/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "RpcState" #include "RpcState.h" #include #include #include #include #include "Debug.h" #include "RpcWireFormat.h" #include "Utils.h" #include #include #include #ifdef __ANDROID__ #include #endif namespace android { using namespace android::binder::impl; using android::binder::borrowed_fd; using android::binder::unique_fd; #if RPC_FLAKE_PRONE void rpcMaybeWaitToFlake() { [[clang::no_destroy]] static std::random_device r; [[clang::no_destroy]] static RpcMutex m; unsigned num; { RpcMutexLockGuard lock(m); num = r(); } if (num % 10 == 0) usleep(num % 1000); } #endif static bool enableAncillaryFds(RpcSession::FileDescriptorTransportMode mode) { switch (mode) { case RpcSession::FileDescriptorTransportMode::NONE: return false; case RpcSession::FileDescriptorTransportMode::UNIX: case RpcSession::FileDescriptorTransportMode::TRUSTY: return true; } LOG_ALWAYS_FATAL("Invalid FileDescriptorTransportMode: %d", static_cast(mode)); } RpcState::RpcState() {} RpcState::~RpcState() {} status_t RpcState::onBinderLeaving(const sp& session, const sp& binder, uint64_t* outAddress) { bool isRemote = binder->remoteBinder(); bool isRpc = isRemote && binder->remoteBinder()->isRpcBinder(); if (isRpc && binder->remoteBinder()->getPrivateAccessor().rpcSession() != session) { // We need to be able to send instructions over the socket for how to // connect to a different server, and we also need to let the host // process know that this is happening. ALOGE("Cannot send binder from unrelated binder RPC session."); return INVALID_OPERATION; } if (isRemote && !isRpc) { // Without additional work, this would have the effect of using this // process to proxy calls from the socket over to the other process, and // it would make those calls look like they come from us (not over the // sockets). In order to make this work transparently like binder, we // would instead need to send instructions over the socket for how to // connect to the host process, and we also need to let the host process // know this was happening. ALOGE("Cannot send binder proxy %p over sockets", binder.get()); return INVALID_OPERATION; } RpcMutexLockGuard _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; // TODO(b/182939933): maybe move address out of BpBinder, and keep binder->address map // in RpcState for (auto& [addr, node] : mNodeForAddress) { if (binder == node.binder) { if (isRpc) { // check integrity of data structure uint64_t actualAddr = binder->remoteBinder()->getPrivateAccessor().rpcAddress(); LOG_ALWAYS_FATAL_IF(addr != actualAddr, "Address mismatch %" PRIu64 " vs %" PRIu64, addr, actualAddr); } node.timesSent++; node.sentRef = binder; // might already be set *outAddress = addr; return OK; } } LOG_ALWAYS_FATAL_IF(isRpc, "RPC binder must have known address at this point"); bool forServer = session->server() != nullptr; // arbitrary limit for maximum number of nodes in a process (otherwise we // might run out of addresses) if (mNodeForAddress.size() > 100000) { return NO_MEMORY; } while (true) { RpcWireAddress address{ .options = RPC_WIRE_ADDRESS_OPTION_CREATED, .address = mNextId, }; if (forServer) { address.options |= RPC_WIRE_ADDRESS_OPTION_FOR_SERVER; } // avoid ubsan abort if (mNextId >= std::numeric_limits::max()) { mNextId = 0; } else { mNextId++; } auto&& [it, inserted] = mNodeForAddress.insert({RpcWireAddress::toRaw(address), BinderNode{ .binder = binder, .sentRef = binder, .timesSent = 1, }}); if (inserted) { *outAddress = it->first; return OK; } } } status_t RpcState::onBinderEntering(const sp& session, uint64_t address, sp* out) { // ensure that: if we want to use addresses for something else in the future (for // instance, allowing transitive binder sends), that we don't accidentally // send those addresses to old server. Accidentally ignoring this in that // case and considering the binder to be recognized could cause this // process to accidentally proxy transactions for that binder. Of course, // if we communicate with a binder, it could always be proxying // information. However, we want to make sure that isn't done on accident // by a client. RpcWireAddress addr = RpcWireAddress::fromRaw(address); constexpr uint32_t kKnownOptions = RPC_WIRE_ADDRESS_OPTION_CREATED | RPC_WIRE_ADDRESS_OPTION_FOR_SERVER; if (addr.options & ~kKnownOptions) { ALOGE("Address is of an unknown type, rejecting: %" PRIu64, address); return BAD_VALUE; } RpcMutexLockGuard _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; if (auto it = mNodeForAddress.find(address); it != mNodeForAddress.end()) { *out = it->second.binder.promote(); // implicitly have strong RPC refcount, since we received this binder it->second.timesRecd++; return OK; } // we don't know about this binder, so the other side of the connection // should have created it. if ((addr.options & RPC_WIRE_ADDRESS_OPTION_FOR_SERVER) == !!session->server()) { ALOGE("Server received unrecognized address which we should own the creation of %" PRIu64, address); return BAD_VALUE; } auto&& [it, inserted] = mNodeForAddress.insert({address, BinderNode{}}); LOG_ALWAYS_FATAL_IF(!inserted, "Failed to insert binder when creating proxy"); // Currently, all binders are assumed to be part of the same session (no // device global binders in the RPC world). it->second.binder = *out = BpBinder::PrivateAccessor::create(session, it->first); it->second.timesRecd = 1; return OK; } status_t RpcState::flushExcessBinderRefs(const sp& session, uint64_t address, const sp& binder) { // We can flush all references when the binder is destroyed. No need to send // extra reference counting packets now. if (binder->remoteBinder()) return OK; RpcMutexUniqueLock _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; auto it = mNodeForAddress.find(address); LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Can't be deleted while we hold sp<>"); LOG_ALWAYS_FATAL_IF(it->second.binder != binder, "Caller of flushExcessBinderRefs using inconsistent arguments"); LOG_ALWAYS_FATAL_IF(it->second.timesSent <= 0, "Local binder must have been sent %p", binder.get()); // For a local binder, we only need to know that we sent it. Now that we // have an sp<> for this call, we don't need anything more. If the other // process is done with this binder, it needs to know we received the // refcount associated with this call, so we can acknowledge that we // received it. Once (or if) it has no other refcounts, it would reply with // its own decStrong so that it could be removed from this session. if (it->second.timesRecd != 0) { _l.unlock(); return session->sendDecStrongToTarget(address, 0); } return OK; } status_t RpcState::sendObituaries(const sp& session) { RpcMutexUniqueLock _l(mNodeMutex); // Gather strong pointers to all of the remote binders for this session so // we hold the strong references. remoteBinder() returns a raw pointer. // Send the obituaries and drop the strong pointers outside of the lock so // the destructors and the onBinderDied calls are not done while locked. std::vector> remoteBinders; for (const auto& [_, binderNode] : mNodeForAddress) { if (auto binder = binderNode.binder.promote()) { remoteBinders.push_back(std::move(binder)); } } _l.unlock(); for (const auto& binder : remoteBinders) { if (binder->remoteBinder() && binder->remoteBinder()->getPrivateAccessor().rpcSession() == session) { binder->remoteBinder()->sendObituary(); } } return OK; } size_t RpcState::countBinders() { RpcMutexLockGuard _l(mNodeMutex); return mNodeForAddress.size(); } void RpcState::dump() { RpcMutexLockGuard _l(mNodeMutex); dumpLocked(); } void RpcState::clear() { return clear(RpcMutexUniqueLock(mNodeMutex)); } void RpcState::clear(RpcMutexUniqueLock nodeLock) { if (mTerminated) { LOG_ALWAYS_FATAL_IF(!mNodeForAddress.empty(), "New state should be impossible after terminating!"); return; } mTerminated = true; if (SHOULD_LOG_RPC_DETAIL) { ALOGE("RpcState::clear()"); dumpLocked(); } // invariants for (auto& [address, node] : mNodeForAddress) { bool guaranteedHaveBinder = node.timesSent > 0; if (guaranteedHaveBinder) { LOG_ALWAYS_FATAL_IF(node.sentRef == nullptr, "Binder expected to be owned with address: %" PRIu64 " %s", address, node.toString().c_str()); } } // if the destructor of a binder object makes another RPC call, then calling // decStrong could deadlock. So, we must hold onto these binders until // mNodeMutex is no longer taken. auto temp = std::move(mNodeForAddress); mNodeForAddress.clear(); // RpcState isn't reusable, but for future/explicit nodeLock.unlock(); temp.clear(); // explicit } void RpcState::dumpLocked() { ALOGE("DUMP OF RpcState %p", this); ALOGE("DUMP OF RpcState (%zu nodes)", mNodeForAddress.size()); for (const auto& [address, node] : mNodeForAddress) { ALOGE("- address: %" PRIu64 " %s", address, node.toString().c_str()); } ALOGE("END DUMP OF RpcState"); } std::string RpcState::BinderNode::toString() const { sp strongBinder = this->binder.promote(); const char* desc; if (strongBinder) { if (strongBinder->remoteBinder()) { if (strongBinder->remoteBinder()->isRpcBinder()) { desc = "(rpc binder proxy)"; } else { desc = "(binder proxy)"; } } else { desc = "(local binder)"; } } else { desc = "(not promotable)"; } std::stringstream ss; ss << "node{" << intptr_t(this->binder.unsafe_get()) << " times sent: " << this->timesSent << " times recd: " << this->timesRecd << " type: " << desc << "}"; return ss.str(); } RpcState::CommandData::CommandData(size_t size) : mSize(size) { // The maximum size for regular binder is 1MB for all concurrent // transactions. A very small proportion of transactions are even // larger than a page, but we need to avoid allocating too much // data on behalf of an arbitrary client, or we could risk being in // a position where a single additional allocation could run out of // memory. // // Note, this limit may not reflect the total amount of data allocated for a // transaction (in some cases, additional fixed size amounts are added), // though for rough