF#Nl>=_!U1P@܌;e=\I>8z.@@B=A@vqMa>@T>5=g>9;|=i'=-?%@C.}yҽvL?G=?f[>}@9<==I E>m=Ŀzs=D@aL<ʦ={>Qzh!@@>mm@ 5>^s=,nLIj>! >=_=->G_> c=8uӔB@`>e*ۀP>@S @>K<`=󔷽=,>.><{qn눾[Z8jaNAIݽZ}%½U4Es->PP[>,5>vE $D𦽌m>b@&>9=sQ ,>9}DD~Yg_>~=l>=$an=" ٳ:>ȀNM(6=v<EB=FP_=cJֽ<;;6½0=м$p|Z*ܲC#U+<400 =1,>3>s==zղxB3m ?K}>u=,=h]חn4̽e g`=j=} A=f<Ƚ%=TMl<>V:ΐ>=MОOh>^eSC>_vLm0s=vp=dr/>e

i+<b]=?8=D>t B>F>"K~l&='4=A=f> {=|N^F= ý_>$Wq^=K)MFS &=ҏc>Y"콩s>=54-RX ]=zޥ=ͽC=Pν =b\>~=7/h>=_==1=A>t=$k>V2Dp<}=l #mbϼ=hտ=<7>,|==j5<sȽ$>Ϛ$p=)S5x=C>Kn7=?=.M>׽B$|=Ǚ<6>&L,~y( }&=5p>X~2>i̟=M>:t=bs+ڋ#U@M<7S=_=8nW><>o%>Cz>$z=m-)̼ā2P*׽Y=%μ=+SftBuJ >Š-?ɽXRI=l=7=^F.p> m<"]f½Sq=n>K{<<=L7ƒd8>iH=&l=|W>rͽ=+>|_>.>>sZC<>m2=gq!˾C[>Xl=>=kx,'<.żj[;[N=ٿgP cJ+>;^D9=m[(B=m==<>O>QBω>/@C]̵7;= NPH>(ľ饽=&L,"j=P;<.CCk>)>->=OrHG[=tf8D=.(ɾ_+>+>D>sE:=#|=C~Y%>TPu־]e:Zw=d{= LȾ<=)Tу>f(|q=v4;|)<>]B;(<2{XcҼe*tO=Hu>X!>Y=w{%(rUF Mu=Lv=x==D9*Br>(}pw=1=nBj=RY =xX/ &8N>~[<@=Co彊;=@<3ѓ=|s>B=}hZ=A.~Qm8`ئ=!qાg=n#,bX_ʽǾЕ)́=|c>~Ӏ<+=fGTE=Rl>w6#޼ɻ/="ڽ#FT ̓:@< T/O_>I<}523Qx]>ig>X;Z<+2= Hx>5Fuy={?j=X>ky><o>5V[”gA>pfe2!hF$q=8콷>,CgQM|=_=ԧy6=}.>N1>= = q= W>ξ96>$>o"=D|=q5 oT=(z>d>3W=iZX>%g<b= 6z=XN7=d,0E>p=46R.J5=&bC>i0>@ЋCý>{;=3~`='V>S`g B+ >rwZ=>9d@4>Bz->%%=9f=9%`;vƽV*=W8/Z{ E=&5< =snռ%p;<ͥm>-s!=۷=Z*=<`Խ\M6Xżvll=ތ>*臾_p+FW<> <ќz"W0=5=D >> ygSI]rD#>Ǝ=ט=sQ7>[L $=yC;cZ>R5< 'п]Vܛ˽ݦPmˑ=?p< =ƨ<^EW=C-=z=c=Z=ʺq>R-_D=ܽ‘>fs*>~gvN=Z 0=`GEc͝|ļGqP:E>v=<_>9Gt=߼=5%9X>!:tt= )fD3>6uwo7=]==-sd6>=ء=N+/l>\ [>x7>Vl+񄈾Mǘ.= >րk>:c>U_=ceag =ub=(^>}=~ =b>+{ 2A/;W_¼5}K=*YD >#F< =~=Lrn:5b=\R.=>D# =9{=,ɺ53>Vɽ(>v 껤ԪVJ=/==1v=A9f>n'(Q<|6 =x<)K&>a">e1= (˒0=߀=뼇[+;}Ct>X)颾Ū=`=S=v*j/>}@V >3XAx>ez=)vVR=~>BbDz>c;) _=K&=[H`=FqJ>} / auq <Y=ĈHL۽#=e<=2(>|B:нA>7C]5=Q>Vs><^~];i窽D:T޽,= ལyAa_iR= Ŀ˽=Z= "+>452/=dpcd&>KTn>0">v>΃>$Q(;;AX9^ >=lڜYj>=nI IABzՊa=SI1} =A m+s;#@>_I>&H>2=&=FY= =uG*=1fU<%!>ѽZ6Z~>p9Ž-<6=;>x㤽= H>Z>c>8=H?3>i">_"=@1=>a=/F{ K>(#v=֎=FEb>%z*N%y>Uc۴;.