/* ** ** Copyright 2012, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "AudioFlinger" //#define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_AUDIO #include "MmapTracks.h" #include "PlaybackTracks.h" #include "RecordTracks.h" #include "Client.h" #include "IAfEffect.h" #include "IAfThread.h" #include "ResamplerBufferProvider.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include // ---------------------------------------------------------------------------- // Note: the following macro is used for extremely verbose logging message. In // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to // 0; but one side effect of this is to turn all LOGV's as well. Some messages // are so verbose that we want to suppress them even when we have ALOG_ASSERT // turned on. Do not uncomment the #def below unless you really know what you // are doing and want to see all of the extremely verbose messages. //#define VERY_VERY_VERBOSE_LOGGING #ifdef VERY_VERY_VERBOSE_LOGGING #define ALOGVV ALOGV #else #define ALOGVV(a...) do { } while(0) #endif // TODO: Remove when this is put into AidlConversionUtil.h #define VALUE_OR_RETURN_BINDER_STATUS(x) \ ({ \ auto _tmp = (x); \ if (!_tmp.ok()) return ::android::aidl_utils::binderStatusFromStatusT(_tmp.error()); \ std::move(_tmp.value()); \ }) namespace android { using ::android::aidl_utils::binderStatusFromStatusT; using binder::Status; using content::AttributionSourceState; using media::VolumeShaper; // ---------------------------------------------------------------------------- // TrackBase // ---------------------------------------------------------------------------- #undef LOG_TAG #define LOG_TAG "AF::TrackBase" static volatile int32_t nextTrackId = 55; // TrackBase constructor must be called with AudioFlinger::mLock held TrackBase::TrackBase( IAfThreadBase *thread, const sp& client, const audio_attributes_t& attr, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, void *buffer, size_t bufferSize, audio_session_t sessionId, pid_t creatorPid, uid_t clientUid, bool isOut, const alloc_type alloc, track_type type, audio_port_handle_t portId, std::string metricsId) : mThread(thread), mAllocType(alloc), mClient(client), mCblk(NULL), // mBuffer, mBufferSize mState(IDLE), mAttr(attr), mSampleRate(sampleRate), mFormat(format), mChannelMask(channelMask), mChannelCount(isOut ? audio_channel_count_from_out_mask(channelMask) : audio_channel_count_from_in_mask(channelMask)), mFrameSize(audio_bytes_per_frame(mChannelCount, format)), mFrameCount(frameCount), mSessionId(sessionId), mIsOut(isOut), mId(android_atomic_inc(&nextTrackId)), mTerminated(false), mType(type), mThreadIoHandle(thread ? thread->id() : AUDIO_IO_HANDLE_NONE), mPortId(portId), mIsInvalid(false), mTrackMetrics(std::move(metricsId), isOut, clientUid), mCreatorPid(creatorPid), mTraceSuffix{std::to_string(mPortId).append(".").append(std::to_string(mId)) .append(".").append(std::to_string(mThreadIoHandle))}, mTraceActionId{std::string(AUDIO_TRACE_PREFIX_AUDIO_TRACK_ACTION).append(mTraceSuffix)}, mTraceIntervalId{std::string(AUDIO_TRACE_PREFIX_AUDIO_TRACK_INTERVAL) .append(mTraceSuffix)} { const uid_t callingUid = IPCThreadState::self()->getCallingUid(); if (!isAudioServerOrMediaServerUid(callingUid) || clientUid == AUDIO_UID_INVALID) { ALOGW_IF(clientUid != AUDIO_UID_INVALID && clientUid != callingUid, "%s(%d): uid %d tried to pass itself off as %d", __func__, mId, callingUid, clientUid); clientUid = callingUid; } // clientUid contains the uid of the app that is responsible for this track, so we can blame // battery usage on it. mUid = clientUid; // ALOGD("Creating track with %d buffers @ %d bytes", bufferCount, bufferSize); size_t minBufferSize = buffer == NULL ? roundup(frameCount) : frameCount; // check overflow when computing bufferSize due to multiplication by mFrameSize. if (minBufferSize < frameCount // roundup rounds down for values above UINT_MAX / 2 || mFrameSize == 0 // format needs to be correct || minBufferSize > SIZE_MAX / mFrameSize) { android_errorWriteLog(0x534e4554, "34749571"); return; } minBufferSize *= mFrameSize; if (buffer == nullptr) { bufferSize = minBufferSize; // allocated here. } else if (minBufferSize > bufferSize) { android_errorWriteLog(0x534e4554, "38340117"); return; } size_t size = sizeof(audio_track_cblk_t); if (buffer == NULL && alloc == ALLOC_CBLK) { // check overflow when computing allocation size for streaming tracks. if (size > SIZE_MAX - bufferSize) { android_errorWriteLog(0x534e4554, "34749571"); return; } size += bufferSize; } if (client != 0) { mCblkMemory = client->allocator().allocate(mediautils::NamedAllocRequest{{size}, std::string("Track ID: ").append(std::to_string(mId))}); if (mCblkMemory == 0 || (mCblk = static_cast(mCblkMemory->unsecurePointer())) == NULL) { ALOGE("%s(%d): not enough memory for AudioTrack size=%zu", __func__, mId, size); ALOGE("%s", client->allocator().dump().c_str()); mCblkMemory.clear(); return; } } else { mCblk = (audio_track_cblk_t *) malloc(size); if (mCblk == NULL) { ALOGE("%s(%d): not enough memory for AudioTrack size=%zu", __func__, mId, size); return; } } // construct the shared structure in-place. if (mCblk != NULL) { new(mCblk) audio_track_cblk_t(); switch (alloc) { case ALLOC_READONLY: { const sp roHeap(thread->readOnlyHeap()); if (roHeap == 0 || (mBufferMemory = roHeap->allocate(bufferSize)) == 0 || (mBuffer = mBufferMemory->unsecurePointer()) == NULL) { ALOGE("%s(%d): not enough memory for read-only buffer size=%zu", __func__, mId, bufferSize); if (roHeap != 0) { roHeap->dump("buffer"); } mCblkMemory.clear(); mBufferMemory.clear(); return; } memset(mBuffer, 0, bufferSize); } break; case ALLOC_PIPE: mBufferMemory = thread->pipeMemory(); // mBuffer is the virtual address as seen from current process (mediaserver), // and should normally be coming from mBufferMemory->unsecurePointer(). // However in this case the TrackBase does not reference the buffer directly. // It should references the buffer via the pipe. // Therefore, to detect incorrect usage of the buffer, we set mBuffer to NULL. mBuffer = NULL; bufferSize = 0; break; case ALLOC_CBLK: // clear all buffers if (buffer == NULL) { mBuffer = (char*)mCblk + sizeof(audio_track_cblk_t); memset(mBuffer, 0, bufferSize); } else { mBuffer = buffer; #if 0 mCblk->mFlags = CBLK_FORCEREADY; // FIXME hack, need to fix the track ready logic #endif } break; case ALLOC_LOCAL: mBuffer = calloc(1, bufferSize); break; case ALLOC_NONE: mBuffer = buffer; break; default: LOG_ALWAYS_FATAL("%s(%d): invalid allocation type: %d", __func__, mId, (int)alloc); } mBufferSize = bufferSize; #ifdef TEE_SINK mTee.set(sampleRate, mChannelCount, format, NBAIO_Tee::TEE_FLAG_TRACK); #endif // mState is mirrored for the client to read. mState.setMirror(&mCblk->mState); // ensure our state matches up until we consolidate the enumeration. static_assert(CBLK_STATE_IDLE == IDLE); static_assert(CBLK_STATE_PAUSING == PAUSING); } } // TODO b/182392769: use attribution source util static AttributionSourceState audioServerAttributionSource(pid_t pid) { AttributionSourceState attributionSource{}; attributionSource.uid = AID_AUDIOSERVER; attributionSource.pid = pid; attributionSource.token = sp::make(); return attributionSource; } status_t TrackBase::initCheck() const { status_t status; if (mType == TYPE_OUTPUT || mType == TYPE_PATCH) { status = cblk() != NULL ? NO_ERROR : NO_MEMORY; } else { status = getCblk() != 0 ? NO_ERROR : NO_MEMORY; } return status; } TrackBase::~TrackBase() { // delete the proxy before deleting the shared memory it refers to, to avoid dangling reference mServerProxy.clear(); releaseCblk(); mCblkMemory.clear(); // free the shared memory before releasing the heap it belongs to if (mClient != 0) { // Client destructor must run with AudioFlinger client mutex locked audio_utils::lock_guard _l(mClient->afClientCallback()->clientMutex()); // If the client's reference count drops to zero, the associated destructor // must run with AudioFlinger lock held. Thus the explicit clear() rather than // relying on the automatic clear() at end of scope. mClient.clear(); } if (mAllocType == ALLOC_LOCAL) { free(mBuffer); mBuffer = nullptr; } // flush the binder command buffer IPCThreadState::self()->flushCommands(); } // AudioBufferProvider interface // getNextBuffer() = 0; // This implementation of releaseBuffer() is used by Track and RecordTrack void TrackBase::releaseBuffer(AudioBufferProvider::Buffer* buffer) { #ifdef