consistency, we should avoid cases where this data type // is used for multiple dynamic allocations for a single transaction. constexpr size_t kMaxTransactionAllocation = 100 * 1000; if (size == 0) return; if (size > kMaxTransactionAllocation) { ALOGW("Transaction requested too much data allocation %zu", size); return; } mData.reset(new (std::nothrow) uint8_t[size]); } status_t RpcState::rpcSend(const sp& connection, const sp& session, const char* what, iovec* iovs, int niovs, const std::optional>& altPoll, const std::vector>* ancillaryFds) { for (int i = 0; i < niovs; i++) { LOG_RPC_DETAIL("Sending %s (part %d of %d) on RpcTransport %p: %s", what, i + 1, niovs, connection->rpcTransport.get(), HexString(iovs[i].iov_base, iovs[i].iov_len).c_str()); } if (status_t status = connection->rpcTransport->interruptableWriteFully(session->mShutdownTrigger.get(), iovs, niovs, altPoll, ancillaryFds); status != OK) { LOG_RPC_DETAIL("Failed to write %s (%d iovs) on RpcTransport %p, error: %s", what, niovs, connection->rpcTransport.get(), statusToString(status).c_str()); (void)session->shutdownAndWait(false); return status; } return OK; } status_t RpcState::rpcRec(const sp& connection, const sp& session, const char* what, iovec* iovs, int niovs, std::vector>* ancillaryFds) { if (status_t status = connection->rpcTransport->interruptableReadFully(session->mShutdownTrigger.get(), iovs, niovs, std::nullopt, ancillaryFds); status != OK) { LOG_RPC_DETAIL("Failed to read %s (%d iovs) on RpcTransport %p, error: %s", what, niovs, connection->rpcTransport.get(), statusToString(status).c_str()); (void)session->shutdownAndWait(false); return status; } for (int i = 0; i < niovs; i++) { LOG_RPC_DETAIL("Received %s (part %d of %d) on RpcTransport %p: %s", what, i + 1, niovs, connection->rpcTransport.get(), HexString(iovs[i].iov_base, iovs[i].iov_len).c_str()); } return OK; } bool RpcState::validateProtocolVersion(uint32_t version) { if (version == RPC_WIRE_PROTOCOL_VERSION_EXPERIMENTAL) { #if defined(__ANDROID__) char codename[PROPERTY_VALUE_MAX]; property_get("ro.build.version.codename", codename, ""); if (!strcmp(codename, "REL")) { ALOGE("Cannot use experimental RPC binder protocol in a release configuration."); return false; } #else ALOGE("Cannot use experimental RPC binder protocol outside of Android."); return false; #endif } else if (version >= RPC_WIRE_PROTOCOL_VERSION_NEXT) { ALOGE("Cannot use RPC binder protocol version %u which is unknown (current protocol " "version " "is %u).", version, RPC_WIRE_PROTOCOL_VERSION); return false; } return true; } status_t RpcState::readNewSessionResponse(const sp& connection, const sp& session, uint32_t* version) { RpcNewSessionResponse response; iovec iov{&response, sizeof(response)}; if (status_t status = rpcRec(connection, session, "new session response", &iov, 1, nullptr); status != OK) { return status; } *version = response.version; return OK; } status_t RpcState::sendConnectionInit(const sp& connection, const sp& session) { RpcOutgoingConnectionInit init{ .msg = RPC_CONNECTION_INIT_OKAY, }; iovec iov{&init, sizeof(init)}; return rpcSend(connection, session, "connection init", &iov, 1, std::nullopt); } status_t RpcState::readConnectionInit(const sp& connection, const sp& session) { RpcOutgoingConnectionInit init; iovec iov{&init, sizeof(init)}; if (status_t status = rpcRec(connection, session, "connection init", &iov, 1, nullptr); status != OK) return status; static_assert(sizeof(init.msg) == sizeof(RPC_CONNECTION_INIT_OKAY)); if (0 != strncmp(init.msg, RPC_CONNECTION_INIT_OKAY, sizeof(init.msg))) { ALOGE("Connection init message unrecognized %.*s", static_cast(sizeof(init.msg)), init.msg); return BAD_VALUE; } return OK; } sp RpcState::getRootObject(const sp& connection, const sp& session) { Parcel data; data.markForRpc(session); Parcel reply; status_t status = transactAddress(connection, 0, RPC_SPECIAL_TRANSACT_GET_ROOT, data, session, &reply, 0); if (status != OK) { ALOGE("Error getting root object: %s", statusToString(status).c_str()); return nullptr; } return reply.readStrongBinder(); } status_t RpcState::getMaxThreads(const sp& connection, const sp& session, size_t* maxThreadsOut) { Parcel data; data.markForRpc(session); Parcel reply; status_t status = transactAddress(connection, 0, RPC_SPECIAL_TRANSACT_GET_MAX_THREADS, data, session, &reply, 0); if (status != OK) { ALOGE("Error getting max threads: %s", statusToString(status).c_str()); return status; } int32_t maxThreads; status = reply.readInt32(&maxThreads); if (status != OK) return status; if (maxThreads <= 0) { ALOGE("Error invalid max maxThreads: %d", maxThreads); return BAD_VALUE; } *maxThreadsOut = maxThreads; return OK; } status_t RpcState::getSessionId(const sp& connection, const sp& session, std::vector* sessionIdOut) { Parcel data; data.markForRpc(session); Parcel reply; status_t status = transactAddress(connection, 0, RPC_SPECIAL_TRANSACT_GET_SESSION_ID, data, session, &reply, 0); if (status != OK) { ALOGE("Error