/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "PRelu.h" #include #include #include #include "IndexedShapeWrapper.h" #include "OperationResolver.h" #include "OperationsExecutionUtils.h" #include "Tracing.h" #ifdef NN_INCLUDE_CPU_IMPLEMENTATION #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunused-parameter" #pragma clang diagnostic ignored "-Wsign-compare" #pragma clang diagnostic ignored "-Winvalid-partial-specialization" #include #pragma clang diagnostic pop #endif // NN_INCLUDE_CPU_IMPLEMENTATION namespace android { namespace nn { namespace prelu { #ifdef NN_INCLUDE_CPU_IMPLEMENTATION template inline bool eval(const std::function& func, const T* aData, const Shape& aShape, const T* bData, const Shape& bShape, T* outputData, const Shape& outputShape) { IndexedShapeWrapper aShapeIndexed(aShape); IndexedShapeWrapper bShapeIndexed(bShape); IndexedShapeWrapper outputShapeIndexed(outputShape); std::vector curIndex(outputShape.dimensions.size(), 0); bool lastIndex = false; do { uint32_t outputFlatIndex; NN_RET_CHECK(outputShapeIndexed.indexToFlatIndex(curIndex, &outputFlatIndex)); uint32_t aFlatIndex; NN_RET_CHECK(aShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &aFlatIndex)); uint32_t bFlatIndex; NN_RET_CHECK(bShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &bFlatIndex)); outputData[outputFlatIndex] = func(aData[aFlatIndex], bData[bFlatIndex]); NN_RET_CHECK(outputShapeIndexed.nextIndexInplace(&curIndex, &lastIndex)); } while (!lastIndex); return true; } template bool evalQuant8(const T* aData, const Shape& aShape, const T* bData, const Shape& bShape, T* outputData, const Shape& outputShape) { const int32_t input_offset = -aShape.offset; const int32_t alpha_offset = -bShape.offset; const int32_t output_offset = outputShape.offset; const double input_product_scale = aShape.scale * bShape.scale; const double real_multiplier_pos = aShape.scale / outputShape.scale; const double real_multiplier_neg = input_product_scale / outputShape.scale; int32_t output_multiplier_pos, output_shift_pos; int32_t output_multiplier_neg, output_shift_neg; tflite::QuantizeMultiplier(real_multiplier_pos, &output_multiplier_pos, &output_shift_pos); tflite::QuantizeMultiplier(real_multiplier_neg, &output_multiplier_neg, &output_shift_neg); return eval( [&](const T& val1, const T& val2) -> uint8_t { const int32_t input = input_offset + static_cast(val1); int32_t output_val; if (input >= 0) { output_val = output_offset + tflite::MultiplyByQuantizedMultiplier( input, output_multiplier_pos, output_shift_pos); } else { const int32_t alpha = alpha_offset + static_cast(val2); output_val = output_offset + tflite::MultiplyByQuantizedMultiplier( input * alpha, output_multiplier_neg, output_shift_neg); } return saturateCast(output_val); }, aData, aShape, bData, bShape, outputData, outputShape); } bool prepare(IOperationExecutionContext* context) { Shape input = context->getInputShape(kInputTensor); Shape alpha = context->getInputShape(kAlphaTensor); NN_RET_CHECK(input.type == alpha.type); Shape output = context->getOutputShape(kOutputTensor); NN_RET_CHECK(calculateBroadcastedShape(input, alpha, &output)); return context->setOutputShape(kOutputTensor, output); } bool execute(IOperationExecutionContext* context) { switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT16: return eval<_Float16>( [](const _Float16& val1, const _Float16& val2) -> _Float16 { return val1 >= 0.0f ? val1 : val1 * val2; }, context->getInputBuffer<_Float16>(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer<_Float16>(kAlphaTensor), context->getInputShape(kAlphaTensor), context->getOutputBuffer<_Float16>(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_FLOAT32: return eval( [](const float& val1, const float& val2) -> float { return val1 >= 0.0f ? val1 : val1 * val2; }, context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer(kAlphaTensor), context->getInputShape(kAlphaTensor), context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM: { return evalQuant8(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer(kAlphaTensor), context->getInputShape(kAlphaTensor), context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); } case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: { return evalQuant8(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer(kAlphaTensor), context->getInputShape(kAlphaTensor), context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); } default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } } #endif // NN_INCLUDE_CPU_IMPLEMENTATION } // namespace prelu NN_REGISTER_OPERATION_DEFAULT_VALIDATION(PRELU, prelu::prepare, prelu::execute); } // namespace nn } // namespace android