TEE_SINK mTee.write(buffer->raw, buffer->frameCount); #endif ServerProxy::Buffer buf; buf.mFrameCount = buffer->frameCount; buf.mRaw = buffer->raw; buffer->frameCount = 0; buffer->raw = NULL; mServerProxy->releaseBuffer(&buf); } status_t TrackBase::setSyncEvent( const sp& event) { mSyncEvents.emplace_back(event); return NO_ERROR; } void TrackBase::deferRestartIfDisabled() { const auto thread = mThread.promote(); if (thread == nullptr) return; auto weakTrack = wp::fromExisting(this); thread->getThreadloopExecutor().defer([weakTrack] { const auto actual = weakTrack.promote(); if (actual) actual->restartIfDisabled(); }); } void TrackBase::beginBatteryAttribution() { mBatteryStatsHolder.emplace(uid()); if (media::psh_utils::AudioPowerManager::enabled()) { mTrackToken = media::psh_utils::createAudioTrackToken(uid()); } } void TrackBase::endBatteryAttribution() { mBatteryStatsHolder.reset(); mTrackToken.reset(); } audio_utils::trace::Object TrackBase::createDeviceIntervalTrace(const std::string& devices) { audio_utils::trace::Object trace; // Please do not modify any items without approval (look at git blame). // Sanitize the device string to remove addresses. std::string plainDevices; if (devices.find(")") != std::string::npos) { auto deviceAddrVector = audio_utils::stringutils::getDeviceAddressPairs(devices); for (const auto& deviceAddr : deviceAddrVector) { // "|" not compatible with ATRACE filtering so we use "+". if (!plainDevices.empty()) plainDevices.append("+"); plainDevices.append(deviceAddr.first); } } else { plainDevices = devices; } trace // the following key, value pairs should be alphabetical .set(AUDIO_TRACE_OBJECT_KEY_CHANNEL_MASK, static_cast(mChannelMask)) .set(AUDIO_TRACE_OBJECT_KEY_CONTENT_TYPE, toString(mAttr.content_type)) .set(AUDIO_TRACE_OBJECT_KEY_DEVICES, plainDevices) .set(AUDIO_TRACE_OBJECT_KEY_FLAGS, trackFlagsAsString()) .set(AUDIO_TRACE_OBJECT_KEY_FORMAT, IAfThreadBase::formatToString(mFormat)) .set(AUDIO_TRACE_OBJECT_KEY_FRAMECOUNT, static_cast(mFrameCount)) .set(AUDIO_TRACE_OBJECT_KEY_PID, static_cast( mClient ? mClient->pid() : getpid())) .set(AUDIO_TRACE_OBJECT_KEY_SAMPLE_RATE, static_cast(sampleRate())); if (const auto thread = mThread.promote()) { trace // continue in alphabetical order .set(AUDIO_TRACE_PREFIX_THREAD AUDIO_TRACE_OBJECT_KEY_CHANNEL_MASK, static_cast(thread->channelMask())) .set(AUDIO_TRACE_PREFIX_THREAD AUDIO_TRACE_OBJECT_KEY_FLAGS, thread->flagsAsString()) .set(AUDIO_TRACE_PREFIX_THREAD AUDIO_TRACE_OBJECT_KEY_FORMAT, IAfThreadBase::formatToString(thread->format())) .set(AUDIO_TRACE_PREFIX_THREAD AUDIO_TRACE_OBJECT_KEY_FRAMECOUNT, static_cast(thread->frameCount())) .set(AUDIO_TRACE_PREFIX_THREAD AUDIO_TRACE_OBJECT_KEY_ID, static_cast(mThreadIoHandle)) .set(AUDIO_TRACE_PREFIX_THREAD AUDIO_TRACE_OBJECT_KEY_SAMPLE_RATE, static_cast(thread->sampleRate())) .set(AUDIO_TRACE_PREFIX_THREAD AUDIO_TRACE_OBJECT_KEY_TYPE, IAfThreadBase::threadTypeToString(thread->type())); } trace // continue in alphabetical order .set(AUDIO_TRACE_OBJECT_KEY_UID, static_cast(uid())) .set(AUDIO_TRACE_OBJECT_KEY_USAGE, toString(mAttr.usage)); return trace; } void TrackBase::logBeginInterval(const std::string& devices) { mTrackMetrics.logBeginInterval(devices); if (ATRACE_ENABLED()) [[unlikely]] { auto trace = createDeviceIntervalTrace(devices); mLastTrace = trace; ATRACE_INSTANT_FOR_TRACK(mTraceIntervalId.c_str(), trace.set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_BEGIN_INTERVAL) .toTrace().c_str()); } } void TrackBase::logEndInterval() { if (!mLastTrace.empty()) { if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceIntervalId.c_str(), mLastTrace.set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_END_INTERVAL) .toTrace().c_str()); } mLastTrace.clear(); } mTrackMetrics.logEndInterval(); } void TrackBase::logRefreshInterval(const std::string& devices) { if (ATRACE_ENABLED()) [[unlikely]] { if (mLastTrace.empty()) mLastTrace = createDeviceIntervalTrace(devices); auto trace = mLastTrace; ATRACE_INSTANT_FOR_TRACK(mTraceIntervalId.c_str(), trace.set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_REFRESH_INTERVAL) .toTrace().c_str()); } } PatchTrackBase::PatchTrackBase(const sp& proxy, IAfThreadBase* thread, const Timeout& timeout) : mProxy(proxy) { if (timeout) { setPeerTimeout(*timeout); } else { // Double buffer mixer uint64_t mixBufferNs = ((uint64_t)2 * thread->frameCount() * 1000000000) / thread->sampleRate(); setPeerTimeout(std::chrono::nanoseconds{mixBufferNs}); } } void PatchTrackBase::setPeerTimeout(std::chrono::nanoseconds timeout) { mPeerTimeout.tv_sec = timeout.count() / std::nano::den; mPeerTimeout.tv_nsec = timeout.count() % std::nano::den; } // ---------------------------------------------------------------------------- // Playback // ---------------------------------------------------------------------------- #undef LOG_TAG #define LOG_TAG "AF::TrackHandle" class TrackHandle : public android::media::BnAudioTrack { public: explicit TrackHandle(const sp& track); ~TrackHandle() override; binder::Status getCblk(std::optional* _aidl_return) final; binder::Status start(int32_t* _aidl_return) final; binder::Status stop() final; binder::Status flush() final; binder::Status pause() final; binder::Status attachAuxEffect(int32_t effectId, int32_t* _aidl_return) final; binder::Status setParameters(const std::string& keyValuePairs, int32_t* _aidl_return) final; binder::Status selectPresentation(int32_t presentationId, int32_t programId, int32_t* _aidl_return) final; binder::Status getTimestamp(media::AudioTimestampInternal* timestamp, int32_t* _aidl_return) final; binder::Status signal() final; binder::Status applyVolumeShaper(const media::VolumeShaperConfiguration& configuration, const media::VolumeShaperOperation& operation, int32_t* _aidl_return) final; binder::Status getVolumeShaperState( int32_t id, std::optional* _aidl_return) final; binder::Status getDualMonoMode( media::audio::common::AudioDualMonoMode* _aidl_return) final; binder::Status setDualMonoMode( media::audio::common::AudioDualMonoMode mode) final; binder::Status getAudioDescriptionMixLevel(float* _aidl_return) final; binder::Status setAudioDescriptionMixLevel(float leveldB) final; binder::Status getPlaybackRateParameters( media::audio::common::AudioPlaybackRate* _aidl_return) final; binder::Status setPlaybackRateParameters( const media::audio::common::AudioPlaybackRate& playbackRate) final; private: const sp mTrack; }; /* static */ sp IAfTrack::createIAudioTrackAdapter(const sp& track) { return sp::make(track); } TrackHandle::TrackHandle(const sp& track) : BnAudioTrack(), mTrack(track) { setMinSchedulerPolicy(SCHED_NORMAL, ANDROID_PRIORITY_AUDIO); setInheritRt(true); } TrackHandle::~TrackHandle() { // just stop the track on deletion, associated resources // will be freed from the main thread once all pending buffers have // been played. Unless it's not in the active track list, in which // case we free everything now... mTrack->destroy(); } Status TrackHandle::getCblk( std::optional* _aidl_return) { *_aidl_return = legacy2aidl_NullableIMemory_SharedFileRegion(mTrack->getCblk()).value(); return Status::ok(); } Status TrackHandle::start(int32_t* _aidl_return) { *_aidl_return = mTrack->start(); return Status::ok(); } Status TrackHandle::stop() { mTrack->stop(); return Status::ok(); } Status TrackHandle::flush() { mTrack->flush(); return Status::ok(); } Status TrackHandle::pause() { mTrack->pause(); return Status::ok(); } Status TrackHandle::attachAuxEffect(int32_t effectId, int32_t* _aidl_return) { *_aidl_return = mTrack->attachAuxEffect(effectId); return Status::ok(); } Status TrackHandle::setParameters(const std::string& keyValuePairs, int32_t* _aidl_return) { *_aidl_return = mTrack->setParameters(String8(keyValuePairs.c_str())); return Status::ok(); } Status TrackHandle::selectPresentation(int32_t presentationId, int32_t programId, int32_t* _aidl_return) { *_aidl_return = mTrack->selectPresentation(presentationId, programId); return Status::ok(); } Status TrackHandle::getTimestamp(media::AudioTimestampInternal* timestamp, int32_t* _aidl_return) { AudioTimestamp legacy; *_aidl_return = mTrack->getTimestamp(legacy); if (*_aidl_return != OK) { return Status::ok(); } // restrict position modulo INT_MAX to avoid integer sanitization abort legacy.mPosition &= INT_MAX; *timestamp = legacy2aidl_AudioTimestamp_AudioTimestampInternal(legacy).value(); return Status::ok(); } Status