/* * Copyright 2023 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "VirtualInputDevice" #include #include #include #include #include #include #include #include #include using android::base::unique_fd; namespace { /** * Log debug messages about native virtual input devices. * Enable this via "adb shell setprop log.tag.VirtualInputDevice DEBUG" */ bool isDebug() { return __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG, ANDROID_LOG_INFO); } unique_fd invalidFd() { return unique_fd(-1); } } // namespace namespace android { namespace vd_flags = android::companion::virtualdevice::flags; /** Creates a new uinput device and assigns a file descriptor. */ unique_fd openUinput(const char* readableName, int32_t vendorId, int32_t productId, const char* phys, DeviceType deviceType, int32_t screenHeight, int32_t screenWidth) { unique_fd fd(TEMP_FAILURE_RETRY(::open("/dev/uinput", O_WRONLY | O_NONBLOCK))); if (fd < 0) { ALOGE("Error creating uinput device: %s", strerror(errno)); return invalidFd(); } ioctl(fd, UI_SET_PHYS, phys); ioctl(fd, UI_SET_EVBIT, EV_KEY); ioctl(fd, UI_SET_EVBIT, EV_SYN); switch (deviceType) { case DeviceType::DPAD: for (const auto& [_, keyCode] : VirtualDpad::DPAD_KEY_CODE_MAPPING) { ioctl(fd, UI_SET_KEYBIT, keyCode); } break; case DeviceType::KEYBOARD: for (const auto& [_, keyCode] : VirtualKeyboard::KEY_CODE_MAPPING) { ioctl(fd, UI_SET_KEYBIT, keyCode); } break; case DeviceType::MOUSE: ioctl(fd, UI_SET_EVBIT, EV_REL); ioctl(fd, UI_SET_KEYBIT, BTN_LEFT); ioctl(fd, UI_SET_KEYBIT, BTN_RIGHT); ioctl(fd, UI_SET_KEYBIT, BTN_MIDDLE); ioctl(fd, UI_SET_KEYBIT, BTN_BACK); ioctl(fd, UI_SET_KEYBIT, BTN_FORWARD); ioctl(fd, UI_SET_RELBIT, REL_X); ioctl(fd, UI_SET_RELBIT, REL_Y); ioctl(fd, UI_SET_RELBIT, REL_WHEEL); ioctl(fd, UI_SET_RELBIT, REL_HWHEEL); if (vd_flags::high_resolution_scroll()) { ioctl(fd, UI_SET_RELBIT, REL_WHEEL_HI_RES); ioctl(fd, UI_SET_RELBIT, REL_HWHEEL_HI_RES); } break; case DeviceType::TOUCHSCREEN: ioctl(fd, UI_SET_EVBIT, EV_ABS); ioctl(fd, UI_SET_KEYBIT, BTN_TOUCH); ioctl(fd, UI_SET_ABSBIT, ABS_MT_SLOT); ioctl(fd, UI_SET_ABSBIT, ABS_MT_POSITION_X); ioctl(fd, UI_SET_ABSBIT, ABS_MT_POSITION_Y); ioctl(fd, UI_SET_ABSBIT, ABS_MT_TRACKING_ID); ioctl(fd, UI_SET_ABSBIT, ABS_MT_TOOL_TYPE); ioctl(fd, UI_SET_ABSBIT, ABS_MT_TOUCH_MAJOR); ioctl(fd, UI_SET_ABSBIT, ABS_MT_PRESSURE); ioctl(fd, UI_SET_PROPBIT, INPUT_PROP_DIRECT); break; case DeviceType::STYLUS: ioctl(fd, UI_SET_EVBIT, EV_ABS); ioctl(fd, UI_SET_KEYBIT, BTN_TOUCH); ioctl(fd, UI_SET_KEYBIT, BTN_STYLUS); ioctl(fd, UI_SET_KEYBIT, BTN_STYLUS2); ioctl(fd, UI_SET_KEYBIT, BTN_TOOL_PEN); ioctl(fd, UI_SET_KEYBIT, BTN_TOOL_RUBBER); ioctl(fd, UI_SET_ABSBIT, ABS_X); ioctl(fd, UI_SET_ABSBIT, ABS_Y); ioctl(fd, UI_SET_ABSBIT, ABS_TILT_X); ioctl(fd, UI_SET_ABSBIT, ABS_TILT_Y); ioctl(fd, UI_SET_ABSBIT, ABS_PRESSURE); ioctl(fd, UI_SET_PROPBIT, INPUT_PROP_DIRECT); break; case DeviceType::ROTARY_ENCODER: ioctl(fd, UI_SET_EVBIT, EV_REL); ioctl(fd, UI_SET_RELBIT, REL_WHEEL); if (vd_flags::high_resolution_scroll()) { ioctl(fd, UI_SET_RELBIT, REL_WHEEL_HI_RES); } break; default: ALOGE("Invalid input device type %d", static_cast(deviceType)); return invalidFd(); } int version; if (ioctl(fd, UI_GET_VERSION, &version) == 0 && version >= 5) { uinput_setup setup; memset(&setup, 0, sizeof(setup)); std::strncpy(setup.name, readableName, UINPUT_MAX_NAME_SIZE); setup.id.version = 1; setup.id.bustype = BUS_VIRTUAL; setup.id.vendor = vendorId; setup.id.product = productId; if (deviceType == DeviceType::TOUCHSCREEN) { uinput_abs_setup xAbsSetup; xAbsSetup.code = ABS_MT_POSITION_X; xAbsSetup.absinfo.maximum = screenWidth - 1; xAbsSetup.absinfo.minimum = 0; if (ioctl(fd, UI_ABS_SETUP, &xAbsSetup) != 0) { ALOGE("Error creating touchscreen uinput x axis: %s", strerror(errno)); return invalidFd(); } uinput_abs_setup yAbsSetup; yAbsSetup.code = ABS_MT_POSITION_Y; yAbsSetup.absinfo.maximum = screenHeight - 1; yAbsSetup.absinfo.minimum = 0; if (ioctl(fd, UI_ABS_SETUP, &yAbsSetup) != 0) { ALOGE("Error creating touchscreen uinput y axis: %s", strerror(errno)); return invalidFd(); } uinput_abs_setup majorAbsSetup; majorAbsSetup.code = ABS_MT_TOUCH_MAJOR; majorAbsSetup.absinfo.maximum = screenWidth - 1; majorAbsSetup.absinfo.minimum = 0; if (ioctl(fd, UI_ABS_SETUP, &majorAbsSetup) != 0) { ALOGE("Error creating touchscreen uinput major axis: %s", strerror(errno)); return invalidFd(); } uinput_abs_setup pressureAbsSetup; pressureAbsSetup.code = ABS_MT_PRESSURE; pressureAbsSetup.absinfo.maximum = 255; pressureAbsSetup.absinfo.minimum = 0; if (ioctl(fd, UI_ABS_SETUP, &pressureAbsSetup) != 0) { ALOGE("Error creating touchscreen uinput pressure axis: %s", strerror(errno)); return invalidFd(); } uinput_abs_setup slotAbsSetup; slotAbsSetup.code = ABS_MT_SLOT; slotAbsSetup.absinfo.maximum = MAX_POINTERS - 1; slotAbsSetup.absinfo.minimum = 0; if (ioctl(fd, UI_ABS_SETUP, &slotAbsSetup) != 0) { ALOGE("Error creating touchscreen uinput slots: %s", strerror(errno)); return invalidFd(); } uinput_abs_setup trackingIdAbsSetup; trackingIdAbsSetup.code = ABS_MT_TRACKING_ID; trackingIdAbsSetup.absinfo.maximum = MAX_POINTERS - 1; trackingIdAbsSetup.absinfo.minimum = 0; if (ioctl(fd, UI_ABS_SETUP, &trackingIdAbsSetup) != 0) { ALOGE("Error creating touchscreen uinput tracking ids: %s", strerror(errno)); return invalidFd(); } } else if (deviceType == DeviceType::STYLUS) { uinput_abs_setup xAbsSetup; xAbsSetup.code = ABS_X; xAbsSetup.absinfo.maximum = screenWidth - 1; xAbsSetup.absinfo.minimum = 0; if (ioctl(fd, UI_ABS_SETUP, &xAbsSetup) != 0) { ALOGE("Error creating stylus uinput x axis: %s", strerror(errno)); return invalidFd(); } uinput_abs_setup yAbsSetup; yAbsSetup.code = ABS_Y; yAbsSetup.absinfo.maximum = screenHeight - 1; yAbsSetup.absinfo.minimum = 0; if (ioctl(fd, UI_ABS_SETUP, &yAbsSetup) != 0) { ALOGE("Error creating stylus uinput y axis: %s", strerror(errno)); return invalidFd(); } uinput_abs_setup tiltXAbsSetup; tiltXAbsSetup.code = ABS_TILT_X; tiltXAbsSetup.absinfo.maximum = 90; tiltXAbsSetup.absinfo.minimum = -90; if (ioctl(fd, UI_ABS_SETUP, &tiltXAbsSetup) != 0) { ALOGE("Error creating stylus uinput tilt x axis: %s", strerror(errno)); return invalidFd(); } uinput_abs_setup tiltYAbsSetup; tiltYAbsSetup.code = ABS_TILT_Y; tiltYAbsSetup.absinfo.maximum = 90; tiltYAbsSetup.absinfo.minimum = -90; if (ioctl(fd, UI_ABS_SETUP, &tiltYAbsSetup) != 0) { ALOGE("Error creating stylus uinput tilt y axis: %s", strerror(errno)); return invalidFd(); } uinput_abs_setup pressureAbsSetup; pressureAbsSetup.code = ABS_PRESSURE; pressureAbsSetup.absinfo.maximum = 255; pressureAbsSetup.absinfo.minimum = 0; if (ioctl(fd, UI_ABS_SETUP, &pressureAbsSetup) != 0) { ALOGE("Error creating touchscreen uinput pressure axis: %s", strerror(errno)); return invalidFd(); } } if (ioctl(fd, UI_DEV_SETUP, &setup) != 