>;<2 &>hS>|Fכ*Пzw=Pgx=Nx6R1;X;WlY\ ~eO3p/·h=g>tBk=<>ތ8l mni=LJ&⾵ؽ{+\=c=W-d>N\Ep=^$G >f[N#xt,>3 D>]l/% >ᖼ[>c>=(>W=ix'Zy=NmpPlr;rڊ=.UAs==R=N7>!]>Y!ƽaf([fg7^r=^fL>KyJ[>Ԡ<>X=>x} +Y>M>EjqM;!00+ThzL>X>3wck\B=a=ԋ>,=F+Q"7>{ka\9>v%.< >馾\=H8>q"դY=#>*=#ȲbQm:6'=.=E;b΄=q˼ =oFW7HP}^>^>[I=[`F ==ּۼ=۽þiKÊ>,;>޽]wMp<(w=޽>ASMo=u==C޽I$;癞>b.6>=Tr> KnH]8Js=8+dV4{=J>)L==;naH> [1%vHOfu>|۫!J=A-,خBKdy.><=.>Kƽ06cҽ@ѻI>qzþLF>F4>.G>YiN{A:.Iƽֹ۽K7J=a}SݦF(;B<⇇%c%<s=S}䟾>` Ӗ=n-">Xܬ= ]=޽~=T>Xr;s>=ίg>5=M>e^2ӽii羏2"sO>uiFn-Q>znXe`LZxa=M ZB=xxnkN;6ȼ0àGK9ri@MH gs>Q4?h>7b|==f=sļ {>!r:?>~5>wH>&>7'>kA>x ?>@?6;<] y_:=;>η?0g>P˾'û֢?=BCĽ[>6jH=V+<8>ZƩCgD= -$CibUKHܾ].D~;I=CR1O6љ{UsY>"I=D=o=)HwMU41><9L"=O?VY S<;==BƼ'36>+=&E!aA ּ\N@ś͖*— (HV S2r'ݼ[_2`]Y׽v;\"]"r5A.zsѻDI< z>} ><4>:ɼ9א*>F>ZM>_溽q!Ӵ>$> Cu>n=HV>ˈ>gȾ,j >O>:f>>X:=Ϟx=؈?@8> W>M>fqMp>?[<{;>>JCо51Ԃ>m=`7ݽ>9.>\=3>%TrbJ©ASW齣;{{>*h>u^ƽ= =Ѻ>;77IZ=t>U'$>a_ռߣZ ȿUsu:>Nio޾>>n5=lĽj(տD 6E/>倿>N3hE>Ft(J;Kkt>n >vfмk>2>k =&=)Ƽr6>ͅ>˘=K[>A>>y>bV|<휕>=XzZ<{.(<…@OcW=noA_'>f$^%0>v=>>=a=!{ڦ>edد/.p?$V}[v>4nDνM>>F=ao>7 ;"݁ufc:l̼<=H>ų<@=-<XS>=ܰ1>*>o5>h-c9m>YL=a=1=Y>=D=הW>>&9=~f>IA?qe>? gøP>5=X>5@>(>dƶ>U:& >Tн-[:=PpBJ<|>dh=M>R}*5>Ρ!F>n>QI>X<,q>>+E/>fA۽>J>R _%>c<=Kq.<>#>a;u\>=8츾;^gZm~ >>8߽}*ڛ0> >d=a>疾g=B!(6_FqMx棽1骻=S>=c]qi=8 >ABakX~Z˪(>=M<>%0 *j>T"$8>$ʅ>^^0F=&UjJ>hUp]E>> >wپ^o8:=T >ӽ,D|G-=5u{(yC <9_ =>$=U*Խp̀>A>0:pGK M?c&Fj>=I#=Ys>[>>k:оƸ>狽拖0?=2>.8vg2Zm>ifnbC?1Ͻ4H>m;\=G.=H>DYҾ!C>{>>%\4>>d#>Ç6=7??[i7a>_r=K>.>Yg;/ݽpjRnj;>6n>,>3Le<;|{='>gL+^8,2V>I8 >@>͎>a$=l=yx=D 'x=fQ'j>}=\@y%~j>Q3k=zť>lQ5ǿ 5NQZ=`^@Tӿf(|=DLH+$<(5ijS0MKqBÿ>^~,﴾L?T>ƛ[]=л0=棿5a-9:ǿ=Ap[>FD=*>=@=G<>2>_%^=d=tHU=[AȽ)=n =H[3><6۽XX<զ#潩6=D>Ž}5K>6*>\ Mە>>n>D=Ay*fl>>P~=nfh>k">X ŽX# ]wE=~@< =+<eG>ջ=>f%>:=>vP|x>l=KڱC<`B =Ώ>?>.Qc>gC>eB٠8jy$fduڒt3<(>ayFg>v:f>[ӲM NZ=Hz&o=rP>=څW>뾣5֞>L_=p9>MZi>@qOu0=~s=^PXkȇ\=۬j=r>u> >>n=>}>zƽ=un;F#lTI#>Իwʾ?