//===- llvm/InlineAsm.h - Class to represent inline asm strings -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This class represents the inline asm strings, which are Value*'s that are // used as the callee operand of call instructions. InlineAsm's are uniqued // like constants, and created via InlineAsm::get(...). // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_INLINEASM_H #define LLVM_IR_INLINEASM_H #include "llvm/ADT/Bitfields.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/Value.h" #include "llvm/Support/ErrorHandling.h" #include #include #include namespace llvm { class Error; class FunctionType; class PointerType; template class ConstantUniqueMap; class InlineAsm final : public Value { public: enum AsmDialect { AD_ATT, AD_Intel }; private: friend struct InlineAsmKeyType; friend class ConstantUniqueMap; std::string AsmString, Constraints; FunctionType *FTy; bool HasSideEffects; bool IsAlignStack; AsmDialect Dialect; bool CanThrow; InlineAsm(FunctionType *Ty, const std::string &AsmString, const std::string &Constraints, bool hasSideEffects, bool isAlignStack, AsmDialect asmDialect, bool canThrow); /// When the ConstantUniqueMap merges two types and makes two InlineAsms /// identical, it destroys one of them with this method. void destroyConstant(); public: InlineAsm(const InlineAsm &) = delete; InlineAsm &operator=(const InlineAsm &) = delete; /// InlineAsm::get - Return the specified uniqued inline asm string. /// static InlineAsm *get(FunctionType *Ty, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack = false, AsmDialect asmDialect = AD_ATT, bool canThrow = false); bool hasSideEffects() const { return HasSideEffects; } bool isAlignStack() const { return IsAlignStack; } AsmDialect getDialect() const { return Dialect; } bool canThrow() const { return CanThrow; } /// getType - InlineAsm's are always pointers. /// PointerType *getType() const { return reinterpret_cast(Value::getType()); } /// getFunctionType - InlineAsm's are always pointers to functions. /// FunctionType *getFunctionType() const; const std::string &getAsmString() const { return AsmString; } const std::string &getConstraintString() const { return Constraints; } void collectAsmStrs(SmallVectorImpl &AsmStrs) const; /// This static method can be used by the parser to check to see if the /// specified constraint string is legal for the type. static Error verify(FunctionType *Ty, StringRef Constraints); // Constraint String Parsing enum ConstraintPrefix { isInput, // 'x' isOutput, // '=x' isClobber, // '~x' isLabel, // '!x' }; using ConstraintCodeVector = std::vector; struct SubConstraintInfo { /// MatchingInput - If this is not -1, this is an output constraint where an /// input constraint is required to match it (e.g. "0"). The value is the /// constraint number that matches this one (for example, if this is /// constraint #0 and constraint #4 has the value "0", this will be 4). int MatchingInput = -1; /// Code - The constraint code, either the register name (in braces) or the /// constraint letter/number. ConstraintCodeVector Codes; /// Default constructor. SubConstraintInfo() = default; }; using SubConstraintInfoVector = std::vector; struct ConstraintInfo; using ConstraintInfoVector = std::vector; struct ConstraintInfo { /// Type - The basic type of the constraint: input/output/clobber/label /// ConstraintPrefix Type = isInput; /// isEarlyClobber - "&": output operand writes result before inputs are all /// read. This is only ever set for an output operand. bool isEarlyClobber = false; /// MatchingInput - If this is not -1, this is an output constraint where an /// input constraint is required to match it (e.g. "0"). The value is the /// constraint number that matches this one (for example, if this is /// constraint #0 and constraint #4 has the value "0", this will be 4). int MatchingInput = -1; /// hasMatchingInput - Return true if this is an output constraint that has /// a matching input constraint. bool hasMatchingInput() const { return MatchingInput != -1; } /// isCommutative - This is set to true for a constraint that is commutative /// with the next operand. bool isCommutative = false; /// isIndirect - True if this operand is an indirect operand. This means /// that the address of the source or destination is present in the call /// instruction, instead of it being returned or passed in explicitly. This /// is represented with a '*' in the asm string. bool isIndirect = false; /// Code - The constraint code, either the register name (in braces) or the /// constraint letter/number. ConstraintCodeVector Codes; /// isMultipleAlternative - '|': has multiple-alternative constraints. bool isMultipleAlternative = false; /// multipleAlternatives - If there are multiple alternative constraints, /// this array will contain them. Otherwise it will be empty. SubConstraintInfoVector multipleAlternatives; /// The currently selected alternative constraint index. unsigned currentAlternativeIndex = 0; /// Default constructor. ConstraintInfo() = default; /// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the /// fields in this structure. If the constraint string is not understood, /// return true, otherwise return false. bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar); /// selectAlternative - Point this constraint to the alternative constraint /// indicated by the index. void selectAlternative(unsigned index); /// Whether this constraint corresponds to an argument. bool hasArg() const { return Type == isInput || (Type == isOutput && isIndirect); } }; /// ParseConstraints - Split up the constraint string into the specific /// constraints and their prefixes. If this returns an empty vector, and if /// the constraint string itself isn't empty, there was an error parsing. static ConstraintInfoVector ParseConstraints(StringRef ConstraintString); /// ParseConstraints - Parse the constraints of this inlineasm object, /// returning them the same way that ParseConstraints(str) does. ConstraintInfoVector ParseConstraints() const { return ParseConstraints(Constraints); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == Value::InlineAsmVal; } enum : uint32_t { // Fixed operands on an INLINEASM SDNode. Op_InputChain = 0, Op_AsmString = 1, Op_MDNode = 2, Op_ExtraInfo = 3, // HasSideEffects, IsAlignStack, AsmDialect. Op_FirstOperand = 4, // Fixed operands on an INLINEASM MachineInstr. MIOp_AsmString = 0, MIOp_ExtraInfo = 1, // HasSideEffects, IsAlignStack, AsmDialect. MIOp_FirstOperand = 2, // Interpretation of the MIOp_ExtraInfo bit field. Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, Extra_AsmDialect = 4, Extra_MayLoad = 8, Extra_MayStore = 16, Extra_IsConvergent = 32, }; // Inline asm operands map to multiple SDNode / MachineInstr operands. // The first operand is an immediate describing the asm operand, the low // bits is the kind: enum class Kind : uint8_t { RegUse = 1, // Input register, "r". RegDef = 2, // Output register, "=r". RegDefEarlyClobber = 3, // Early-clobber output register, "=&r". Clobber = 4, // Clobbered register, "~r". Imm = 5, // Immediate. Mem = 6, // Memory operand, "m", or an address, "p". Func = 7, // Address operand of function call }; // Memory constraint codes. // Addresses are included here as they need to be treated the same by the // backend, the only difference is that they are not used to actaully // access memory by the instruction. enum class ConstraintCode : uint32_t { Unknown = 0, es, i, k, m, o, v, A, Q, R, S, T, Um, Un, Uq, Us, Ut, Uv, Uy, X, Z, ZB, ZC, Zy, // Address constraints p, ZQ, ZR, ZS, ZT, Max = ZT, }; // This class is intentionally packed into a 32b value as it is used as a // MVT::i32 ConstantSDNode SDValue for SelectionDAG and as immediate operands // on INLINEASM and INLINEASM_BR MachineInstr's. // // The encoding of Flag is currently: // Bits 2-0 - A Kind::* value indicating