getting session ID: %s", statusToString(status).c_str()); return status; } return reply.readByteVector(sessionIdOut); } status_t RpcState::transact(const sp& connection, const sp& binder, uint32_t code, const Parcel& data, const sp& session, Parcel* reply, uint32_t flags) { std::string errorMsg; if (status_t status = validateParcel(session, data, &errorMsg); status != OK) { ALOGE("Refusing to send RPC on binder %p code %" PRIu32 ": Parcel %p failed validation: %s", binder.get(), code, &data, errorMsg.c_str()); return status; } uint64_t address; if (status_t status = onBinderLeaving(session, binder, &address); status != OK) return status; return transactAddress(connection, address, code, data, session, reply, flags); } status_t RpcState::transactAddress(const sp& connection, uint64_t address, uint32_t code, const Parcel& data, const sp& session, Parcel* reply, uint32_t flags) { LOG_ALWAYS_FATAL_IF(!data.isForRpc()); LOG_ALWAYS_FATAL_IF(data.objectsCount() != 0); uint64_t asyncNumber = 0; if (address != 0) { RpcMutexUniqueLock _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races auto it = mNodeForAddress.find(address); LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending transact on unknown address %" PRIu64, address); if (flags & IBinder::FLAG_ONEWAY) { asyncNumber = it->second.asyncNumber; if (!nodeProgressAsyncNumber(&it->second)) { _l.unlock(); (void)session->shutdownAndWait(false); return DEAD_OBJECT; } } } auto* rpcFields = data.maybeRpcFields(); LOG_ALWAYS_FATAL_IF(rpcFields == nullptr); Span objectTableSpan = Span{rpcFields->mObjectPositions.data(), rpcFields->mObjectPositions.size()}; uint32_t bodySize; LOG_ALWAYS_FATAL_IF(__builtin_add_overflow(sizeof(RpcWireTransaction), data.dataSize(), &bodySize) || __builtin_add_overflow(objectTableSpan.byteSize(), bodySize, &bodySize), "Too much data %zu", data.dataSize()); RpcWireHeader command{ .command = RPC_COMMAND_TRANSACT, .bodySize = bodySize, }; RpcWireTransaction transaction{ .address = RpcWireAddress::fromRaw(address), .code = code, .flags = flags, .asyncNumber = asyncNumber, // bodySize didn't overflow => this cast is safe .parcelDataSize = static_cast(data.dataSize()), }; // Oneway calls have no sync point, so if many are sent before, whether this // is a twoway or oneway transaction, they may have filled up the socket. // So, make sure we drain them before polling constexpr size_t kWaitMaxUs = 1000000; constexpr size_t kWaitLogUs = 10000; size_t waitUs = 0; iovec iovs[]{ {&command, sizeof(RpcWireHeader)}, {&transaction, sizeof(RpcWireTransaction)}, {const_cast(data.data()), data.dataSize()}, objectTableSpan.toIovec(), }; auto altPoll = [&] { if (waitUs > kWaitLogUs) { ALOGE("Cannot send command, trying to process pending refcounts. Waiting " "%zuus. Too many oneway calls?", waitUs); } if (waitUs > 0) { usleep(waitUs); waitUs = std::min(kWaitMaxUs, waitUs * 2); } else { waitUs = 1; } return drainCommands(connection, session, CommandType::CONTROL_ONLY); }; if (status_t status = rpcSend(connection, session, "transaction", iovs, countof(iovs), std::ref(altPoll), rpcFields->mFds.get()); status != OK) { // rpcSend calls shutdownAndWait, so all refcounts should be reset. If we ever tolerate // errors here, then we may need to undo the binder-sent counts for the transaction as // well as for the binder objects in the Parcel return status; } if (flags & IBinder::FLAG_ONEWAY) { LOG_RPC_DETAIL("Oneway command, so no longer waiting on RpcTransport %p", connection->rpcTransport.get()); // Do not wait on result. return OK; } LOG_ALWAYS_FATAL_IF(reply == nullptr, "Reply parcel must be used for synchronous transaction."); return waitForReply(connection, session, reply); } static void cleanup_reply_data(const uint8_t* data, size_t dataSize, const binder_size_t* objects, size_t objectsCount) { delete[] const_cast(data); (void)dataSize; LOG_ALWAYS_FATAL_IF(objects != nullptr); (void)objectsCount; } status_t RpcState::waitForReply(const sp& connection, const sp& session, Parcel* reply) { std::vector> ancillaryFds; RpcWireHeader command; while (true) { iovec iov{&command, sizeof(command)}; if (status_t status = rpcRec(connection, session, "command header (for reply)", &iov, 1, enableAncillaryFds(session->getFileDescriptorTransportMode()) ? &ancillaryFds : nullptr); status != OK) return status; if (command.command == RPC_COMMAND_REPLY) break; if (status_t status = processCommand(connection, session, command, CommandType::ANY, std::move(ancillaryFds)); status != OK) return status; // Reset to avoid spurious use-after-move warning from clang-tidy. ancillaryFds = decltype(ancillaryFds)(); } const size_t rpcReplyWireSize = RpcWireReply::wireSize(session->getProtocolVersion().value()); if (command.bodySize < rpcReplyWireSize) { ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireReply. Terminating!", sizeof(RpcWireReply), command.bodySize); (void)session->shutdownAndWait(false); return BAD_VALUE; } RpcWireReply rpcReply; memset(&rpcReply, 