[:w>:PB=ZT=->&B_<n< >uUD$>i!>-!>g>0>CB;o'=G=ˆ\> >. >>sۑ_>-̼uW>AsAts5_=<7;9>νu=j٬{> t=+=`n>L}>u!i(=#6>Տ]NL >x徢D%A?=f>?"?`R/>9^Z$md/i_т,s~>?0>,>An>cE#߻>d> <>b7>p=7==_>C%>2&SA>4G'kV<>^=y=>.ľʝb=Ľ&>B̥>=>>\<ϿRͶ"`-řM Jr1뼽=6쾈U?E*dL(ӿ=R=V&J vs>p~+U)]ӆYAE>JY]au>֋>:Jo=P. = =懾W>:憤P>*U=>(ૃ>W̾)=Vy >Q=>5:>:v̽7>4Y=dxnQ'!>Ľ=Rf=T_>II=ž / > w6t,~Цz Ē>튾r>%=d>Jp׽h[ALT\{ Ѿ\>V7-]q;s">Խ<Ax̊ýfy^ x>˽gt,H>Y.`h>Ri'@oɶAV{>* >$>b⽻-=4='/cA=8m>&>;>6POaˆ>->̶m> @^>=n#>Q1iS>z<=^ូj>,^=><^>U0nT==}=-v,C"V$:}j<>}=I⾽tmz=b\ռV92> O'꽙TH>|B=_%y>&܏iI0j>Sd("->;%=n>7t=|>vs=^7 dp¼żFݽ >7_ .uE>a=|O 4>aV f=xༀf\ܔ>NXH# ==6:^+g<> AM!˽&%6[:>@Sվh<3nM{#G]>٧>~=a@>jqD=ӽy>QP>2>bM >T[]=Z;N?J@(XxmO= >i,? D&ٽ>4=e2>V8׾&p>>)>vL=A>>sD>9,>=XT<=>< ;L½ X,>O =x=8<߂>Yu=i,d2R=N::>eB>*>R=9I>X>Z*=\= ua>u>qj>_y?)>D浻 ZQ)E㽀1fqzҺֈ=SQ"վvҏڿ>/qH>㻦>w0z 90Bޮǖ> 4=ǘ=>`Y>^M^-1 ;S>ok=Dw>HP>my ü5:<=>l@7>=Rvgk~[>`<ʫ=ncίb=r>h>xꧾ:(wl>ʸ=e>1< j,>-rFFVn>\<b]md=Db"=7뫇v]=b>ly8 켌漚>y<>1˼?a'y9H>=뿻o2>+v.z=`Oj=i{>5G>"Ž7;>=>@;}>vSi.Lľn><'>A>=m>nG=j='={9FK7>쑼;zsmjf|@!c>ɿl=[ +ӿQn a>KO۩ =+zrAy{̿Y8휭.unS>&>{v嚿DQ3Z`c,J(yC(<$<'=ܺ >_>=䛡-s?7sͻ]/d=\̼'Y37Ni̐=>>7_ʻ=x> =;(rGоj8Cg3mX9~iK>=;w,>"=yv>=BЙ>IL>dھ@N=R>?JO=7>im5>+ Ļ+, -e꡼*>z]=5׾U;C93=7<d>׀=Y=&(S8ýsl>`o;l=g >ƾ=rC=_='{>M>}4d!nO>Qֱ>S>jɾ< ;=+=A>/t羧->M>ŷ>>I{;v>H=`M(#g'>;)y>">⽰ ¾ɍ=CS>ƺl/>i>E=m=XI> <7Yɪ3H7 >g=j]>Jo>JC6!j>[뗾T~Py=6=1>$<=mR>ɽ >J,˽h=<KRL>>R>>>j~a,b>?7><= >F=>yOǽˆd>=u# >O滈=;> E' =5w̽|>;/+8>_=~B>b|=mt=sh3k=C=,Ґ^=z=;>Af> ge>'Rᵾ=P>>ŻX=־<<1>}4< =7>u>:gB>=I=fY=YֽO:a5>Q96\=Q6>:󖽧㖽ko"=d;9ֆl>׾=}{CԴ<7=>+>S^-a:>약gƫ>e `>' > )S<0"<TL$FУ=1)'>&@\ja IU<(>!:첾>D.X>D㽖> x=?>c/;<<=B> ,h%N=p>=Ϗ>G-f h==E9wT/;`D*нU_R=>gk=׼z3q>&>+J&J.>e[LSM>_ Z'9I2(ܼ18@;戨>->)߼qx<Ӎ>h^T>#=b>-'>* =Lðէ>BK>k>D>pwyCe=ŌW\>kW=Qq>#B==U=x#=u&e=K(ԯ8>A Ly=^p:΢>&k>߾ʳ=7;=$=U>1i%;%?pLiq<&b=V"|Sx?> Z={7=U>VM7AcȽG/pb=*}=G#=8>B`3=Jѽ.