the kind of the operand. // (KindField) // Bits 15-3 - The number of SDNode operands associated with this inline // assembly operand. Once lowered to MIR, this represents the // number of MachineOperands necessary to refer to a // MachineOperandType::MO_FrameIndex. (NumOperands) // Bit 31 - Determines if this is a matched operand. (IsMatched) // If bit 31 is set: // Bits 30-16 - The operand number that this operand must match. // (MatchedOperandNo) // Else if bits 2-0 are Kind::Mem: // Bits 30-16 - A ConstraintCode:: value indicating the original // constraint code. (MemConstraintCode) // Else: // Bits 29-16 - The register class ID to use for the operand. (RegClass) // Bit 30 - If the register is permitted to be spilled. // (RegMayBeFolded) // Defaults to false "r", may be set for constraints like // "rm" (or "g"). // // As such, MatchedOperandNo, MemConstraintCode, and // (RegClass+RegMayBeFolded) are views of the same slice of bits, but are // mutually exclusive depending on the fields IsMatched then KindField. class Flag { uint32_t Storage; using KindField = Bitfield::Element; using NumOperands = Bitfield::Element; using MatchedOperandNo = Bitfield::Element; using MemConstraintCode = Bitfield::Element; using RegClass = Bitfield::Element; using RegMayBeFolded = Bitfield::Element; using IsMatched = Bitfield::Element; unsigned getMatchedOperandNo() const { return Bitfield::get(Storage); } unsigned getRegClass() const { return Bitfield::get(Storage); } bool isMatched() const { return Bitfield::get(Storage); } public: Flag() : Storage(0) {} explicit Flag(uint32_t F) : Storage(F) {} Flag(enum Kind K, unsigned NumOps) : Storage(0) { Bitfield::set(Storage, K); Bitfield::set(Storage, NumOps); } operator uint32_t() { return Storage; } Kind getKind() const { return Bitfield::get(Storage); } bool isRegUseKind() const { return getKind() == Kind::RegUse; } bool isRegDefKind() const { return getKind() == Kind::RegDef; } bool isRegDefEarlyClobberKind() const { return getKind() == Kind::RegDefEarlyClobber; } bool isClobberKind() const { return getKind() == Kind::Clobber; } bool isImmKind() const { return getKind() == Kind::Imm; } bool isMemKind() const { return getKind() == Kind::Mem; } bool isFuncKind() const { return getKind() == Kind::Func; } StringRef getKindName() const { switch (getKind()) { case Kind::RegUse: return "reguse"; case Kind::RegDef: return "regdef"; case Kind::RegDefEarlyClobber: return "regdef-ec"; case Kind::Clobber: return "clobber"; case Kind::Imm: return "imm"; case Kind::Mem: case Kind::Func: return "mem"; } llvm_unreachable("impossible kind"); } /// getNumOperandRegisters - Extract the number of registers field from the /// inline asm operand flag. unsigned getNumOperandRegisters() const { return Bitfield::get(Storage); } /// isUseOperandTiedToDef - Return true if the flag of the inline asm /// operand indicates it is an use operand that's matched to a def operand. bool isUseOperandTiedToDef(unsigned &Idx) const { if (!isMatched()) return false; Idx = getMatchedOperandNo(); return true; } /// hasRegClassConstraint - Returns true if the flag contains a register /// class constraint. Sets RC to the register class ID. bool hasRegClassConstraint(unsigned &RC) const { if (isMatched()) return false; // setRegClass() uses 0 to mean no register class, and otherwise stores // RC + 1. if (!getRegClass()) return false; RC = getRegClass() - 1; return true; } ConstraintCode getMemoryConstraintID() const { assert((isMemKind() || isFuncKind()) && "Not expected mem or function flag!"); return Bitfield::get(Storage); } /// setMatchingOp - Augment an existing flag with information indicating /// that this input operand is tied to a previous output operand. void setMatchingOp(unsigned OperandNo) { assert(getMatchedOperandNo() == 0 && "Matching operand already set"); Bitfield::set(Storage, OperandNo); Bitfield::set(Storage, true); } /// setRegClass - Augment an existing