TrackHandle::signal() { mTrack->signal(); return Status::ok(); } Status TrackHandle::applyVolumeShaper( const media::VolumeShaperConfiguration& configuration, const media::VolumeShaperOperation& operation, int32_t* _aidl_return) { sp conf = new VolumeShaper::Configuration(); *_aidl_return = conf->readFromParcelable(configuration); if (*_aidl_return != OK) { return Status::ok(); } sp op = new VolumeShaper::Operation(); *_aidl_return = op->readFromParcelable(operation); if (*_aidl_return != OK) { return Status::ok(); } *_aidl_return = mTrack->applyVolumeShaper(conf, op); return Status::ok(); } Status TrackHandle::getVolumeShaperState( int32_t id, std::optional* _aidl_return) { sp legacy = mTrack->getVolumeShaperState(id); if (legacy == nullptr) { _aidl_return->reset(); return Status::ok(); } media::VolumeShaperState aidl; legacy->writeToParcelable(&aidl); *_aidl_return = aidl; return Status::ok(); } Status TrackHandle::getDualMonoMode( media::audio::common::AudioDualMonoMode* _aidl_return) { audio_dual_mono_mode_t mode = AUDIO_DUAL_MONO_MODE_OFF; const status_t status = mTrack->getDualMonoMode(&mode) ?: AudioValidator::validateDualMonoMode(mode); if (status == OK) { *_aidl_return = VALUE_OR_RETURN_BINDER_STATUS( legacy2aidl_audio_dual_mono_mode_t_AudioDualMonoMode(mode)); } return binderStatusFromStatusT(status); } Status TrackHandle::setDualMonoMode( media::audio::common::AudioDualMonoMode mode) { const auto localMonoMode = VALUE_OR_RETURN_BINDER_STATUS( aidl2legacy_AudioDualMonoMode_audio_dual_mono_mode_t(mode)); return binderStatusFromStatusT(AudioValidator::validateDualMonoMode(localMonoMode) ?: mTrack->setDualMonoMode(localMonoMode)); } Status TrackHandle::getAudioDescriptionMixLevel(float* _aidl_return) { float leveldB = -std::numeric_limits::infinity(); const status_t status = mTrack->getAudioDescriptionMixLevel(&leveldB) ?: AudioValidator::validateAudioDescriptionMixLevel(leveldB); if (status == OK) *_aidl_return = leveldB; return binderStatusFromStatusT(status); } Status TrackHandle::setAudioDescriptionMixLevel(float leveldB) { return binderStatusFromStatusT(AudioValidator::validateAudioDescriptionMixLevel(leveldB) ?: mTrack->setAudioDescriptionMixLevel(leveldB)); } Status TrackHandle::getPlaybackRateParameters( media::audio::common::AudioPlaybackRate* _aidl_return) { audio_playback_rate_t localPlaybackRate{}; status_t status = mTrack->getPlaybackRateParameters(&localPlaybackRate) ?: AudioValidator::validatePlaybackRate(localPlaybackRate); if (status == NO_ERROR) { *_aidl_return = VALUE_OR_RETURN_BINDER_STATUS( legacy2aidl_audio_playback_rate_t_AudioPlaybackRate(localPlaybackRate)); } return binderStatusFromStatusT(status); } Status TrackHandle::setPlaybackRateParameters( const media::audio::common::AudioPlaybackRate& playbackRate) { const audio_playback_rate_t localPlaybackRate = VALUE_OR_RETURN_BINDER_STATUS( aidl2legacy_AudioPlaybackRate_audio_playback_rate_t(playbackRate)); return binderStatusFromStatusT(AudioValidator::validatePlaybackRate(localPlaybackRate) ?: mTrack->setPlaybackRateParameters(localPlaybackRate)); } // ---------------------------------------------------------------------------- // AppOp for audio playback // ------------------------------- // static sp OpPlayAudioMonitor::createIfNeeded( IAfThreadBase* thread, const AttributionSourceState& attributionSource, const audio_attributes_t& attr, int id, audio_stream_type_t streamType) { Vector packages; const uid_t uid = VALUE_OR_FATAL(aidl2legacy_int32_t_uid_t(attributionSource.uid)); getPackagesForUid(uid, packages); if (isServiceUid(uid)) { if (packages.isEmpty()) { ALOGW("OpPlayAudio: not muting track:%d usage:%d for service UID %d", id, attr.usage, uid); return nullptr; } } // stream type has been filtered by audio policy to indicate whether it can be muted if (streamType == AUDIO_STREAM_ENFORCED_AUDIBLE) { ALOGD("OpPlayAudio: not muting track:%d usage:%d ENFORCED_AUDIBLE", id, attr.usage); return nullptr; } if ((attr.flags & AUDIO_FLAG_BYPASS_INTERRUPTION_POLICY) == AUDIO_FLAG_BYPASS_INTERRUPTION_POLICY) { ALOGD("OpPlayAudio: not muting track:%d flags %#x have FLAG_BYPASS_INTERRUPTION_POLICY", id, attr.flags); return nullptr; } return sp::make(thread, attributionSource, attr.usage, id, uid); } OpPlayAudioMonitor::OpPlayAudioMonitor(IAfThreadBase* thread, const AttributionSourceState& attributionSource, audio_usage_t usage, int id, uid_t uid) : mThread(wp::fromExisting(thread)), mHasOpPlayAudio(true), mUsage((int32_t)usage), mId(id), mUid(uid), mPackageName(VALUE_OR_FATAL(aidl2legacy_string_view_String16( attributionSource.packageName.value_or("")))) {} OpPlayAudioMonitor::~OpPlayAudioMonitor() { if (mOpCallback != 0) { mAppOpsManager.stopWatchingMode(mOpCallback); } mOpCallback.clear(); } void OpPlayAudioMonitor::onFirstRef() { // make sure not to broadcast the initial state since it is not needed and could // cause a deadlock since this method can be called with the mThread->mLock held checkPlayAudioForUsage(/*doBroadcast=*/false); if (mPackageName.size()) { mOpCallback = new PlayAudioOpCallback(this); mAppOpsManager.startWatchingMode(AppOpsManager::OP_PLAY_AUDIO, mPackageName, mOpCallback); } else { ALOGW("Skipping OpPlayAudioMonitor due to null package name"); } } bool OpPlayAudioMonitor::hasOpPlayAudio() const { return mHasOpPlayAudio.load(); } // Note this method is never called (and never to be) for audio server / patch record track // - not called from constructor due to check on UID, // - not called from PlayAudioOpCallback because the callback is not installed in this case void OpPlayAudioMonitor::checkPlayAudioForUsage(bool doBroadcast) { const bool hasAppOps = mPackageName.size() && mAppOpsManager.checkAudioOpNoThrow(AppOpsManager::OP_PLAY_AUDIO, mUsage, mUid, mPackageName) == AppOpsManager::MODE_ALLOWED; bool shouldChange = !hasAppOps; // check if we need to update. if (mHasOpPlayAudio.compare_exchange_strong(shouldChange, hasAppOps)) { ALOGI("OpPlayAudio: track:%d package:%s usage:%d %smuted", mId, String8(mPackageName).c_str(), mUsage, hasAppOps ? "not " : ""); if (doBroadcast) { auto thread = mThread.promote(); if (thread != nullptr && thread->type() == IAfThreadBase::OFFLOAD) { // Wake up Thread if offloaded, otherwise it may be several seconds for update. audio_utils::lock_guard _l(thread->mutex()); thread->broadcast_l(); } } } } OpPlayAudioMonitor::PlayAudioOpCallback::PlayAudioOpCallback( const wp& monitor) : mMonitor(monitor) { } void OpPlayAudioMonitor::PlayAudioOpCallback::opChanged(int32_t op, const String16& packageName) { if (op != AppOpsManager::OP_PLAY_AUDIO) { return; } ALOGI("%s OP_PLAY_AUDIO callback received for %s", __func__, String8(packageName).c_str()); sp monitor = mMonitor.promote(); if (monitor != NULL) { monitor->checkPlayAudioForUsage(/*doBroadcast=*/true); } } // static void OpPlayAudioMonitor::getPackagesForUid( uid_t uid, Vector& packages) { PermissionController permissionController; permissionController.getPackagesForUid(uid, packages); } // ---------------------------------------------------------------------------- #undef LOG_TAG #define LOG_TAG "AF::Track" /* static */ sp IAfTrack::create( IAfPlaybackThread* thread, const sp& client, audio_stream_type_t streamType, const audio_attributes_t& attr, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, void *buffer, size_t bufferSize, const sp& sharedBuffer, audio_session_t sessionId, pid_t creatorPid, const AttributionSourceState& attributionSource, audio_output_flags_t flags, track_type type, audio_port_handle_t portId, /** default behaviour is to start when there are as many frames * ready as possible (aka. Buffer is full). */ size_t frameCountToBeReady, float speed, bool isSpatialized, bool isBitPerfect, float volume, bool muted) { return sp::make(thread, client, streamType, attr, sampleRate, format, channelMask, frameCount, buffer, bufferSize, sharedBuffer, sessionId, creatorPid, attributionSource, flags, type, portId, frameCountToBeReady, speed, isSpatialized, isBitPerfect, volume, muted); } // Track constructor must be called with AudioFlinger::mLock and ThreadBase::mLock held Track::Track( IAfPlaybackThread* thread, const sp& client, audio_stream_type_t streamType, const audio_attributes_t& attr, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, void *buffer, size_t bufferSize, const sp& sharedBuffer, audio_session_t sessionId, pid_t creatorPid, const AttributionSourceState& attributionSource, audio_output_flags_t