}?0A3\ȫ=U =Fe<3>CzV`=0ٽ8D^p>=vD>Ka>(=2=K+Ȍ===qŖCӽ6DSٚ=> '=(>J=#Ӭ=˽L=pFY=ti SjDE8?WT:?, >H%߿I`ʿ>b=+CٿZ^p Ѵ=F3=>u=H4G>d >Eފ=1ccP=@>h >9i>j02! >T= ;8>f=>&\=Wz$ =C%=|j3tڽ+7>{㺾>aDCs*>l;=c>(wPjCP2>ub>ٽpk=6=2=Ѿ"c=~=}ڝ`=l锾 C>I{Z=>ZP>sA<-ڠžW&>ɾf@? ꠾>@R`=;Z|[>ɾqnPt̵$c>M~=B}+<>zRᾦ6\5P>GvxI+TV㿙ƿ/ǿs?e.?ڊmԿ4w?| q޿P>vο .޿ Ŀzd#`>޽C&8X^MiA `6>xOj-=+;ھ}ZRN=-Y,>=i˾218I*Q==zO6Ύ">Bϵ>pj>Lt"u>M )ZG$06w;0FU3> W4 <04=~L=$nd<<_2gM ½j>=݅=4&Á*2< <|>i=AaFP:%{d^>;4=Ž,<\$ o5UheZG>g8ǹ> c=!<'U X`xsG7>)<x>U\<0=;AEf;=w0̒UI=T;=^iAS =>_>>,<O>DT>]=)>|>ӵ;ƽK>P:u=I> O]o+zq7^1Oz?|>'=6뭿`٭\ؿ(2>4>lտS?VYۿ{Vɿ5@翨^ֿϿ.>wvƿ*b:>ʘΡ=gI{JN>Ɍ>davk=w8=mTu>ľP[>2@,>Rƾτ"UP͆ZpM|>UƿdYr "%ؾ^<{[>'_==V@>u//E>\La><徭=,,=Җ>#>0^=<H.=T8>=b;>$F>)=L&xz;9 C==)]ƽU=m깽ip<=򾏽j>ngm=>R;Ir኿z}>?~>vº_p?᯿9ٲŵGd >-Ϥov=v=Jw>Un>.1K`Z> C-Й4>J7 ϾJ>>Hk>W|<^d!qh:>Qcϝ==B>U= y>Ǿ+= 8ֻY}=={i?xkR콿uׄ-<=P.Q>=W <Ň>d>`I =w r>S=lt>5>=f¾P^>$w>5$ӻҼyY>Tf5ZM>/VJ><_㧘!T3?;De̾ȉ[Y_缛[t>G}*_M->_-ۿã>Fp?]Ejѳy14kvc/Ay[Ŀ=Ք=K= EzؾvKT~ #>?(w,>/Kľ? fؖ=FM=D2 Γ <^=卽1վa=7U =T?'=o'TTGf4=Gg ]=ڿil礧,]G]> [>&dƽA?,Ͽ\ ƿ>ݿg*=Y > )>Z=J >="I<<(>iG8g>+ʂ=Lbn>->4[` as>>j1,89u?uaj>ڿ`ߊnJY> Tqgr'>i yEHz f;PV=?ӽDBAKc%R==^a;<0>3_<===} I徲@>. >bnօ>e־Q=x=kK'[E>o+?(I1??4?]H.?]?4??$?H/?F?&/?<7 ?F!?#?X_ >-?)?>/*?~ ?\?J (>-A>پP?Vl ?BGb?gwgV ?>>>K\vo?W ?|U8*?%n%MA?A"?ǂZ>T>A5~>M/b}n>ߟ>f(D?HvܿC?} k collect_data_spec  train_step metadata model_variables  _all_assets  signatures   observation 1 CA VARIABLE_VALUEVariable%train_step/.ATTRIBUTES/VARIABLE_VALUE 8 0  1  2  3  4  5 6 7  0 1 2 yw VARIABLE_VALUE7ActorDistributionNetwork/EncodingNetwork/dense_6/kernel,model_variables/0/.ATTRIBUTES/VARIABLE_VALUE wu VARIABLE_VALUE5ActorDistributionNetwork/EncodingNetwork/dense_6/bias,model_variables/1/.ATTRIBUTES/VARIABLE_VALUE yw VARIABLE_VALUE7ActorDistributionNetwork/EncodingNetwork/dense_7/kernel,model_variables/2/.ATTRIBUTES/VARIABLE_VALUE wu