0, sizeof(RpcWireReply)); // zero because of potential short read CommandData data(command.bodySize - rpcReplyWireSize); if (!data.valid()) return NO_MEMORY; iovec iovs[]{ {&rpcReply, rpcReplyWireSize}, {data.data(), data.size()}, }; if (status_t status = rpcRec(connection, session, "reply body", iovs, countof(iovs), nullptr); status != OK) return status; if (rpcReply.status != OK) return rpcReply.status; Span parcelSpan = {data.data(), data.size()}; Span objectTableSpan; if (session->getProtocolVersion().value() >= RPC_WIRE_PROTOCOL_VERSION_RPC_HEADER_FEATURE_EXPLICIT_PARCEL_SIZE) { std::optional> objectTableBytes = parcelSpan.splitOff(rpcReply.parcelDataSize); if (!objectTableBytes.has_value()) { ALOGE("Parcel size larger than available bytes: %" PRId32 " vs %zu. Terminating!", rpcReply.parcelDataSize, parcelSpan.byteSize()); (void)session->shutdownAndWait(false); return BAD_VALUE; } std::optional> maybeSpan = objectTableBytes->reinterpret(); if (!maybeSpan.has_value()) { ALOGE("Bad object table size inferred from RpcWireReply. Saw bodySize=%" PRId32 " sizeofHeader=%zu parcelSize=%" PRId32 " objectTableBytesSize=%zu. Terminating!", command.bodySize, rpcReplyWireSize, rpcReply.parcelDataSize, objectTableBytes->size); return BAD_VALUE; } objectTableSpan = *maybeSpan; } data.release(); return reply->rpcSetDataReference(session, parcelSpan.data, parcelSpan.size, objectTableSpan.data, objectTableSpan.size, std::move(ancillaryFds), cleanup_reply_data); } status_t RpcState::sendDecStrongToTarget(const sp& connection, const sp& session, uint64_t addr, size_t target) { RpcDecStrong body = { .address = RpcWireAddress::fromRaw(addr), }; { RpcMutexUniqueLock _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races auto it = mNodeForAddress.find(addr); LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending dec strong on unknown address %" PRIu64, addr); LOG_ALWAYS_FATAL_IF(it->second.timesRecd < target, "Can't dec count of %zu to %zu.", it->second.timesRecd, target); // typically this happens when multiple threads send dec refs at the // same time - the transactions will get combined automatically if (it->second.timesRecd == target) return OK; body.amount = it->second.timesRecd - target; it->second.timesRecd = target; LOG_ALWAYS_FATAL_IF(nullptr != tryEraseNode(session, std::move(_l), it), "Bad state. RpcState shouldn't own received binder"); // LOCK ALREADY RELEASED } RpcWireHeader cmd = { .command = RPC_COMMAND_DEC_STRONG, .bodySize = sizeof(RpcDecStrong), }; iovec iovs[]{{&cmd, sizeof(cmd)}, {&body, sizeof(body)}}; return rpcSend(connection, session, "dec ref", iovs, countof(iovs), std::nullopt); } status_t RpcState::getAndExecuteCommand(const sp& connection, const sp& session, CommandType type) { LOG_RPC_DETAIL("getAndExecuteCommand on RpcTransport %p", connection->rpcTransport.get()); std::vector> ancillaryFds; RpcWireHeader command; iovec iov{&command, sizeof(command)}; if (status_t status = rpcRec(connection, session, "command header (for server)", &iov, 1, enableAncillaryFds(session->getFileDescriptorTransportMode()) ? &ancillaryFds : nullptr); status != OK) return status; return processCommand(connection, session, command, type, std::move(ancillaryFds)); } status_t RpcState::drainCommands(const sp& connection, const sp& session, CommandType type) { while (true) { status_t status = connection->rpcTransport->pollRead(); if (status == WOULD_BLOCK) break; if (status != OK) return status; status = getAndExecuteCommand(connection, session, type); if (status != OK) return status; } return OK; } status_t RpcState::processCommand( const sp& connection, const sp& session, const RpcWireHeader& command, CommandType type, std::vector>&& ancillaryFds) { #ifdef BINDER_WITH_KERNEL_IPC IPCThreadState* kernelBinderState = IPCThreadState::selfOrNull(); IPCThreadState::SpGuard spGuard{ .address = __builtin_frame_address(0), .context = "processing binder RPC command (where RpcServer::setPerSessionRootObject is " "used to distinguish callers)", }; const IPCThreadState::SpGuard* origGuard; if (kernelBinderState != nullptr) { origGuard = kernelBinderState->pushGetCallingSpGuard(&spGuard); } auto guardUnguard = make_scope_guard([&]() { if (kernelBinderState != nullptr) { kernelBinderState->restoreGetCallingSpGuard(origGuard); } }); #endif // BINDER_WITH_KERNEL_IPC switch (command.command) { case RPC_COMMAND_TRANSACT: if (type != CommandType::ANY) return BAD_TYPE; return processTransact(connection, session, command, std::move(ancillaryFds)); case RPC_COMMAND_DEC_STRONG: return processDecStrong(connection, session, command); } // We should always know the version of the opposing side, and since the // RPC-binder-level wire protocol is not self synchronizing, we have no way // to understand where the current command ends and the next one begins. We // also can't consider it a fatal error because this would allow any client // to kill us, so ending the session for misbehaving client. ALOGE("Unknown RPC command %d - terminating