0) { ALOGE("Error creating uinput device: %s", strerror(errno)); return invalidFd(); } } else { // UI_DEV_SETUP was not introduced until version 5. Try setting up manually. ALOGI("Falling back to version %d manual setup", version); uinput_user_dev fallback; memset(&fallback, 0, sizeof(fallback)); std::strncpy(fallback.name, readableName, UINPUT_MAX_NAME_SIZE); fallback.id.version = 1; fallback.id.bustype = BUS_VIRTUAL; fallback.id.vendor = vendorId; fallback.id.product = productId; if (deviceType == DeviceType::TOUCHSCREEN) { fallback.absmin[ABS_MT_POSITION_X] = 0; fallback.absmax[ABS_MT_POSITION_X] = screenWidth - 1; fallback.absmin[ABS_MT_POSITION_Y] = 0; fallback.absmax[ABS_MT_POSITION_Y] = screenHeight - 1; fallback.absmin[ABS_MT_TOUCH_MAJOR] = 0; fallback.absmax[ABS_MT_TOUCH_MAJOR] = screenWidth - 1; fallback.absmin[ABS_MT_PRESSURE] = 0; fallback.absmax[ABS_MT_PRESSURE] = 255; } else if (deviceType == DeviceType::STYLUS) { fallback.absmin[ABS_X] = 0; fallback.absmax[ABS_X] = screenWidth - 1; fallback.absmin[ABS_Y] = 0; fallback.absmax[ABS_Y] = screenHeight - 1; fallback.absmin[ABS_TILT_X] = -90; fallback.absmax[ABS_TILT_X] = 90; fallback.absmin[ABS_TILT_Y] = -90; fallback.absmax[ABS_TILT_Y] = 90; fallback.absmin[ABS_PRESSURE] = 0; fallback.absmax[ABS_PRESSURE] = 255; } if (TEMP_FAILURE_RETRY(write(fd, &fallback, sizeof(fallback))) != sizeof(fallback)) { ALOGE("Error creating uinput device: %s", strerror(errno)); return invalidFd(); } } if (ioctl(fd, UI_DEV_CREATE) != 0) { ALOGE("Error creating uinput device: %s", strerror(errno)); return invalidFd(); } return fd; } VirtualInputDevice::VirtualInputDevice(unique_fd fd) : mFd(std::move(fd)) {} VirtualInputDevice::~VirtualInputDevice() { ioctl(mFd, UI_DEV_DESTROY); } bool VirtualInputDevice::writeInputEvent(uint16_t type, uint16_t code, int32_t value, std::chrono::nanoseconds eventTime) { std::chrono::seconds seconds = std::chrono::duration_cast(eventTime); std::chrono::microseconds microseconds = std::chrono::duration_cast(eventTime - seconds); struct input_event ev = {.type = type, .code = code, .value = value}; ev.input_event_sec = static_cast(seconds.count()); ev.input_event_usec = static_cast(microseconds.count()); return TEMP_FAILURE_RETRY(write(mFd, &ev, sizeof(struct input_event))) == sizeof(ev); } /** Utility method to write keyboard key events or mouse/stylus button events. */ bool VirtualInputDevice::writeEvKeyEvent(int32_t androidCode, int32_t androidAction, const std::map& evKeyCodeMapping, const std::map& actionMapping, std::chrono::nanoseconds eventTime) { auto evKeyCodeIterator = evKeyCodeMapping.find(androidCode); if (evKeyCodeIterator == evKeyCodeMapping.end()) { ALOGE("Unsupported native EV keycode for android code %d", androidCode); return false; } auto actionIterator = actionMapping.find(androidAction); if (actionIterator == actionMapping.end()) { ALOGE("Unsupported native action for android action %d", androidAction); return false; } int32_t action = static_cast(actionIterator->second); uint16_t evKeyCode = static_cast(evKeyCodeIterator->second); if (!writeInputEvent(EV_KEY, evKeyCode, action, eventTime)) { ALOGE("Failed to write native action %d and EV keycode %u.", action, evKeyCode); return false; } if (!writeInputEvent(EV_SYN, SYN_REPORT, 0, eventTime)) { ALOGE("Failed to write SYN_REPORT for EV_KEY event."); return false; } return true; } // --- VirtualKeyboard --- const std::map VirtualKeyboard::KEY_ACTION_MAPPING = { {AKEY_EVENT_ACTION_DOWN, UinputAction::PRESS}, {AKEY_EVENT_ACTION_UP, UinputAction::RELEASE}, }; // Keycode mapping from https://source.android.com/devices/input/keyboard-devices const std::map VirtualKeyboard::KEY_CODE_MAPPING = { {AKEYCODE_0, KEY_0}, {AKEYCODE_1, KEY_1}, {AKEYCODE_2, KEY_2}, {AKEYCODE_3, KEY_3}, {AKEYCODE_4, KEY_4}, {AKEYCODE_5, KEY_5}, {AKEYCODE_6, KEY_6}, {AKEYCODE_7, KEY_7}, {AKEYCODE_8, KEY_8}, {AKEYCODE_9, KEY_9}, {AKEYCODE_A, KEY_A}, {AKEYCODE_B, KEY_B}, {AKEYCODE_C, KEY_C}, {AKEYCODE_D, KEY_D}, {AKEYCODE_E, KEY_E}, {AKEYCODE_F, KEY_F}, {AKEYCODE_G, KEY_G}, {AKEYCODE_H, KEY_H}, {AKEYCODE_I, KEY_I}, {AKEYCODE_J, KEY_J}, {AKEYCODE_K, KEY_K}, {AKEYCODE_L, KEY_L}, {AKEYCODE_M, KEY_M}, {AKEYCODE_N, KEY_N}, {AKEYCODE_O, KEY_O}, {AKEYCODE_P, KEY_P}, {AKEYCODE_Q, KEY_Q}, {AKEYCODE_R, KEY_R}, {AKEYCODE_S, KEY_S}, {AKEYCODE_T, KEY_T}, {AKEYCODE_U, KEY_U}, {AKEYCODE_V, KEY_V}, {AKEYCODE_W, KEY_W}, {AKEYCODE_X, KEY_X}, {AKEYCODE_Y, KEY_Y}, {AKEYCODE_Z, KEY_Z}, {AKEYCODE_GRAVE, KEY_GRAVE}, {AKEYCODE_MINUS, KEY_MINUS}, {AKEYCODE_EQUALS, KEY_EQUAL}, {AKEYCODE_LEFT_BRACKET, KEY_LEFTBRACE}, {AKEYCODE_RIGHT_BRACKET, KEY_RIGHTBRACE}, {AKEYCODE_BACKSLASH, KEY_BACKSLASH}, {AKEYCODE_SEMICOLON, KEY_SEMICOLON}, {AKEYCODE_APOSTROPHE, KEY_APOSTROPHE}, {AKEYCODE_COMMA, KEY_COMMA}, {AKEYCODE_PERIOD, KEY_DOT}, {AKEYCODE_SLASH, KEY_SLASH}, {AKEYCODE_ALT_LEFT, KEY_LEFTALT}, {AKEYCODE_ALT_RIGHT, KEY_RIGHTALT}, {AKEYCODE_CTRL_LEFT, KEY_LEFTCTRL}, {AKEYCODE_CTRL_RIGHT, KEY_RIGHTCTRL}, {AKEYCODE_SHIFT_LEFT, KEY_LEFTSHIFT}, {AKEYCODE_SHIFT_RIGHT, KEY_RIGHTSHIFT}, {AKEYCODE_META_LEFT, KEY_LEFTMETA}, {AKEYCODE_META_RIGHT, KEY_RIGHTMETA}, {AKEYCODE_CAPS_LOCK, KEY_CAPSLOCK}, {AKEYCODE_SCROLL_LOCK, KEY_SCROLLLOCK}, {AKEYCODE_NUM_LOCK, KEY_NUMLOCK}, {AKEYCODE_ENTER, KEY_ENTER}, {AKEYCODE_TAB, KEY_TAB}, {AKEYCODE_SPACE, KEY_SPACE}, {AKEYCODE_DPAD_DOWN, KEY_DOWN}, {AKEYCODE_DPAD_UP, KEY_UP}, {AKEYCODE_DPAD_LEFT, KEY_LEFT}, {AKEYCODE_DPAD_RIGHT, KEY_RIGHT}, {AKEYCODE_MOVE_END, KEY_END}, {AKEYCODE_MOVE_HOME, KEY_HOME}, {AKEYCODE_PAGE_DOWN, KEY_PAGEDOWN}, {AKEYCODE_PAGE_UP, KEY_PAGEUP}, {AKEYCODE_DEL, KEY_BACKSPACE}, {AKEYCODE_FORWARD_DEL, KEY_DELETE}, {AKEYCODE_INSERT, KEY_INSERT}, {AKEYCODE_ESCAPE, KEY_ESC}, {AKEYCODE_BREAK, KEY_PAUSE}, {AKEYCODE_F1, KEY_F1}, {AKEYCODE_F2, KEY_F2}, {AKEYCODE_F3, KEY_F3}, {AKEYCODE_F4, KEY_F4}, {AKEYCODE_F5, KEY_F5}, {AKEYCODE_F6, KEY_F6}, {AKEYCODE_F7, KEY_F7}, {AKEYCODE_F8, KEY_F8}, {AKEYCODE_F9, KEY_F9}, {AKEYCODE_F10, KEY_F10}, {AKEYCODE_F11, KEY_F11}, {AKEYCODE_F12, KEY_F12}, {AKEYCODE_BACK, KEY_BACK}, {AKEYCODE_FORWARD, KEY_FORWARD}, {AKEYCODE_NUMPAD_1, KEY_KP1}, {AKEYCODE_NUMPAD_2, KEY_KP2}, {AKEYCODE_NUMPAD_3, KEY_KP3}, {AKEYCODE_NUMPAD_4, KEY_KP4}, {AKEYCODE_NUMPAD_5, KEY_KP5}, {AKEYCODE_NUMPAD_6, KEY_KP6}, {AKEYCODE_NUMPAD_7, KEY_KP7}, {AKEYCODE_NUMPAD_8, KEY_KP8}, {AKEYCODE_NUMPAD_9, KEY_KP9}, {AKEYCODE_NUMPAD_0, KEY_KP0}, {AKEYCODE_NUMPAD_ADD, KEY_KPPLUS}, {AKEYCODE_NUMPAD_SUBTRACT, KEY_KPMINUS}, {AKEYCODE_NUMPAD_MULTIPLY, KEY_KPASTERISK}, {AKEYCODE_NUMPAD_DIVIDE, KEY_KPSLASH}, {AKEYCODE_NUMPAD_DOT, KEY_KPDOT}, {AKEYCODE_NUMPAD_ENTER, KEY_KPENTER}, {AKEYCODE_NUMPAD_EQUALS, KEY_KPEQUAL}, {AKEYCODE_NUMPAD_COMMA, KEY_KPCOMMA}, {AKEYCODE_LANGUAGE_SWITCH, KEY_LANGUAGE}, }; VirtualKeyboard::VirtualKeyboard(unique_fd fd) : VirtualInputDevice(std::move(fd)) {} VirtualKeyboard::~VirtualKeyboard() {} bool