VARIABLE_VALUE5ActorDistributionNetwork/EncodingNetwork/dense_7/bias,model_variables/3/.ATTRIBUTES/VARIABLE_VALUE yw VARIABLE_VALUE7ActorDistributionNetwork/EncodingNetwork/dense_8/kernel,model_variables/4/.ATTRIBUTES/VARIABLE_VALUE wu VARIABLE_VALUE5ActorDistributionNetwork/EncodingNetwork/dense_8/bias,model_variables/5/.ATTRIBUTES/VARIABLE_VALUE  VARIABLE_VALUECActorDistributionNetwork/CategoricalProjectionNetwork/logits/kernel,model_variables/6/.ATTRIBUTES/VARIABLE_VALUE  VARIABLE_VALUEAActorDistributionNetwork/CategoricalProjectionNetwork/logits/bias,model_variables/7/.ATTRIBUTES/VARIABLE_VALUE  ref 1  ref 1  ref 1   observation 3   observation 1 S _actor_network _time_step_spec _trajectory_spec _value_network  _input_tensor_spec _encoder _projection_networks  variables trainable_variables regularization_losses   keras_api  ! observation !3  ! observation !1 j "_input_tensor_spec # variables $trainable_variables %regularization_losses & keras_api  '_input_tensor_spec (_preprocessing_nest )_flat_preprocessing_layers *_preprocessing_combiner +_postprocessing_layers , variables -trainable_variables .regularization_losses / keras_api i 0_projection_layer 1 variables 2trainable_variables 3regularization_losses 4 keras_api 8 0  1  2  3  4  5 6 7 8 0  1  2  3  4  5 6 7  5non_trainable_variables 6layers 7metrics 8layer_regularization_losses 9 layer_metrics  variables trainable_variables regularization_losses  :non_trainable_variables ;layers <metrics =layer_regularization_losses > layer_metrics # variables $trainable_variables %regularization_losses  ?0 @1 A2 B3 C4 D5 E6 F7 G8 H9 I10 J11 K12 L13 M14 N15 O16 P17 Q18 R19 S20 T21 U22 V23 W24 X25 Y26 Z27 [28 \29 ]30 ^31 _32 `33 a34 b35 R c variables dtrainable_variables eregularization_losses f keras_api  g0 h1 i2 j3 * 0  1  2  3  4  5 * 0  1  2  3  4  5  