flags, track_type type, audio_port_handle_t portId, size_t frameCountToBeReady, float speed, bool isSpatialized, bool isBitPerfect, float volume, bool muted) : TrackBase(thread, client, attr, sampleRate, format, channelMask, frameCount, // TODO: Using unsecurePointer() has some associated security pitfalls // (see declaration for details). // Either document why it is safe in this case or address the // issue (e.g. by copying). (sharedBuffer != 0) ? sharedBuffer->unsecurePointer() : buffer, (sharedBuffer != 0) ? sharedBuffer->size() : bufferSize, sessionId, creatorPid, VALUE_OR_FATAL(aidl2legacy_int32_t_uid_t(attributionSource.uid)), true /*isOut*/, (type == TYPE_PATCH) ? ( buffer == NULL ? ALLOC_LOCAL : ALLOC_NONE) : ALLOC_CBLK, type, portId, std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_TRACK) + std::to_string(portId)), mFillingStatus(FS_INVALID), // mRetryCount initialized later when needed mSharedBuffer(sharedBuffer), mStreamType(streamType), mMainBuffer(thread->sinkBuffer()), mAuxBuffer(NULL), mAuxEffectId(0), mHasVolumeController(false), mFrameMap(16 /* sink-frame-to-track-frame map memory */), mVolumeHandler(new media::VolumeHandler(sampleRate)), mOpPlayAudioMonitor(OpPlayAudioMonitor::createIfNeeded(thread, attributionSource, attr, id(), streamType)), // mSinkTimestamp mFastIndex(-1), mCachedVolume(1.0), /* The track might not play immediately after being active, similarly as if its volume was 0. * When the track starts playing, its volume will be computed. */ mFinalVolume(0.f), mResumeToStopping(false), mFlushHwPending(false), mFlags(flags), mSpeed(speed), mIsSpatialized(isSpatialized), mIsBitPerfect(isBitPerfect), mVolume(volume) { // client == 0 implies sharedBuffer == 0 ALOG_ASSERT(!(client == 0 && sharedBuffer != 0)); ALOGV_IF(sharedBuffer != 0, "%s(%d): sharedBuffer: %p, size: %zu", __func__, mId, sharedBuffer->unsecurePointer(), sharedBuffer->size()); if (mCblk == NULL) { return; } uid_t uid = VALUE_OR_FATAL(aidl2legacy_int32_t_uid_t(attributionSource.uid)); if (!thread->isTrackAllowed_l(channelMask, format, sessionId, uid)) { ALOGE("%s(%d): no more tracks available", __func__, mId); releaseCblk(); // this makes the track invalid. return; } if (sharedBuffer == 0) { mAudioTrackServerProxy = new AudioTrackServerProxy(mCblk, mBuffer, frameCount, mFrameSize, !isExternalTrack(), sampleRate); } else { mAudioTrackServerProxy = new StaticAudioTrackServerProxy(mCblk, mBuffer, frameCount, mFrameSize, sampleRate); } mServerProxy = mAudioTrackServerProxy; mServerProxy->setStartThresholdInFrames(frameCountToBeReady); // update the Cblk value // only allocate a fast track index if we were able to allocate a normal track name if (flags & AUDIO_OUTPUT_FLAG_FAST) { // FIXME: Not calling framesReadyIsCalledByMultipleThreads() exposes a potential // race with setSyncEvent(). However, if we call it, we cannot properly start // static fast tracks (SoundPool) immediately after stopping. //mAudioTrackServerProxy->framesReadyIsCalledByMultipleThreads(); ALOG_ASSERT(thread->fastTrackAvailMask_l() != 0); const int i = __builtin_ctz(thread->fastTrackAvailMask_l()); ALOG_ASSERT(0 < i && i < (int)FastMixerState::sMaxFastTracks); // FIXME This is too eager. We allocate a fast track index before the // fast track becomes active. Since fast tracks are a scarce resource, // this means we are potentially denying other more important fast tracks from // being created. It would be better to allocate the index dynamically. mFastIndex = i; thread->fastTrackAvailMask_l() &= ~(1 << i); } populateUsageAndContentTypeFromStreamType(); mMutedFromPort = muted; // Audio patch and call assistant volume are always max if (mAttr.usage == AUDIO_USAGE_CALL_ASSISTANT || mAttr.usage == AUDIO_USAGE_VIRTUAL_SOURCE) { mVolume = 1.0f; mMutedFromPort = false; } mServerLatencySupported = checkServerLatencySupported(format, flags); #ifdef TEE_SINK mTee.setId(std::string("_") + std::to_string(mThreadIoHandle) + "_" + std::to_string(mId) + "_T"); #endif if (thread->supportsHapticPlayback()) { // If the track is attached to haptic playback thread, it is potentially to have // HapticGenerator effect, which will generate haptic data, on the track. In that case, // external vibration is always created for all tracks attached to haptic playback thread. mAudioVibrationController = new AudioVibrationController(this); std::string packageName = attributionSource.packageName.has_value() ? attributionSource.packageName.value() : ""; mExternalVibration = new os::ExternalVibration( mUid, packageName, mAttr, mAudioVibrationController); } // Once this item is logged by the server, the client can add properties. const char * const traits = sharedBuffer == 0 ? "" : "static"; mTrackMetrics.logConstructor(creatorPid, uid, id(), traits, streamType); } // When attributes are undefined, derive default values from stream type. // See AudioAttributes.java, usageForStreamType() and Builder.setInternalLegacyStreamType() void Track::populateUsageAndContentTypeFromStreamType() { if (mAttr.usage == AUDIO_USAGE_UNKNOWN) { switch (mStreamType) { case AUDIO_STREAM_VOICE_CALL: mAttr.usage = AUDIO_USAGE_VOICE_COMMUNICATION; mAttr.content_type = AUDIO_CONTENT_TYPE_SPEECH; break; case AUDIO_STREAM_SYSTEM: mAttr.usage = AUDIO_USAGE_ASSISTANCE_SONIFICATION; mAttr.content_type = AUDIO_CONTENT_TYPE_SONIFICATION; break; case AUDIO_STREAM_RING: mAttr.usage = AUDIO_USAGE_NOTIFICATION_TELEPHONY_RINGTONE; mAttr.content_type = AUDIO_CONTENT_TYPE_SONIFICATION; break; case AUDIO_STREAM_MUSIC: mAttr.usage = AUDIO_USAGE_MEDIA; mAttr.content_type = AUDIO_CONTENT_TYPE_MUSIC; break; case AUDIO_STREAM_ALARM: mAttr.usage = AUDIO_USAGE_ALARM; mAttr.content_type = AUDIO_CONTENT_TYPE_SONIFICATION; break; case AUDIO_STREAM_NOTIFICATION: mAttr.usage = AUDIO_USAGE_NOTIFICATION; mAttr.content_type = AUDIO_CONTENT_TYPE_SONIFICATION; break; case AUDIO_STREAM_DTMF: mAttr.usage = AUDIO_USAGE_VOICE_COMMUNICATION_SIGNALLING; mAttr.content_type = AUDIO_CONTENT_TYPE_SONIFICATION; break; case AUDIO_STREAM_ACCESSIBILITY: mAttr.usage = AUDIO_USAGE_ASSISTANCE_ACCESSIBILITY; mAttr.content_type = AUDIO_CONTENT_TYPE_SPEECH; break; case AUDIO_STREAM_ASSISTANT: mAttr.usage = AUDIO_USAGE_ASSISTANT; mAttr.content_type = AUDIO_CONTENT_TYPE_SPEECH; break; case AUDIO_STREAM_REROUTING: case AUDIO_STREAM_PATCH: mAttr.usage = AUDIO_USAGE_VIRTUAL_SOURCE; // unknown content type break; case AUDIO_STREAM_CALL_ASSISTANT: mAttr.usage = AUDIO_USAGE_CALL_ASSISTANT; mAttr.content_type = AUDIO_CONTENT_TYPE_SPEECH; break; default: break; } } } Track::~Track() { ALOGV("%s(%d)", __func__, mId); // The destructor would clear mSharedBuffer, // but it will not push the decremented reference count, // leaving the client's IMemory dangling indefinitely. // This prevents that leak. if (mSharedBuffer != 0) { mSharedBuffer.clear(); } } status_t Track::initCheck() const { status_t status = TrackBase::initCheck(); if (status == NO_ERROR && mCblk == nullptr) { status = NO_MEMORY; } return status; } void Track::destroy() { // NOTE: destroyTrack_l() can remove a strong reference to this Track // by removing it from mTracks vector, so there is a risk that this Tracks's // destructor is called. As the destructor needs to lock mLock, // we must acquire a strong reference on this Track before locking mLock // here so that the destructor is called only when exiting this function. // On the other hand, as long as Track::destroy() is only called by // TrackHandle destructor, the TrackHandle still holds a strong ref on // this Track with its member mTrack. sp keep(this); { // scope for mLock bool wasActive = false; const sp thread = mThread.promote(); if (thread != 0) { audio_utils::unique_lock ul(thread->mutex()); thread->waitWhileThreadBusy_l(ul); auto* const playbackThread = thread->asIAfPlaybackThread().get(); wasActive = playbackThread->destroyTrack_l(this); forEachTeePatchTrack_l([](const auto& patchTrack) { patchTrack->destroy(); }); } if (isExternalTrack() && !wasActive) { // If the track is not active, the TrackHandle is responsible for // releasing the port id, not the ThreadBase::threadLoop(). // At this point, there is no concurrency issue as the track is going away. AudioSystem::releaseOutput(mPortId); } } } void Track::appendDumpHeader(String8& result) const { const auto res = IAfTrack::getLogHeader(); result.append(res.data(), res.size()); } void Track::appendDump(String8& result, bool active) const { char trackType; switch (mType) { case TYPE_DEFAULT: case TYPE_OUTPUT: if (isStatic()) { trackType = 'S'; // static } else { trackType = ' '; // normal } break; case TYPE_PATCH: trackType = 'P'; break; default: trackType = '?'; } if (isFastTrack()) { result.appendFormat("F%d %c %6d", mFastIndex, trackType, mId); } else { result.appendFormat(" %c %6d", trackType, mId); } char nowInUnderrun; switch (mObservedUnderruns.mBitFields.mMostRecent) { case UNDERRUN_FULL: nowInUnderrun = ' '; break; case UNDERRUN_PARTIAL: nowInUnderrun = '<'; break; case UNDERRUN_EMPTY: nowInUnderrun = '*'; break; default: nowInUnderrun = '?'; break; } char fillingStatus; switch (mFillingStatus) { case FS_INVALID: fillingStatus = 'I'; break; case FS_FILLING: fillingStatus = 'f'; break; case FS_FILLED: fillingStatus = 'F'; break; case FS_ACTIVE: fillingStatus = 'A'; break; default: fillingStatus = '?'; break; } // clip framesReadySafe to max representation in dump const size_t framesReadySafe = std::min(mAudioTrackServerProxy->framesReadySafe(), (size_t)99999999); // obtain volumes const gain_minifloat_packed_t vlr = mAudioTrackServerProxy->getVolumeLR(); const std::pair vsVolume = mVolumeHandler->getLastVolume(); // Our effective frame count is obtained by ServerProxy::getBufferSizeInFrames() // as it may be reduced by the application. const size_t bufferSizeInFrames = (size_t)mAudioTrackServerProxy->getBufferSizeInFrames(); // Check whether the buffer size has been modified by the app. const char modifiedBufferChar = bufferSizeInFrames < mFrameCount ? 'r' /* buffer reduced */: bufferSizeInFrames > mFrameCount ? 'e' /* error */ : ' ' /* identical */; result.appendFormat("%7s %7u/%7u %7u %7u %2s 0x%03X " "%08X %08X %6u " "%2u %3x %2x " "%5.2g %5.2g %5.2g %5.2g%c %11.2g %10s " "%08X %6zu%c %6zu %c %9u%c %7u %10s %12s", active ? "yes" : "no", mClient ? mClient->pid() : getpid() , mClient ? mClient->uid() : getuid(), mSessionId, mPortId, getTrackStateAsCodedString(), mCblk->mFlags, mFormat, mChannelMask, sampleRate(), mStreamType, mAttr.usage, mAttr.content_type, 20.0 * log10(mFinalVolume), 20.0 * log10(float_from_gain(gain_minifloat_unpack_left(vlr))), 20.0 * log10(float_from_gain(gain_minifloat_unpack_right(vlr))), 20.0 * log10(vsVolume.first), // VolumeShaper(s) total volume vsVolume.second ? 'A' : ' ', // if any VolumeShapers active 20.0 * log10(mVolume), getPortMute() ? "true" : "false", mCblk->mServer, bufferSizeInFrames, modifiedBufferChar, framesReadySafe, fillingStatus, mAudioTrackServerProxy->getUnderrunFrames(), nowInUnderrun, (unsigned)mAudioTrackServerProxy->framesFlushed() % 10000000, isBitPerfect() ? "true" : "false", getInternalMute() ? "true" : "false" ); if (isServerLatencySupported()) { double latencyMs; bool fromTrack; if (getTrackLatencyMs(&latencyMs, &fromTrack) == OK) { // Show latency in msec, followed by 't' if from track timestamp (the most accurate) // or 'k' if estimated from kernel because track frames haven't been presented yet. result.appendFormat(" %7.2lf %c", latencyMs, fromTrack ? 't' : 'k'); } else { result.appendFormat("%10s", mCblk->mServer != 0 ? "unavail" : "new"); } } result.append("\n"); } uint32_t Track::sampleRate() const { return mAudioTrackServerProxy->getSampleRate(); } // AudioBufferProvider interface status_t Track::getNextBuffer(AudioBufferProvider::Buffer* buffer) { ServerProxy::Buffer buf; size_t desiredFrames = buffer->frameCount; buf.mFrameCount = desiredFrames; status_t status = mServerProxy->obtainBuffer(&buf); buffer->frameCount = buf.mFrameCount; buffer->raw = buf.mRaw; if (buf.mFrameCount == 0 && !isStopping() && !isStopped() && !isPaused() && !isOffloaded()) { ALOGV("%s(%d): underrun, framesReady(%zu) < framesDesired(%zd), state: %d", __func__, mId, buf.mFrameCount, desiredFrames, (int)mState); mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames); if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceActionId.c_str(), audio_utils::trace::Object{} .set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_UNDERRUN) .set(AUDIO_TRACE_OBJECT_KEY_FRAMECOUNT, desiredFrames) .toTrace().c_str()); } } else { mAudioTrackServerProxy->tallyUnderrunFrames(0); } return status; } void Track::releaseBuffer(AudioBufferProvider::Buffer* buffer) { interceptBuffer(*buffer); TrackBase::releaseBuffer(buffer); } // TODO: compensate for time shift between HW modules. void Track::interceptBuffer( const AudioBufferProvider::Buffer& sourceBuffer) { auto start = std::chrono::steady_clock::now(); const size_t frameCount = sourceBuffer.frameCount; if (frameCount == 0) { return; // No audio to intercept. // Additionally PatchProxyBufferProvider::obtainBuffer (called by PathTrack::getNextBuffer) // does not allow 0 frame size request contrary to getNextBuffer } TeePatches teePatches; if (mTeePatchesRWLock.tryReadLock() == NO_ERROR) { // Cache a copy of tee patches in case it is updated while using. teePatches = mTeePatches; mTeePatchesRWLock.unlock(); } for (auto& teePatch : teePatches) { IAfPatchRecord* patchRecord = teePatch.patchRecord.get(); const size_t framesWritten = patchRecord->writeFrames( sourceBuffer.i8, frameCount, mFrameSize); const size_t framesLeft = frameCount - framesWritten; ALOGW_IF(framesLeft != 0, "%s(%d) PatchRecord %d can not provide big enough " "buffer %zu/%zu, dropping %zu frames", __func__, mId, patchRecord->id(), framesWritten, frameCount, framesLeft); } auto spent = ceil(std::chrono::steady_clock::now() - start); using namespace std::chrono_literals; // Average is ~20us per track, this should virtually never be logged (Logging takes >200us) ALOGD_IF(spent > 500us, "%s: took %lldus to intercept %zu tracks", __func__, spent.count(), teePatches.size()); } // ExtendedAudioBufferProvider interface // framesReady() may return an approximation of the number of frames if called // from a different thread than the one calling Proxy->obtainBuffer() and // Proxy->releaseBuffer(). Also note there is no mutual exclusion in the // AudioTrackServerProxy so be especially careful calling with FastTracks. size_t Track::framesReady() const { if (mSharedBuffer != 0 && (isStopped() || isStopping())) { // Static tracks return zero frames immediately upon stopping (for FastTracks). // The remainder of the buffer is not drained. return 0; } return mAudioTrackServerProxy->framesReady(); } int64_t Track::framesReleased() const { return mAudioTrackServerProxy->framesReleased(); } void Track::onTimestamp(const ExtendedTimestamp ×tamp) { // This call comes from a FastTrack and should be kept lockless. // The server side frames are already translated to client frames. mAudioTrackServerProxy->setTimestamp(timestamp); // We do not set drained here, as FastTrack timestamp may not go to very last frame. // Compute latency. // TODO: Consider whether the server latency may be passed in by FastMixer // as a constant for all active FastTracks. const double latencyMs = timestamp.getOutputServerLatencyMs(sampleRate()); mServerLatencyFromTrack.store(true); mServerLatencyMs.store(latencyMs); } // Don't call for fast tracks; the framesReady() could result in priority inversion bool Track::isReady() const { if (mFillingStatus != FS_FILLING || isStopped() || isPausing()) { return true; } if (isStopping()) { if (framesReady() > 0) { mFillingStatus = FS_FILLED; } return true; } size_t bufferSizeInFrames = mServerProxy->getBufferSizeInFrames(); // Note: mServerProxy->getStartThresholdInFrames() is clamped. const size_t startThresholdInFrames = mServerProxy->getStartThresholdInFrames(); const size_t framesToBeReady = std::clamp( // clamp again to validate client values. std::min(startThresholdInFrames, bufferSizeInFrames), size_t(1), mFrameCount); if (framesReady() >= framesToBeReady || (mCblk->mFlags & CBLK_FORCEREADY)) { ALOGV("%s(%d): consider track ready with %zu/%zu, target was %zu)", __func__, mId, framesReady(), bufferSizeInFrames, framesToBeReady); mFillingStatus = FS_FILLED; android_atomic_and(~CBLK_FORCEREADY, &mCblk->mFlags); return true; } return false; } status_t Track::start(AudioSystem::sync_event_t event __unused, audio_session_t triggerSession __unused) { if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceActionId.c_str(), audio_utils::trace::Object{} .set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_START) .toTrace().c_str()); } status_t status = NO_ERROR; ALOGV("%s(%d): calling pid %d session %d", __func__, mId, IPCThreadState::self()->getCallingPid(), mSessionId); const sp thread = mThread.promote(); if (thread != 0) { if (isOffloaded()) { audio_utils::lock_guard _laf(thread->afThreadCallback()->mutex()); const bool nonOffloadableGlobalEffectEnabled = thread->afThreadCallback()->isNonOffloadableGlobalEffectEnabled_l(); audio_utils::lock_guard _lth(thread->mutex()); sp ec = thread->getEffectChain_l(mSessionId); if (nonOffloadableGlobalEffectEnabled || (ec != 0 && ec->isNonOffloadableEnabled())) { invalidate(); return PERMISSION_DENIED; } } audio_utils::unique_lock ul(thread->mutex()); thread->waitWhileThreadBusy_l(ul); track_state state = mState; // here the track could be either new, or restarted // in both cases "unstop" the track // initial state-stopping. next state-pausing. // What if resume is called ? if (state == FLUSHED) { // avoid underrun glitches when starting after flush reset(); } // clear mPauseHwPending because of pause (and possibly flush) during underrun. mPauseHwPending = false; if (state == PAUSED || state == PAUSING) { if (mResumeToStopping) { // happened we need to resume to STOPPING_1 mState = TrackBase::STOPPING_1; ALOGV("%s(%d): PAUSED => STOPPING_1 on thread %d", __func__, mId, (int)mThreadIoHandle); } else { mState = TrackBase::RESUMING; ALOGV("%s(%d): PAUSED => RESUMING on thread %d", __func__, mId, (int)mThreadIoHandle); } } else { mState = TrackBase::ACTIVE; ALOGV("%s(%d): ? => ACTIVE on thread %d", __func__, mId, (int)mThreadIoHandle); } auto* const playbackThread = thread->asIAfPlaybackThread().get(); // states to reset position info for pcm tracks if (audio_is_linear_pcm(mFormat) && (state == IDLE || state == STOPPED || state == FLUSHED || state == PAUSED)) { mFrameMap.reset(); if (!isFastTrack()) { // Start point of track -> sink frame map. If the HAL returns a // frame position smaller than the first written frame in // updateTrackFrameInfo, the timestamp can be interpolated // instead of using a larger value. mFrameMap.push(mAudioTrackServerProxy->framesReleased(), playbackThread->framesWritten()); } } if (isFastTrack()) { // refresh fast track underruns on start because that field is never cleared // by the fast mixer; furthermore, the same track can be recycled, i.e. start // after stop. mObservedUnderruns = playbackThread->getFastTrackUnderruns(mFastIndex); } status = playbackThread->addTrack_l(this); if (status == INVALID_OPERATION || status == PERMISSION_DENIED || status == DEAD_OBJECT) { triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE); // restore previous state if start was rejected by policy manager if (status == PERMISSION_DENIED || status == DEAD_OBJECT) { mState = state; } } // Audio timing metrics are computed a few mix cycles after starting. { mLogStartCountdown = LOG_START_COUNTDOWN; mLogStartTimeNs = systemTime(); mLogStartFrames = mAudioTrackServerProxy->getTimestamp() .mPosition[ExtendedTimestamp::LOCATION_KERNEL]; mLogLatencyMs = 0.; } mLogForceVolumeUpdate = true; // at least one volume logged for metrics when starting. if (status == NO_ERROR || status == ALREADY_EXISTS) { // for streaming tracks, remove the buffer read stop limit. mAudioTrackServerProxy->start(); } // track was already in the active list, not a problem if (status == ALREADY_EXISTS) { status = NO_ERROR; } else { // Acknowledge any pending flush(), so that subsequent new data isn't discarded. // It is usually unsafe to access the server proxy from a binder thread. // But in this case we know the mixer thread (whether normal mixer or fast mixer) // isn't looking at this track yet: we still hold the normal mixer thread lock, // and for fast tracks the track is not yet in the fast mixer thread's active set. // For static tracks, this is used to acknowledge change in position or loop. ServerProxy::Buffer buffer; buffer.mFrameCount = 1; (void) mAudioTrackServerProxy->obtainBuffer(&buffer, true /*ackFlush*/); } if (status == NO_ERROR) { forEachTeePatchTrack_l([](const auto& patchTrack) { patchTrack->start(); }); } } else { status = BAD_VALUE; } if (status == NO_ERROR) { // send format to AudioManager for playback activity monitoring const sp audioManager = thread->afThreadCallback()->getOrCreateAudioManager(); if (audioManager && mPortId != AUDIO_PORT_HANDLE_NONE) { std::unique_ptr bundle = std::make_unique(); bundle->putBoolean(String16(kExtraPlayerEventSpatializedKey), isSpatialized()); bundle->putInt(String16(kExtraPlayerEventSampleRateKey), mSampleRate); bundle->putInt(String16(kExtraPlayerEventChannelMaskKey), mChannelMask); status_t result = audioManager->portEvent(mPortId, PLAYER_UPDATE_FORMAT, bundle); if (result != OK) { ALOGE("%s: unable to send playback format for port ID %d, status error %d", __func__, mPortId, result); } } } return status; } void Track::stop() { ALOGV("%s(%d): calling pid %d", __func__, mId, IPCThreadState::self()->getCallingPid()); if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceActionId.c_str(), audio_utils::trace::Object{} .set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_STOP) .toTrace().c_str()); } const sp thread = mThread.promote(); if (thread != 0) { audio_utils::unique_lock ul(thread->mutex()); thread->waitWhileThreadBusy_l(ul); track_state state = mState; if (state == RESUMING || state == ACTIVE || state == PAUSING || state == PAUSED) { // If the track is not active (PAUSED and buffers full), flush buffers auto* const playbackThread = thread->asIAfPlaybackThread().get(); if (!playbackThread->isTrackActive(this)) { reset(); mState = STOPPED; } else if (isPatchTrack() || (!isFastTrack() && !isOffloaded() && !isDirect())) { // for a PatchTrack (whatever fast ot not), do not drain but move directly // to STOPPED to avoid closing while active. mState = STOPPED; } else { // For fast tracks prepareTracks_l() will set state to STOPPING_2 // presentation is complete // For an offloaded track this starts a drain and state will // move to STOPPING_2 when drain completes and then STOPPED mState = STOPPING_1; if (isOffloaded()) { mRetryCount = IAfPlaybackThread::kMaxTrackStopRetriesOffload; } } playbackThread->broadcast_l(); ALOGV("%s(%d): not stopping/stopped => stopping/stopped on thread %d", __func__, mId, (int)mThreadIoHandle); } forEachTeePatchTrack_l([](const auto& patchTrack) { patchTrack->stop(); }); } } void Track::pause() { ALOGV("%s(%d): calling pid %d", __func__, mId, IPCThreadState::self()->getCallingPid()); if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceActionId.c_str(), audio_utils::trace::Object{} .set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_PAUSE) .toTrace().c_str()); } const sp thread = mThread.promote(); if (thread != 0) { audio_utils::unique_lock ul(thread->mutex()); thread->waitWhileThreadBusy_l(ul); auto* const playbackThread = thread->asIAfPlaybackThread().get(); switch (mState) { case STOPPING_1: case STOPPING_2: if (!isOffloaded()) { /* nothing to do if track is not offloaded */ break; } // Offloaded track was draining, we need to carry on draining when resumed mResumeToStopping = true; FALLTHROUGH_INTENDED; case ACTIVE: case RESUMING: mState = PAUSING; ALOGV("%s(%d): ACTIVE/RESUMING => PAUSING on thread %d", __func__, mId, (int)mThreadIoHandle); if (isOffloadedOrDirect()) { mPauseHwPending = true; } playbackThread->broadcast_l(); break; default: break; } // Pausing the TeePatch to avoid a glitch on underrun, at the cost of buffered audio loss. forEachTeePatchTrack_l([](const auto& patchTrack) { patchTrack->pause(); }); } } void Track::flush() { ALOGV("%s(%d)", __func__, mId); if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceActionId.c_str(), audio_utils::trace::Object{} .set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_FLUSH) .toTrace().c_str()); } const sp thread = mThread.promote(); if (thread != 0) { audio_utils::unique_lock ul(thread->mutex()); thread->waitWhileThreadBusy_l(ul); auto* const playbackThread = thread->asIAfPlaybackThread().get(); // Flush the ring buffer now if the track is not active in the PlaybackThread. // Otherwise the flush would not be done until the track is resumed. // Requires FastTrack removal be BLOCK_UNTIL_ACKED if (!playbackThread->isTrackActive(this)) { (void)mServerProxy->flushBufferIfNeeded(); } if (isOffloaded()) { // If offloaded we allow flush during any state except terminated // and keep the track active to avoid problems if user is seeking // rapidly and underlying hardware has a significant delay handling // a pause if (isTerminated()) { return; } ALOGV("%s(%d): offload flush", __func__, mId); reset(); if (mState == STOPPING_1 || mState == STOPPING_2) { ALOGV("%s(%d): flushed in STOPPING_1 or 2 state, change state to ACTIVE", __func__, mId); mState = ACTIVE; } mFlushHwPending = true; mResumeToStopping = false; } else { if (mState != STOPPING_1 && mState != STOPPING_2 && mState != STOPPED && mState != PAUSED && mState != PAUSING && mState != IDLE && mState != FLUSHED) { return; } // No point remaining in PAUSED state after a flush => go to // FLUSHED state mState = FLUSHED; // do not reset the track if it is still in the process of being stopped or paused. // this will be done by prepareTracks_l() when the track is stopped. // prepareTracks_l() will see mState == FLUSHED, then // remove from active track list, reset(), and trigger presentation complete if (isDirect()) { mFlushHwPending = true; } if (!playbackThread->isTrackActive(this)) { reset(); } } // Prevent flush being lost if the track is flushed and then resumed // before mixer thread can run. This is important when offloading // because the hardware buffer could hold a large amount of audio playbackThread->broadcast_l(); // Flush the Tee to avoid on resume playing old data and glitching on the transition to // new data forEachTeePatchTrack_l([](const auto& patchTrack) { patchTrack->flush(); }); } } // must be called with thread lock held void Track::flushAck() { if (!isOffloaded() && !isDirect()) { return; } // Clear the client ring buffer so that the app can prime the buffer while paused. // Otherwise it might not get cleared until playback is resumed and obtainBuffer() is called. mServerProxy->flushBufferIfNeeded(); mFlushHwPending = false; } void Track::pauseAck() { mPauseHwPending = false; } void Track::reset() { // Do not reset twice to avoid discarding data written just after a flush and before // the audioflinger thread detects the track is stopped. if (!mResetDone) { // Force underrun condition to avoid false underrun callback until first data is // written to buffer android_atomic_and(~CBLK_FORCEREADY, &mCblk->mFlags); mFillingStatus = FS_FILLING; mResetDone = true; if (mState == FLUSHED) { mState = IDLE; } } } status_t Track::setParameters(const String8& keyValuePairs) { const sp thread = mThread.promote(); if (thread == 0) { ALOGE("%s(%d): thread is dead", __func__, mId); return FAILED_TRANSACTION; } else if (thread->type() == IAfThreadBase::DIRECT || thread->type() == IAfThreadBase::OFFLOAD) { return thread->setParameters(keyValuePairs); } else { return PERMISSION_DENIED; } } status_t Track::selectPresentation(int presentationId, int programId) { const sp thread = mThread.promote(); if (thread == 0) { ALOGE("thread is dead"); return FAILED_TRANSACTION; } else if (thread->type() == IAfThreadBase::DIRECT || thread->type() == IAfThreadBase::OFFLOAD) { auto directOutputThread = thread->asIAfDirectOutputThread().get(); return directOutputThread->selectPresentation(presentationId, programId); } return INVALID_OPERATION; } void Track::setPortVolume(float volume) { mVolume = volume; if (mType != TYPE_PATCH) { // Do not recursively propagate a PatchTrack setPortVolume to // downstream PatchTracks. forEachTeePatchTrack_l([volume](const auto &patchTrack) { patchTrack->setPortVolume(volume); }); } } void Track::setPortMute(bool muted) { if (mMutedFromPort == muted) { return; } mMutedFromPort = muted; if (mType != TYPE_PATCH) { // Do not recursively propagate a PatchTrack setPortVolume to // downstream PatchTracks. forEachTeePatchTrack_l([muted](const auto &patchTrack) { patchTrack->setPortMute(muted); }); } } VolumeShaper::Status Track::applyVolumeShaper( const sp& configuration, const sp& operation) { VolumeShaper::Status status = mVolumeHandler->applyVolumeShaper(configuration, operation); if (isOffloadedOrDirect()) { // Signal thread to fetch new volume. const sp thread = mThread.promote(); if (thread != 0) { audio_utils::lock_guard _l(thread->mutex()); thread->broadcast_l(); } } return status; } sp Track::getVolumeShaperState(int id) const { // Note: We don't check if Thread exists. // mVolumeHandler is thread safe. return mVolumeHandler->getVolumeShaperState(id); } void Track::setFinalVolume(float volumeLeft, float volumeRight) { mFinalVolumeLeft = volumeLeft; mFinalVolumeRight = volumeRight; const float volume = (volumeLeft + volumeRight) * 0.5f; if (mFinalVolume != volume) { // Compare to an epsilon if too many meaningless updates mFinalVolume = volume; setMetadataHasChanged(); mLogForceVolumeUpdate = true; } if (mLogForceVolumeUpdate) { mLogForceVolumeUpdate = false; mTrackMetrics.logVolume(mFinalVolume); } } void Track::copyMetadataTo(MetadataInserter& backInserter) const { // Do not forward metadata for PatchTrack with unspecified stream type if (mStreamType == AUDIO_STREAM_PATCH) { return; } playback_track_metadata_v7_t metadata; metadata.base = { .usage = mAttr.usage, .content_type = mAttr.content_type, .gain = mFinalVolume, }; metadata.channel_mask = mChannelMask; strncpy(metadata.tags, mAttr.tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE); *backInserter++ = metadata; } void Track::updateTeePatches_l() { if (mTeePatchesToUpdate.has_value()) { forEachTeePatchTrack_l([](const auto& patchTrack) { patchTrack->destroy(); }); { RWLock::AutoWLock writeLock(mTeePatchesRWLock); mTeePatches = std::move(mTeePatchesToUpdate.value()); } if (mState == TrackBase::ACTIVE || mState == TrackBase::RESUMING || mState == TrackBase::STOPPING_1) { forEachTeePatchTrack_l([](const auto& patchTrack) { patchTrack->start(); }); } mTeePatchesToUpdate.reset(); } } void Track::setTeePatchesToUpdate_l(TeePatches teePatchesToUpdate) { ALOGW_IF(mTeePatchesToUpdate.has_value(), "%s, existing tee patches to update will be ignored", __func__); mTeePatchesToUpdate = std::move(teePatchesToUpdate); } // must be called with player thread lock held void Track::processMuteEvent_l(const sp< IAudioManager>& audioManager, mute_state_t muteState) { if (mMuteState == muteState) { // mute state did not change, do nothing return; } status_t result = UNKNOWN_ERROR; if (audioManager && mPortId != AUDIO_PORT_HANDLE_NONE) { if (mMuteEventExtras == nullptr) { mMuteEventExtras = std::make_unique(); } mMuteEventExtras->putInt(String16(kExtraPlayerEventMuteKey), static_cast(muteState)); result = audioManager->portEvent(mPortId, PLAYER_UPDATE_MUTED, mMuteEventExtras); } if (result == OK) { ALOGI("%s(%d): processed mute state for port ID %d from %#x to %#x", __func__, id(), mPortId, static_cast(mMuteState.load()), static_cast(muteState)); mMuteState = muteState; } else { ALOGW("%s(%d): cannot process mute state for port ID %d, status error %d", __func__, id(), mPortId, result); } } status_t Track::getTimestamp(AudioTimestamp& timestamp) { if (!isOffloaded() && !isDirect()) { return INVALID_OPERATION; // normal tracks handled through SSQ } const sp thread = mThread.promote(); if (thread == 0) { return INVALID_OPERATION; } audio_utils::lock_guard _l(thread->mutex()); auto* const playbackThread = thread->asIAfPlaybackThread().get(); return playbackThread->getTimestamp_l(timestamp); } status_t Track::attachAuxEffect(int EffectId) { const sp thread = mThread.promote(); if (thread == nullptr) { return DEAD_OBJECT; } auto dstThread = thread->asIAfPlaybackThread(); // srcThread is initialized by call to moveAuxEffectToIo() sp srcThread; const auto& af = mClient->afClientCallback(); status_t status = af->moveAuxEffectToIo(EffectId, dstThread, &srcThread); if (EffectId != 0 && status == NO_ERROR) { status = dstThread->attachAuxEffect(this, EffectId); if (status == NO_ERROR) { AudioSystem::moveEffectsToIo(std::vector(EffectId), dstThread->id()); } } if (status != NO_ERROR && srcThread != nullptr) { af->moveAuxEffectToIo(EffectId, srcThread, &dstThread); } return status; } void Track::setAuxBuffer(int EffectId, int32_t *buffer) { mAuxEffectId = EffectId; mAuxBuffer = buffer; } // presentationComplete verified by frames, used by Mixed tracks. bool Track::presentationComplete( int64_t framesWritten, size_t audioHalFrames) { // TODO: improve this based on FrameMap if it exists, to ensure full drain. // This assists in proper timestamp computation as well as wakelock management. // a track is considered presented when the total number of frames written to audio HAL // corresponds to the number of frames written when presentationComplete() is called for the // first time (mPresentationCompleteFrames == 0) plus the buffer filling status at that time. // For an offloaded track the HAL+h/w delay is