session", command.command); (void)session->shutdownAndWait(false); return DEAD_OBJECT; } status_t RpcState::processTransact( const sp& connection, const sp& session, const RpcWireHeader& command, std::vector>&& ancillaryFds) { LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_TRANSACT, "command: %d", command.command); CommandData transactionData(command.bodySize); if (!transactionData.valid()) { return NO_MEMORY; } iovec iov{transactionData.data(), transactionData.size()}; if (status_t status = rpcRec(connection, session, "transaction body", &iov, 1, nullptr); status != OK) return status; return processTransactInternal(connection, session, std::move(transactionData), std::move(ancillaryFds)); } static void do_nothing_to_transact_data(const uint8_t* data, size_t dataSize, const binder_size_t* objects, size_t objectsCount) { (void)data; (void)dataSize; (void)objects; (void)objectsCount; } status_t RpcState::processTransactInternal( const sp& connection, const sp& session, CommandData transactionData, std::vector>&& ancillaryFds) { // for 'recursive' calls to this, we have already read and processed the // binder from the transaction data and taken reference counts into account, // so it is cached here. sp target; processTransactInternalTailCall: if (transactionData.size() < sizeof(RpcWireTransaction)) { ALOGE("Expecting %zu but got %zu bytes for RpcWireTransaction. Terminating!", sizeof(RpcWireTransaction), transactionData.size()); (void)session->shutdownAndWait(false); return BAD_VALUE; } RpcWireTransaction* transaction = reinterpret_cast(transactionData.data()); uint64_t addr = RpcWireAddress::toRaw(transaction->address); bool oneway = transaction->flags & IBinder::FLAG_ONEWAY; status_t replyStatus = OK; if (addr != 0) { if (!target) { replyStatus = onBinderEntering(session, addr, &target); } if (replyStatus != OK) { // do nothing } else if (target == nullptr) { // This can happen if the binder is remote in this process, and // another thread has called the last decStrong on this binder. // However, for local binders, it indicates a misbehaving client // (any binder which is being transacted on should be holding a // strong ref count), so in either case, terminating the // session. ALOGE("While transacting, binder has been deleted at address %" PRIu64 ". Terminating!", addr); (void)session->shutdownAndWait(false); replyStatus = BAD_VALUE; } else if (target->localBinder() == nullptr) { ALOGE("Unknown binder address or non-local binder, not address %" PRIu64 ". Terminating!", addr); (void)session->shutdownAndWait(false); replyStatus = BAD_VALUE; } else if (oneway) { RpcMutexUniqueLock _l(mNodeMutex); auto it = mNodeForAddress.find(addr); if (it->second.binder.promote() != target) { ALOGE("Binder became invalid during transaction. Bad client? %" PRIu64, addr); replyStatus = BAD_VALUE; } else if (transaction->asyncNumber != it->second.asyncNumber) { // we need to process some other asynchronous transaction // first it->second.asyncTodo.push(BinderNode::AsyncTodo{ .ref = target, .data = std::move(transactionData), .ancillaryFds = std::move(ancillaryFds), .asyncNumber = transaction->asyncNumber, }); size_t numPending = it->second.asyncTodo.size(); LOG_RPC_DETAIL("Enqueuing %" PRIu64 " on %" PRIu64 " (%zu pending)", transaction->asyncNumber, addr, numPending); constexpr size_t kArbitraryOnewayCallTerminateLevel = 10000; constexpr size_t kArbitraryOnewayCallWarnLevel = 1000; constexpr size_t kArbitraryOnewayCallWarnPer = 1000; if (numPending >= kArbitraryOnewayCallWarnLevel) { if (numPending >= kArbitraryOnewayCallTerminateLevel) { ALOGE("WARNING: %zu pending oneway transactions. Terminating!", numPending); _l.unlock(); (void)session->shutdownAndWait(false); return FAILED_TRANSACTION; } if (numPending % kArbitraryOnewayCallWarnPer == 0) { ALOGW("Warning: many oneway transactions built up on %p (%zu)", target.get(), numPending); } } return OK; } } } Parcel reply; reply.markForRpc(session); if (replyStatus == OK) { Span parcelSpan = {transaction->data, transactionData.size() - offsetof(RpcWireTransaction, data)}; Span objectTableSpan; if (session->getProtocolVersion().value() >= RPC_WIRE_PROTOCOL_VERSION_RPC_HEADER_FEATURE_EXPLICIT_PARCEL_SIZE) { std::optional> objectTableBytes = parcelSpan.splitOff(transaction->parcelDataSize); if (!objectTableBytes.has_value()) { ALOGE("Parcel size (%" PRId32 ") greater than available bytes (%zu). Terminating!", transaction->parcelDataSize, parcelSpan.byteSize()); (void)session->shutdownAndWait(false); return BAD_VALUE; } std::optional> maybeSpan = objectTableBytes->reinterpret(); if (!maybeSpan.has_value()) { ALOGE("Bad object table size inferred from RpcWireTransaction. Saw bodySize=%zu " "sizeofHeader=%zu parcelSize=%" PRId32 " objectTableBytesSize=%zu. Terminating!", transactionData.size(), sizeof(RpcWireTransaction), transaction->parcelDataSize, objectTableBytes->size); return BAD_VALUE; } objectTableSpan = *maybeSpan; } Parcel data; // transaction->data is owned by this