VirtualKeyboard::writeKeyEvent(int32_t androidKeyCode, int32_t androidAction, std::chrono::nanoseconds eventTime) { return writeEvKeyEvent(androidKeyCode, androidAction, KEY_CODE_MAPPING, KEY_ACTION_MAPPING, eventTime); } // --- VirtualDpad --- // Dpad keycode mapping from https://source.android.com/devices/input/keyboard-devices const std::map VirtualDpad::DPAD_KEY_CODE_MAPPING = { // clang-format off {AKEYCODE_DPAD_DOWN, KEY_DOWN}, {AKEYCODE_DPAD_UP, KEY_UP}, {AKEYCODE_DPAD_LEFT, KEY_LEFT}, {AKEYCODE_DPAD_RIGHT, KEY_RIGHT}, {AKEYCODE_DPAD_CENTER, KEY_SELECT}, {AKEYCODE_BACK, KEY_BACK}, // clang-format on }; VirtualDpad::VirtualDpad(unique_fd fd) : VirtualInputDevice(std::move(fd)) {} VirtualDpad::~VirtualDpad() {} bool VirtualDpad::writeDpadKeyEvent(int32_t androidKeyCode, int32_t androidAction, std::chrono::nanoseconds eventTime) { return writeEvKeyEvent(androidKeyCode, androidAction, DPAD_KEY_CODE_MAPPING, VirtualKeyboard::KEY_ACTION_MAPPING, eventTime); } // --- VirtualMouse --- const std::map VirtualMouse::BUTTON_ACTION_MAPPING = { {AMOTION_EVENT_ACTION_BUTTON_PRESS, UinputAction::PRESS}, {AMOTION_EVENT_ACTION_BUTTON_RELEASE, UinputAction::RELEASE}, }; // Button code mapping from https://source.android.com/devices/input/touch-devices const std::map VirtualMouse::BUTTON_CODE_MAPPING = { // clang-format off {AMOTION_EVENT_BUTTON_PRIMARY, BTN_LEFT}, {AMOTION_EVENT_BUTTON_SECONDARY, BTN_RIGHT}, {AMOTION_EVENT_BUTTON_TERTIARY, BTN_MIDDLE}, {AMOTION_EVENT_BUTTON_BACK, BTN_BACK}, {AMOTION_EVENT_BUTTON_FORWARD, BTN_FORWARD}, // clang-format on }; VirtualMouse::VirtualMouse(unique_fd fd) : VirtualInputDevice(std::move(fd)), mAccumulatedHighResScrollX(0), mAccumulatedHighResScrollY(0) {} VirtualMouse::~VirtualMouse() {} bool VirtualMouse::writeButtonEvent(int32_t androidButtonCode, int32_t androidAction, std::chrono::nanoseconds eventTime) { return writeEvKeyEvent(androidButtonCode, androidAction, BUTTON_CODE_MAPPING, BUTTON_ACTION_MAPPING, eventTime); } bool VirtualMouse::writeRelativeEvent(float relativeX, float relativeY, std::chrono::nanoseconds eventTime) { return writeInputEvent(EV_REL, REL_X, relativeX, eventTime) && writeInputEvent(EV_REL, REL_Y, relativeY, eventTime) && writeInputEvent(EV_SYN, SYN_REPORT, 0, eventTime); } bool VirtualMouse::writeScrollEvent(float xAxisMovement, float yAxisMovement, std::chrono::nanoseconds eventTime) { if (!vd_flags::high_resolution_scroll()) { return writeInputEvent(EV_REL, REL_HWHEEL, static_cast(xAxisMovement), eventTime) && writeInputEvent(EV_REL, REL_WHEEL, static_cast(yAxisMovement), eventTime) && writeInputEvent(EV_SYN, SYN_REPORT, 0, eventTime); } const auto highResScrollX = static_cast(xAxisMovement * kEvdevHighResScrollUnitsPerDetent); const auto highResScrollY = static_cast(yAxisMovement * kEvdevHighResScrollUnitsPerDetent); bool highResScrollResult = writeInputEvent(EV_REL, REL_HWHEEL_HI_RES, highResScrollX, eventTime) && writeInputEvent(EV_REL, REL_WHEEL_HI_RES, highResScrollY, eventTime); if (!highResScrollResult) { return false; } // According to evdev spec, a high-resolution mouse needs to emit REL_WHEEL / REL_HWHEEL events // in addition to high-res scroll events. Regular scroll events can approximate high-res scroll // events, so we send a regular scroll event when the accumulated scroll motion reaches a detent // (single mouse wheel