flag with the required register class /// for the following register operands. A tied use operand cannot have a /// register class, use the register class from the def operand instead. void setRegClass(unsigned RC) { assert(!isImmKind() && "Immediates cannot have a register class"); assert(!isMemKind() && "Memory operand cannot have a register class"); assert(getRegClass() == 0 && "Register class already set"); // Store RC + 1, reserve the value 0 to mean 'no register class'. Bitfield::set(Storage, RC + 1); } /// setMemConstraint - Augment an existing flag with the constraint code for /// a memory constraint. void setMemConstraint(ConstraintCode C) { assert(getMemoryConstraintID() == ConstraintCode::Unknown && "Mem constraint already set"); Bitfield::set(Storage, C); } /// clearMemConstraint - Similar to setMemConstraint(0), but without the /// assertion checking that the constraint has not been set previously. void clearMemConstraint() { assert((isMemKind() || isFuncKind()) && "Flag is not a memory or function constraint!"); Bitfield::set(Storage, ConstraintCode::Unknown); } /// Set a bit to denote that while this operand is some kind of register /// (use, def, ...), a memory flag did appear in the original constraint /// list. This is set by the instruction selection framework, and consumed /// by the register allocator. While the register allocator is generally /// responsible for spilling registers, we need to be able to distinguish /// between registers that the register allocator has permission to fold /// ("rm") vs ones it does not ("r"). This is because the inline asm may use /// instructions which don't support memory addressing modes for that /// operand. void setRegMayBeFolded(bool B) { assert((isRegDefKind() || isRegDefEarlyClobberKind() || isRegUseKind()) && "Must be reg"); Bitfield::set(Storage, B); } bool getRegMayBeFolded() const { assert((isRegDefKind() || isRegDefEarlyClobberKind() || isRegUseKind()) && "Must be reg"); return Bitfield::get(Storage); } }; static std::vector getExtraInfoNames(unsigned ExtraInfo) { std::vector Result; if (ExtraInfo & InlineAsm::Extra_HasSideEffects) Result.push_back("sideeffect"); if (ExtraInfo & InlineAsm::Extra_MayLoad) Result.push_back("mayload"); if (ExtraInfo & InlineAsm::Extra_MayStore) Result.push_back("maystore"); if (ExtraInfo & InlineAsm::Extra_IsConvergent) Result.push_back("isconvergent"); if (ExtraInfo & InlineAsm::Extra_IsAlignStack) Result.push_back("alignstack"); AsmDialect Dialect = InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect)); if (Dialect == InlineAsm::AD_ATT) Result.push_back("attdialect"); if (Dialect == InlineAsm::AD_Intel) Result.push_back("inteldialect"); return Result; } static StringRef getMemConstraintName(ConstraintCode C) { switch (C) { case ConstraintCode::es: return "es"; case ConstraintCode::i: return "i"; case ConstraintCode::k: return "k"; case ConstraintCode::m: return "m"; case ConstraintCode::o: return "o"; case ConstraintCode::v: return "v"; case ConstraintCode::A: return "A"; case ConstraintCode::Q: return "Q"; case ConstraintCode::R: return "R"; case ConstraintCode::S: return "S"; case ConstraintCode::T: return "T"; case ConstraintCode::Um: return "Um"; case ConstraintCode::Un: return "Un"; case ConstraintCode::Uq: return "Uq"; case ConstraintCode::Us: return "Us"; case ConstraintCode::Ut: return "Ut"; case ConstraintCode::Uv: return "Uv"; case ConstraintCode::Uy: return "Uy"; case ConstraintCode::X: return "X"; case ConstraintCode::Z: return "Z"; case ConstraintCode::ZB: return "ZB"; case ConstraintCode::ZC: return "ZC"; case ConstraintCode::Zy: return "Zy"; case ConstraintCode::p: return "p"; case ConstraintCode::ZQ: return "ZQ"; case ConstraintCode::ZR: return "ZR"; case ConstraintCode::ZS: return "ZS"; case ConstraintCode::ZT: return "ZT"; default: llvm_unreachable("Unknown memory constraint"); } } }; } // end namespace llvm #endif // LLVM_IR_INLINEASM_H