// Copyright (C) 2021 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "model/setup/async_manager.h" #include "net/posix/posix_async_socket_connector.h" #include "net/posix/posix_async_socket_server.h" namespace android { namespace net { using clock = std::chrono::system_clock; class SigPipeSignalHandler { public: SigPipeSignalHandler() { sSignal = -1; struct sigaction act = {}; act.sa_handler = myHandler; ::sigaction(SIGPIPE, &act, &mOldAction); } ~SigPipeSignalHandler() { ::sigaction(SIGPIPE, &mOldAction, nullptr); } int signaled() const { return sSignal; } private: struct sigaction mOldAction; static int sSignal; static void myHandler(int sig) { sSignal = sig; } }; // static int SigPipeSignalHandler::sSignal = 0; using SocketCon = std::shared_ptr; class PosixSocketTest : public testing::Test { public: PosixSocketTest() : pasc_(&async_manager_), pass_(0, &async_manager_) {} ~PosixSocketTest() { pass_.Close(); } std::tuple connectPair(std::chrono::milliseconds timeout = 500ms) { std::mutex m; std::condition_variable cv; std::shared_ptr sock1; std::shared_ptr sock2; pass_.SetOnConnectCallback( [&](std::shared_ptr sock, AsyncDataChannelServer*) { std::unique_lock guard(m); sock1 = std::move(sock); cv.notify_all(); }); EXPECT_TRUE(pass_.StartListening()); sock2 = pasc_.ConnectToRemoteServer("localhost", pass_.port(), 1000ms); EXPECT_TRUE(sock2.get() != nullptr); EXPECT_TRUE(sock2->Connected()); std::unique_lock lk(m); EXPECT_TRUE(cv.wait_for(lk, timeout, [&] { return sock1.get() != nullptr; })); EXPECT_TRUE(sock1); EXPECT_TRUE(sock1->Connected()); return {sock1, sock2}; } protected: AsyncManager async_manager_; PosixAsyncSocketConnector pasc_; PosixAsyncSocketServer pass_; }; TEST_F(PosixSocketTest, canConnect) { auto [sock1, sock2] = connectPair(); ASSERT_TRUE(sock1->Connected()); ASSERT_TRUE(sock2->Connected()); sock1->Close(); sock2->Close(); ASSERT_FALSE(sock1->Connected()); ASSERT_FALSE(sock2->Connected()); } TEST_F(PosixSocketTest, socketSendDoesNotGenerateSigPipe) { // Check that writing to a broken pipe does not generate a SIGPIPE // signal. SigPipeSignalHandler handler; ASSERT_EQ(-1, handler.signaled()); auto [sock1, sock2] = connectPair(); // s1 and s2 are now connected. Close s1 immediately, then try to // send data through s2. sock1->Close(); ASSERT_FALSE(sock1->Connected()); // The EPIPE might not happen on the first send due to // TCP packet buffering in the kernel. Perform multiple send() // in a loop to work-around this. errno = 0; const int kMaxSendCount = 1000; int n = 0; while (n < kMaxSendCount) { int ret = sock2->Send((uint8_t*)"xxxx", 4); if (ret < 0) { #ifdef __APPLE__ // On OS X, errno is sometimes EPROTOTYPE instead of EPIPE // when this happens. ASSERT_TRUE(errno == EPIPE || errno == EPROTOTYPE) << strerror(errno); #else ASSERT_EQ(EPIPE, errno) << strerror(errno); #endif break; } n++; } // On MacOS you usually have n < 30 ASSERT_LT(n, kMaxSendCount); // No signals were raised. ASSERT_EQ(-1, handler.signaled()); } TEST_F(PosixSocketTest, can_send_data_around_poll) { auto [sock1, sock2] = connectPair(); std::string word = "Hello World"; std::string input = " "; ASSERT_EQ(word.size(), input.size()); ASSERT_NE(word, input); ssize_t snd = sock1->Send((uint8_t*)word.data(), word.size()); ASSERT_EQ((ssize_t)word.size(), snd); uint8_t* buffer = (uint8_t*)input.data(); int buflen = input.size(); // Poll for at most 