click). mAccumulatedHighResScrollX += highResScrollX; mAccumulatedHighResScrollY += highResScrollY; const int32_t scrollX = mAccumulatedHighResScrollX / kEvdevHighResScrollUnitsPerDetent; const int32_t scrollY = mAccumulatedHighResScrollY / kEvdevHighResScrollUnitsPerDetent; if (scrollX != 0) { if (!writeInputEvent(EV_REL, REL_HWHEEL, scrollX, eventTime)) { return false; } mAccumulatedHighResScrollX %= kEvdevHighResScrollUnitsPerDetent; } if (scrollY != 0) { if (!writeInputEvent(EV_REL, REL_WHEEL, scrollY, eventTime)) { return false; } mAccumulatedHighResScrollY %= kEvdevHighResScrollUnitsPerDetent; } return writeInputEvent(EV_SYN, SYN_REPORT, 0, eventTime); } // --- VirtualTouchscreen --- const std::map VirtualTouchscreen::TOUCH_ACTION_MAPPING = { {AMOTION_EVENT_ACTION_DOWN, UinputAction::PRESS}, {AMOTION_EVENT_ACTION_UP, UinputAction::RELEASE}, {AMOTION_EVENT_ACTION_MOVE, UinputAction::MOVE}, {AMOTION_EVENT_ACTION_CANCEL, UinputAction::CANCEL}, }; // Tool type mapping from https://source.android.com/devices/input/touch-devices const std::map VirtualTouchscreen::TOOL_TYPE_MAPPING = { {AMOTION_EVENT_TOOL_TYPE_FINGER, MT_TOOL_FINGER}, {AMOTION_EVENT_TOOL_TYPE_PALM, MT_TOOL_PALM}, }; VirtualTouchscreen::VirtualTouchscreen(unique_fd fd) : VirtualInputDevice(std::move(fd)) {} VirtualTouchscreen::~VirtualTouchscreen() {} bool VirtualTouchscreen::isValidPointerId(int32_t pointerId, UinputAction uinputAction) { if (pointerId < -1 || pointerId >= (int)MAX_POINTERS) { ALOGE("Virtual touch event has invalid pointer id %d; value must be between -1 and %zu", pointerId, MAX_POINTERS - 0); return false; } if (uinputAction == UinputAction::PRESS && mActivePointers.test(pointerId)) { ALOGE("Repetitive action DOWN event received on a pointer %d that is already down.", pointerId); return false; } if (uinputAction == UinputAction::RELEASE && !mActivePointers.test(pointerId)) { ALOGE("PointerId %d action UP received with no prior action DOWN on touchscreen %d.", pointerId, mFd.get()); return false; } return true; } bool VirtualTouchscreen::writeTouchEvent(int32_t pointerId, int32_t toolType, int32_t action, float locationX, float locationY, float pressure, float majorAxisSize, std::chrono::nanoseconds eventTime) { auto actionIterator = TOUCH_ACTION_MAPPING.find(action); if (actionIterator == TOUCH_ACTION_MAPPING.end()) { return false; } UinputAction uinputAction = actionIterator->second; if (!isValidPointerId(pointerId, uinputAction)) { return false; } if (!writeInputEvent(EV_ABS, ABS_MT_SLOT, pointerId, eventTime)) { return false; } auto toolTypeIterator = TOOL_TYPE_MAPPING.find(toolType); if (toolTypeIterator == TOOL_TYPE_MAPPING.end()) { return false; } if (!writeInputEvent(EV_ABS, ABS_MT_TOOL_TYPE, static_cast(toolTypeIterator->second), eventTime)) { return false; } if (uinputAction == UinputAction::PRESS && !handleTouchDown(pointerId, eventTime)) { return false; } if (uinputAction == UinputAction::RELEASE && !handleTouchUp(pointerId, eventTime)) { return false; } if (!writeInputEvent(EV_ABS, ABS_MT_POSITION_X, locationX, eventTime)) { return false; } if (!writeInputEvent(EV_ABS, ABS_MT_POSITION_Y, locationY, eventTime)) { return false; } if (!isnan(pressure)) { if (!writeInputEvent(EV_ABS, ABS_MT_PRESSURE, pressure, eventTime)) { return false; } } if (!isnan(majorAxisSize)) { if (!writeInputEvent(EV_ABS, ABS_MT_TOUCH_MAJOR, majorAxisSize, eventTime)) { return false; } } return