function. Parcel borrows this data and // only holds onto it for the duration of this function call. Parcel will be // deleted before the 'transactionData' object. replyStatus = data.rpcSetDataReference(session, parcelSpan.data, parcelSpan.size, objectTableSpan.data, objectTableSpan.size, std::move(ancillaryFds), do_nothing_to_transact_data); // Reset to avoid spurious use-after-move warning from clang-tidy. ancillaryFds = std::remove_reference::type(); if (replyStatus == OK) { if (target) { bool origAllowNested = connection->allowNested; connection->allowNested = !oneway; replyStatus = target->transact(transaction->code, data, &reply, transaction->flags); connection->allowNested = origAllowNested; } else { LOG_RPC_DETAIL("Got special transaction %u", transaction->code); switch (transaction->code) { case RPC_SPECIAL_TRANSACT_GET_MAX_THREADS: { replyStatus = reply.writeInt32(session->getMaxIncomingThreads()); break; } case RPC_SPECIAL_TRANSACT_GET_SESSION_ID: { // for client connections, this should always report the value // originally returned from the server, so this is asserting // that it exists replyStatus = reply.writeByteVector(session->mId); break; } default: { sp server = session->server(); if (server) { switch (transaction->code) { case RPC_SPECIAL_TRANSACT_GET_ROOT: { sp root = session->mSessionSpecificRootObject ?: server->getRootObject(); replyStatus = reply.writeStrongBinder(root); break; } default: { replyStatus = UNKNOWN_TRANSACTION; } } } else { ALOGE("Special command sent, but no server object attached."); } } } } } } if (oneway) { if (replyStatus != OK) { ALOGW("Oneway call failed with error: %d", replyStatus); } LOG_RPC_DETAIL("Processed async transaction %" PRIu64 " on %" PRIu64, transaction->asyncNumber, addr); // Check to see if there is another asynchronous transaction to process. // This behavior differs from binder behavior, since in the binder // driver, asynchronous transactions will be processed after existing // pending binder transactions on the queue. The downside of this is // that asynchronous transactions can be drowned out by synchronous // transactions. However, we have no easy way to queue these // transactions after the synchronous transactions we may want to read // from the wire. So, in socket binder here, we have the opposite // downside: asynchronous transactions may drown out synchronous // transactions. { RpcMutexUniqueLock _l(mNodeMutex); auto it = mNodeForAddress.find(addr); // last refcount dropped after this transaction happened if (it == mNodeForAddress.end()) return OK; if (!nodeProgressAsyncNumber(&it->second)) { _l.unlock(); (void)session->shutdownAndWait(false); return DEAD_OBJECT; } if (it->second.asyncTodo.size() != 0 && it->second.asyncTodo.top().asyncNumber == it->second.asyncNumber) { LOG_RPC_DETAIL("Found next async transaction %" PRIu64 " on %" PRIu64, it->second.asyncNumber, addr); // justification for const_cast (consider avoiding priority_queue): // - AsyncTodo operator< doesn't depend on 'data' or 'ref' objects // - gotta go fast auto& todo = const_cast(it->second.asyncTodo.top()); // reset up arguments transactionData = std::move(todo.data); ancillaryFds = std::move(todo.ancillaryFds); LOG_ALWAYS_FATAL_IF(target != todo.ref, "async list should be associated with a binder"); it->second.asyncTodo.pop(); goto processTransactInternalTailCall; } } // done processing all the async commands on this binder that we can, so // write decstrongs on the binder if (addr != 0 && replyStatus == OK) { return flushExcessBinderRefs(session, addr, target); } return OK; } // Binder refs are flushed for oneway calls only after all calls which are // built up are executed. Otherwise, they fill up the binder buffer. if (addr != 0 && replyStatus == OK) { replyStatus = flushExcessBinderRefs(session, addr, target); } std::string errorMsg; if (status_t status = validateParcel(session, reply, &errorMsg); status != OK) { ALOGE("Reply Parcel failed validation: %s", errorMsg.c_str()); // Forward the error to the client of the transaction. reply.freeData(); reply.markForRpc(session); replyStatus = status; } auto* rpcFields = reply.maybeRpcFields(); LOG_ALWAYS_FATAL_IF(rpcFields == nullptr); const size_t rpcReplyWireSize = RpcWireReply::wireSize(session->getProtocolVersion().value()); Span objectTableSpan = Span{rpcFields->mObjectPositions.data(), rpcFields->mObjectPositions.size()}; uint32_t bodySize; LOG_ALWAYS_FATAL_IF(__builtin_add_overflow(rpcReplyWireSize, reply.dataSize(), &bodySize) || __builtin_add_overflow(objectTableSpan.byteSize(), bodySize, &bodySize), "Too much data for reply %zu", reply.dataSize()); RpcWireHeader cmdReply{ .command = RPC_COMMAND_REPLY, .bodySize = bodySize, }; RpcWireReply rpcReply{ .status = replyStatus, // NOTE: Not necessarily written to socket depending on session // version. // NOTE: bodySize didn't overflow => this cast is safe .parcelDataSize = static_cast(reply.dataSize()), .reserved = {0, 0, 0}, }; iovec iovs[]{ {&cmdReply, sizeof(RpcWireHeader)}, {&rpcReply, rpcReplyWireSize}, {const_cast(reply.data()), reply.dataSize()}, objectTableSpan.toIovec(), }; return rpcSend(connection, session, "reply", iovs, countof(iovs), std::nullopt, rpcFields->mFds.get()); } status_t RpcState::processDecStrong(const sp& connection, const sp& session, const RpcWireHeader& command) { LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_DEC_STRONG, "command: %d", command.command); if (command.bodySize != sizeof(RpcDecStrong)) { ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcDecStrong. Terminating!", sizeof(RpcDecStrong), command.bodySize); (void)session->shutdownAndWait(false); return BAD_VALUE; } RpcDecStrong body; iovec iov{&body, sizeof(RpcDecStrong)}; if (status_t status = rpcRec(connection, session, "dec ref body", &iov, 1, nullptr); status != OK) return status; uint64_t addr = RpcWireAddress::toRaw(body.address); RpcMutexUniqueLock _l(mNodeMutex); auto it = mNodeForAddress.find(addr); if (it == mNodeForAddress.end()) { ALOGE("Unknown binder address %" PRIu64 " for dec strong.", addr); return OK; } sp target = it->second.binder.promote(); if (target == nullptr) { ALOGE("While requesting dec strong, binder has been deleted at address %" PRIu64 ". Terminating!", addr); _l.unlock(); (void)session->shutdownAndWait(false); return BAD_VALUE; } if (it->second.timesSent < body.amount) { ALOGE("Record of sending binder %zu times, but requested decStrong for %" PRIu64 " of %u", it->second.timesSent, addr, body.amount); return OK; } LOG_ALWAYS_FATAL_IF(it->second.sentRef == nullptr, "Inconsistent state, lost ref for %" PRIu64, addr); LOG_RPC_DETAIL("Processing dec strong of %" PRIu64 " by %u from %zu", addr, body.amount, it->second.timesSent); it->second.timesSent -= body.amount; sp tempHold = tryEraseNode(session, std::move(_l), it); // LOCK ALREADY RELEASED tempHold = nullptr; // destructor may make binder calls on this session return OK; } status_t RpcState::validateParcel(const sp& session, const Parcel& parcel, std::string* errorMsg) { auto* rpcFields = parcel.maybeRpcFields(); if (rpcFields == nullptr) { *errorMsg = "Parcel not crafted for RPC call"; return BAD_TYPE; } if (rpcFields->mSession != session) { *errorMsg = "Parcel's session doesn't match"; return BAD_TYPE; } uint32_t protocolVersion = session->getProtocolVersion().value(); if (protocolVersion < RPC_WIRE_PROTOCOL_VERSION_RPC_HEADER_FEATURE_EXPLICIT_PARCEL_SIZE && !rpcFields->mObjectPositions.empty()) { std::stringstream ss; ss << "Parcel has attached objects but the session's protocol version (" << protocolVersion << ") is too old, must be at least " << RPC_WIRE_PROTOCOL_VERSION_RPC_HEADER_FEATURE_EXPLICIT_PARCEL_SIZE; *errorMsg = ss.str(); return BAD_VALUE; } if (rpcFields->mFds && !rpcFields->mFds->empty()) { switch (session->getFileDescriptorTransportMode()) { case RpcSession::FileDescriptorTransportMode::NONE: *errorMsg = "Parcel has file descriptors, but no file descriptor transport is enabled"; return FDS_NOT_ALLOWED; case RpcSession::FileDescriptorTransportMode::UNIX: { constexpr size_t kMaxFdsPerMsg = 253; if (rpcFields->mFds->size() > kMaxFdsPerMsg) { std::stringstream ss; ss << "Too many file descriptors in Parcel for unix domain socket: " << rpcFields->mFds->size() << " (max is " << kMaxFdsPerMsg << ")"; *errorMsg = ss.str(); return BAD_VALUE; } break; } case RpcSession::FileDescriptorTransportMode::TRUSTY: { // Keep this in sync with trusty_ipc.h!!! // We could import that file here on Trusty, but it's not // available on Android constexpr size_t kMaxFdsPerMsg = 8; if (rpcFields->mFds->size() > kMaxFdsPerMsg) { std::stringstream ss; ss << "Too many file descriptors in Parcel for Trusty IPC connection: " << rpcFields->mFds->size() << " (max is " << kMaxFdsPerMsg << ")"; *errorMsg = ss.str(); return BAD_VALUE; } break; } } } return OK; } sp RpcState::tryEraseNode(const sp& session, RpcMutexUniqueLock nodeLock, std::map::iterator& it) { bool shouldShutdown = false; sp ref; if (it->second.timesSent == 0) { ref = std::move(it->second.sentRef); if (it->second.timesRecd == 0) { LOG_ALWAYS_FATAL_IF(!it->second.asyncTodo.empty(), "Can't delete binder w/ pending async transactions"); mNodeForAddress.erase(it); if (mNodeForAddress.size() == 0) { shouldShutdown = true; } } } // If we shutdown, prevent RpcState from being re-used. This prevents another // thread from getting the root object again. if (shouldShutdown) { clear(std::move(nodeLock)); } else { nodeLock.unlock(); // explicit } // LOCK IS RELEASED if (shouldShutdown) { ALOGI("RpcState has no binders left, so triggering shutdown..."); (void)session->shutdownAndWait(false); } return ref; } bool RpcState::nodeProgressAsyncNumber(BinderNode* node) { // 2**64 =~ 10**19 =~ 1000 transactions per second for 585 million years to // a single binder if (node->asyncNumber >= std::numeric_limitsasyncNumber)>::max()) { ALOGE("Out of async transaction IDs. Terminating"); return false; } node->asyncNumber++; return true; } } // namespace android