knon_trainable_variables llayers mmetrics nlayer_regularization_losses o layer_metrics , variables -trainable_variables .regularization_losses h kernel bias p variables qtrainable_variables rregularization_losses s keras_api  0 1  0 1  tnon_trainable_variables ulayers vmetrics wlayer_regularization_losses x layer_metrics 1 variables 2trainable_variables 3regularization_losses  0 1 R y variables ztrainable_variables {regularization_losses | keras_api S } variables ~trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api V  variables trainable_variables regularization_losses  keras_api  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics c variables dtrainable_variables eregularization_losses V  variables trainable_variables regularization_losses  keras_api l kernel  bias  variables trainable_variables regularization_losses  keras_api l  kernel  bias  variables trainable_variables regularization_losses  keras_api l  kernel  bias  variables trainable_variables regularization_losses  keras_api  ?0 @1 A2 B3 C4 D5 E6 F7 G8 H9 I10 J11 K12 L13 M14 N15 O16 P17 Q18 R19 S20 T21 U22 V23 W24 X25 Y26 Z27 [28 \29 ]30 ^31 _32 `33 a34 b35 *36 g37 h38 i39 j40  0 1  0 1  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics p variables qtrainable_variables rregularization_losses  00  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics y variables ztrainable_variables {regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics } variables ~trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses  0  1  0  1  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses   0  1   0  1  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses   0  1   0  1  non_trainable_variables layers metrics layer_regularization_losses  layer_metrics  variables trainable_variables regularization_losses