writeInputEvent(EV_SYN, SYN_REPORT, 0, eventTime); } bool VirtualTouchscreen::handleTouchUp(int32_t pointerId, std::chrono::nanoseconds eventTime) { if (!writeInputEvent(EV_ABS, ABS_MT_TRACKING_ID, static_cast(-1), eventTime)) { return false; } // When a pointer is no longer in touch, remove the pointer id from the corresponding // entry in the unreleased touches map. mActivePointers.reset(pointerId); ALOGD_IF(isDebug(), "Pointer %d erased from the touchscreen %d", pointerId, mFd.get()); // Only sends the BTN UP event when there's no pointers on the touchscreen. if (mActivePointers.none()) { if (!writeInputEvent(EV_KEY, BTN_TOUCH, static_cast(UinputAction::RELEASE), eventTime)) { return false; } ALOGD_IF(isDebug(), "No pointers on touchscreen %d, BTN UP event sent.", mFd.get()); } return true; } bool VirtualTouchscreen::handleTouchDown(int32_t pointerId, std::chrono::nanoseconds eventTime) { // When a new pointer is down on the touchscreen, add the pointer id in the corresponding // entry in the unreleased touches map. if (mActivePointers.none()) { // Only sends the BTN Down event when the first pointer on the touchscreen is down. if (!writeInputEvent(EV_KEY, BTN_TOUCH, static_cast(UinputAction::PRESS), eventTime)) { return false; } ALOGD_IF(isDebug(), "First pointer %d down under touchscreen %d, BTN DOWN event sent", pointerId, mFd.get()); } mActivePointers.set(pointerId); ALOGD_IF(isDebug(), "Added pointer %d under touchscreen %d in the map", pointerId, mFd.get()); if (!writeInputEvent(EV_ABS, ABS_MT_TRACKING_ID, static_cast(pointerId), eventTime)) { return false; } return true; } // --- VirtualStylus --- const std::map VirtualStylus::TOOL_TYPE_MAPPING = { {AMOTION_EVENT_TOOL_TYPE_STYLUS, BTN_TOOL_PEN}, {AMOTION_EVENT_TOOL_TYPE_ERASER, BTN_TOOL_RUBBER}, }; // Button code mapping from https://source.android.com/devices/input/touch-devices const std::map VirtualStylus::BUTTON_CODE_MAPPING = { {AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, BTN_STYLUS}, {AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, BTN_STYLUS2}, }; VirtualStylus::VirtualStylus(unique_fd fd) : VirtualInputDevice(std::move(fd)), mIsStylusDown(false) {} VirtualStylus::~VirtualStylus() {} bool VirtualStylus::writeMotionEvent(int32_t toolType, int32_t action, int32_t locationX, int32_t locationY, int32_t pressure, int32_t tiltX, int32_t tiltY, std::chrono::nanoseconds eventTime) { auto actionIterator = VirtualTouchscreen::TOUCH_ACTION_MAPPING.find(action); if (actionIterator == VirtualTouchscreen::TOUCH_ACTION_MAPPING.end()) { ALOGE("Unsupported action passed for stylus: %d.", action); return false; } UinputAction uinputAction = actionIterator->second; auto toolTypeIterator = TOOL_TYPE_MAPPING.find(toolType); if (toolTypeIterator == TOOL_TYPE_MAPPING.end()) { ALOGE("Unsupported tool type passed for stylus: %d.", toolType); return false; } uint16_t tool = static_cast(toolTypeIterator->second); if (uinputAction == UinputAction::PRESS && !handleStylusDown(tool, eventTime)) { return false; } if (!mIsStylusDown) { ALOGE("Action UP or MOVE received with no prior action DOWN for stylus %d.", mFd.get()); return false; } if (uinputAction == UinputAction::RELEASE && !handleStylusUp(tool, eventTime)) { return false; } if (!writeInputEvent(EV_ABS, ABS_X, locationX, eventTime)) { ALOGE("Unsupported x-axis location passed for stylus: %d.", locationX); return false; } if (!writeInputEvent(EV_ABS, ABS_Y, locationY, eventTime)) { ALOGE("Unsupported y-axis location passed for stylus: %d.", locationY); return false; } if (!writeInputEvent(EV_ABS, ABS_TILT_X, tiltX, eventTime)) { ALOGE("Unsupported x-axis tilt passed for stylus: %d.", tiltX); return false; } if (!writeInputEvent(EV_ABS, ABS_TILT_Y, tiltY, eventTime)) { ALOGE("Unsupported y-axis tilt passed for stylus: %d.", tiltY); return false; } if (!writeInputEvent(EV_ABS, ABS_PRESSURE, pressure, eventTime)) { ALOGE("Unsupported pressure passed for stylus: %d.", pressure); return false; } if (!writeInputEvent(EV_SYN, SYN_REPORT, 0, eventTime)) { ALOGE("Failed to write SYN_REPORT for stylus motion event."); return false; } return true; } bool VirtualStylus::writeButtonEvent(int32_t androidButtonCode, int32_t androidAction, std::chrono::nanoseconds eventTime) { return writeEvKeyEvent(androidButtonCode, androidAction, BUTTON_CODE_MAPPING, VirtualMouse::BUTTON_ACTION_MAPPING, eventTime); } bool VirtualStylus::handleStylusDown(uint16_t tool, std::chrono::nanoseconds eventTime) { if (mIsStylusDown) { ALOGE("Repetitive action DOWN event received for a stylus that is already down."); return false; } if (!writeInputEvent(EV_KEY, tool, static_cast(UinputAction::PRESS), eventTime)) { ALOGE("Failed to write EV_KEY for stylus tool type: %u.", tool); return false; } if (!writeInputEvent(EV_KEY, BTN_TOUCH, static_cast(UinputAction::PRESS), eventTime)) { ALOGE("Failed to write BTN_TOUCH for stylus press."); return false; } mIsStylusDown = true; return true; } bool VirtualStylus::handleStylusUp(uint16_t tool, std::chrono::nanoseconds eventTime) { if (!writeInputEvent(EV_KEY, tool, static_cast(UinputAction::RELEASE), eventTime)) { ALOGE("Failed to write EV_KEY for stylus tool type: %u.", tool); return false; } if (!writeInputEvent(EV_KEY, BTN_TOUCH, static_cast(UinputAction::RELEASE), eventTime)) { ALOGE("Failed to write BTN_TOUCH for stylus release."); return false; } mIsStylusDown = false; return true; } // --- VirtualRotaryEncoder --- VirtualRotaryEncoder::VirtualRotaryEncoder(unique_fd fd) : VirtualInputDevice(std::move(fd)), mAccumulatedHighResScrollAmount(0) {} VirtualRotaryEncoder::~VirtualRotaryEncoder() {} bool VirtualRotaryEncoder::writeScrollEvent(float scrollAmount, std::chrono::nanoseconds eventTime) { if (!vd_flags::high_resolution_scroll()) { return writeInputEvent(EV_REL, REL_WHEEL, static_cast(scrollAmount), eventTime) && writeInputEvent(EV_SYN, SYN_REPORT, 0, eventTime); } const auto highResScrollAmount = static_cast(scrollAmount * kEvdevHighResScrollUnitsPerDetent); if (!writeInputEvent(EV_REL, REL_WHEEL_HI_RES, highResScrollAmount, eventTime)) { return false; } // According to evdev spec, a high-resolution scroll device needs to emit REL_WHEEL / REL_HWHEEL // events in addition to high-res scroll events. Regular scroll events can approximate high-res // scroll events, so we send a regular scroll event when the accumulated scroll motion reaches a // detent (single wheel click). mAccumulatedHighResScrollAmount += highResScrollAmount; const int32_t scroll = mAccumulatedHighResScrollAmount / kEvdevHighResScrollUnitsPerDetent; if (scroll != 0) { if (!writeInputEvent(EV_REL, REL_WHEEL, scroll, eventTime)) { return false; } mAccumulatedHighResScrollAmount %= kEvdevHighResScrollUnitsPerDetent; } return writeInputEvent(EV_SYN, SYN_REPORT, 0, eventTime); } } // namespace android