250ms. clock::time_point until = clock::now() + 250ms; do { int recv = sock2->Recv(buffer, buflen); if (recv > 0) { buflen -= recv; buffer += recv; } } while (buflen > 0 && clock::now() < until); ASSERT_EQ(word, input); } TEST_F(PosixSocketTest, data_results_in_read_event) { auto [sock1, sock2] = connectPair(); std::mutex m; std::condition_variable cv; std::string word = "Hello World"; std::string input = " "; bool received = false; // Register a callback that only gets called once.. sock2->WatchForNonBlockingRead([&](auto sock) { std::unique_lock guard(m); received = true; // Unregister, to prevent surprises.. sock->StopWatching(); cv.notify_all(); }); ssize_t snd = sock1->Send((uint8_t*)word.data(), word.size()); ASSERT_EQ((ssize_t)word.size(), snd); { std::unique_lock lk(m); // The callback will be called within 250ms. ASSERT_TRUE(cv.wait_for(lk, 250ms, [&] { return received; })); uint8_t* buffer = (uint8_t*)input.data(); int buflen = input.size(); // At least 1 byte is coming in. (Note, we might get just a few // bytes. vs the whole thing as you never know what happens in the // ip stack.) ASSERT_GT(sock2->Recv(buffer, buflen), 0); } } TEST_F(PosixSocketTest, connectFails) { int port = pass_.port(); // Close the port, we should not be able to connect pass_.Close(); ASSERT_FALSE(pass_.Connected()); // Max 250ms to go to nowhere... auto socket = pasc_.ConnectToRemoteServer("localhost", port, 250ms); ASSERT_FALSE(socket->Connected()); } TEST_F(PosixSocketTest, canConnectMultiple) { int port = pass_.port(); int CONNECTION_COUNT = 10; std::mutex m; std::condition_variable cv; std::vector> connections; bool connected = false; pass_.SetOnConnectCallback( [&](std::shared_ptr const& sock, AsyncDataChannelServer*) { std::unique_lock guard(m); connections.push_back(sock); connected = true; ASSERT_TRUE(pass_.StartListening()); cv.notify_all(); }); ASSERT_TRUE(pass_.StartListening()); for (int i = 0; i < CONNECTION_COUNT; i++) { connected = false; auto socket = pasc_.ConnectToRemoteServer("localhost", port, 250ms); ASSERT_TRUE(socket->Connected()); std::unique_lock lk(m); ASSERT_TRUE(cv.wait_for(lk, 250ms, [&] { return connected; })); connected = false; } ASSERT_EQ(CONNECTION_COUNT, (int)connections.size()); } TEST_F(PosixSocketTest, noConnectWhenNotCallingStart) { int port = pass_.port(); std::mutex m; std::condition_variable cv; std::vector> connections; bool connected = false; pass_.SetOnConnectCallback([&](std::shared_ptr sock, AsyncDataChannelServer*) { std::unique_lock guard(m); connections.push_back(sock); connected = true; cv.notify_all(); }); ASSERT_TRUE(pass_.StartListening()); { connected = false; auto socket = pasc_.ConnectToRemoteServer("localhost", port, 250ms); ASSERT_TRUE(socket->Connected()); std::unique_lock lk(m); ASSERT_TRUE(cv.wait_for(lk, 250ms, [&] { return connected; })); } // After the first connection there was no call to startListening, and hence // no new sockets should be accepted. { connected = false; auto socket = pasc_.ConnectToRemoteServer("localhost", port, 250ms); // We should have a partial connection, so we don't know yet that it is not // working.. ASSERT_TRUE(socket->Connected()); std::unique_lock lk(m); // Should timeout, as we never invoke the callback that accepts the socket. ASSERT_FALSE(cv.wait_for(lk, 250ms, [&] { return connected; })); } ASSERT_EQ(1, (int)connections.size()); } } // namespace net } // namespace android