variable so a HAL drain() is used // to detect when all frames have been played. In this case framesWritten isn't // useful because it doesn't always reflect whether there is data in the h/w // buffers, particularly if a track has been paused and resumed during draining ALOGV("%s(%d): presentationComplete() mPresentationCompleteFrames %lld framesWritten %lld", __func__, mId, (long long)mPresentationCompleteFrames, (long long)framesWritten); if (mPresentationCompleteFrames == 0) { mPresentationCompleteFrames = framesWritten + audioHalFrames; ALOGV("%s(%d): set:" " mPresentationCompleteFrames %lld audioHalFrames %zu", __func__, mId, (long long)mPresentationCompleteFrames, audioHalFrames); } bool complete; if (isFastTrack()) { // does not go through linear map complete = framesWritten >= (int64_t) mPresentationCompleteFrames; ALOGV("%s(%d): %s framesWritten:%lld mPresentationCompleteFrames:%lld", __func__, mId, (complete ? "complete" : "waiting"), (long long) framesWritten, (long long) mPresentationCompleteFrames); } else { // Normal tracks, OutputTracks, and PatchTracks complete = framesWritten >= (int64_t) mPresentationCompleteFrames && mAudioTrackServerProxy->isDrained(); } if (complete) { notifyPresentationComplete(); return true; } return false; } // presentationComplete checked by time, used by DirectTracks. bool Track::presentationComplete(uint32_t latencyMs) { // For Offloaded or Direct tracks. // For a direct track, we incorporated time based testing for presentationComplete. // For an offloaded track the HAL+h/w delay is variable so a HAL drain() is used // to detect when all frames have been played. In this case latencyMs isn't // useful because it doesn't always reflect whether there is data in the h/w // buffers, particularly if a track has been paused and resumed during draining constexpr float MIN_SPEED = 0.125f; // min speed scaling allowed for timely response. if (mPresentationCompleteTimeNs == 0) { mPresentationCompleteTimeNs = systemTime() + latencyMs * 1e6 / fmax(mSpeed, MIN_SPEED); ALOGV("%s(%d): set: latencyMs %u mPresentationCompleteTimeNs:%lld", __func__, mId, latencyMs, (long long) mPresentationCompleteTimeNs); } bool complete; if (isOffloaded()) { complete = true; } else { // Direct complete = systemTime() >= mPresentationCompleteTimeNs; ALOGV("%s(%d): %s", __func__, mId, (complete ? "complete" : "waiting")); } if (complete) { notifyPresentationComplete(); return true; } return false; } void Track::notifyPresentationComplete() { // This only triggers once. TODO: should we enforce this? triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE); mAudioTrackServerProxy->setStreamEndDone(); } void Track::triggerEvents(AudioSystem::sync_event_t type) { for (auto it = mSyncEvents.begin(); it != mSyncEvents.end();) { if ((*it)->type() == type) { ALOGV("%s: triggering SyncEvent type %d", __func__, type); (*it)->trigger(); it = mSyncEvents.erase(it); } else { ++it; } } } // implement VolumeBufferProvider interface gain_minifloat_packed_t Track::getVolumeLR() const { // called by FastMixer, so not allowed to take any locks, block, or do I/O including logs ALOG_ASSERT(isFastTrack() && (mCblk != NULL)); gain_minifloat_packed_t vlr = mAudioTrackServerProxy->getVolumeLR(); float vl = float_from_gain(gain_minifloat_unpack_left(vlr)); float vr = float_from_gain(gain_minifloat_unpack_right(vlr)); // track volumes come from shared memory, so can't be trusted and must be clamped if (vl > GAIN_FLOAT_UNITY) { vl = GAIN_FLOAT_UNITY; } if (vr > GAIN_FLOAT_UNITY) { vr = GAIN_FLOAT_UNITY; } // now apply the cached master volume and stream type volume; // this is trusted but lacks any synchronization or barrier so may be stale float v = mCachedVolume; vl *= v; vr *= v; // re-combine into packed minifloat vlr = gain_minifloat_pack(gain_from_float(vl), gain_from_float(vr)); // FIXME look at mute, pause, and stop flags return vlr; } status_t Track::setSyncEvent( const sp& event) { if (isTerminated() || mState == PAUSED || ((framesReady() == 0) && ((mSharedBuffer != 0) || (mState == STOPPED)))) { ALOGW("%s(%d): in invalid state %d on session %d %s mode, framesReady %zu", __func__, mId, (int)mState, mSessionId, (mSharedBuffer != 0) ? "static" : "stream", framesReady()); event->cancel(); return INVALID_OPERATION; } (void) TrackBase::setSyncEvent(event); return NO_ERROR; } void Track::invalidate() { TrackBase::invalidate(); signalClientFlag(CBLK_INVALID); } void Track::disable() { // TODO(b/142394888): the filling status should also be reset to filling signalClientFlag(CBLK_DISABLED); } bool Track::isDisabled() const { audio_track_cblk_t* cblk = mCblk; return (cblk != nullptr) && ((android_atomic_release_load(&cblk->mFlags) & CBLK_DISABLED) != 0); } void Track::signalClientFlag(int32_t flag) { // FIXME should use proxy, and needs work audio_track_cblk_t* cblk = mCblk; android_atomic_or(flag, &cblk->mFlags); android_atomic_release_store(0x40000000, &cblk->mFutex); // client is not in server, so FUTEX_WAKE is needed instead of FUTEX_WAKE_PRIVATE (void) syscall(__NR_futex, &cblk->mFutex, FUTEX_WAKE, INT_MAX); } void Track::signal() { const sp thread = mThread.promote(); if (thread != 0) { auto* const t = thread->asIAfPlaybackThread().get(); audio_utils::lock_guard _l(t->mutex()); t->broadcast_l(); } } status_t Track::getDualMonoMode(audio_dual_mono_mode_t* mode) const { status_t status = INVALID_OPERATION; if (isOffloadedOrDirect()) { const sp thread = mThread.promote(); if (thread != nullptr) { auto* const t = thread->asIAfPlaybackThread().get(); audio_utils::lock_guard _l(t->mutex()); status = t->getOutput_l()->stream->getDualMonoMode(mode); ALOGD_IF((status == NO_ERROR) && (mDualMonoMode != *mode), "%s: mode %d inconsistent", __func__, mDualMonoMode); } } return status; } status_t Track::setDualMonoMode(audio_dual_mono_mode_t mode) { status_t status = INVALID_OPERATION; if (isOffloadedOrDirect()) { const sp thread = mThread.promote(); if (thread != nullptr) { auto* const t = thread->asIAfPlaybackThread().get(); audio_utils::lock_guard lock(t->mutex()); status = t->getOutput_l()->stream->setDualMonoMode(mode); if (status == NO_ERROR) { mDualMonoMode = mode; } } } return status; } status_t Track::getAudioDescriptionMixLevel(float* leveldB) const { status_t status = INVALID_OPERATION; if (isOffloadedOrDirect()) { sp thread = mThread.promote(); if (thread != nullptr) { auto* const t = thread->asIAfPlaybackThread().get(); audio_utils::lock_guard lock(t->mutex()); status = t->getOutput_l()->stream->getAudioDescriptionMixLevel(leveldB); ALOGD_IF((status == NO_ERROR) && (mAudioDescriptionMixLevel != *leveldB), "%s: level %.3f inconsistent", __func__, mAudioDescriptionMixLevel); } } return status; } status_t Track::setAudioDescriptionMixLevel(float leveldB) { status_t status = INVALID_OPERATION; if (isOffloadedOrDirect()) { const sp thread = mThread.promote(); if (thread != nullptr) { auto* const t = thread->asIAfPlaybackThread().get(); audio_utils::lock_guard lock(t->mutex()); status = t->getOutput_l()->stream->setAudioDescriptionMixLevel(leveldB); if (status == NO_ERROR) { mAudioDescriptionMixLevel = leveldB; } } } return status; } status_t Track::getPlaybackRateParameters( audio_playback_rate_t* playbackRate) const { status_t status = INVALID_OPERATION; if (isOffloadedOrDirect()) { const sp thread = mThread.promote(); if (thread != nullptr) { auto* const t = thread->asIAfPlaybackThread().get(); audio_utils::lock_guard lock(t->mutex()); status = t->getOutput_l()->stream->getPlaybackRateParameters(playbackRate); ALOGD_IF((status == NO_ERROR) && !isAudioPlaybackRateEqual(mPlaybackRateParameters, *playbackRate), "%s: playbackRate inconsistent", __func__); } } return status; } status_t Track::setPlaybackRateParameters( const audio_playback_rate_t& playbackRate) { status_t status = INVALID_OPERATION; if (isOffloadedOrDirect()) { const sp thread = mThread.promote(); if (thread != nullptr) { auto* const t = thread->asIAfPlaybackThread().get(); audio_utils::lock_guard lock(t->mutex()); status = t->getOutput_l()->stream->setPlaybackRateParameters(playbackRate); if (status == NO_ERROR) { mPlaybackRateParameters = playbackRate; } } } return status; } //To be called with thread lock held bool Track::isResumePending() const { if (mState == RESUMING) { return true; } /* Resume is pending if track was stopping before pause was called */ if (mState == STOPPING_1 && mResumeToStopping) { return true; } return false; } //To be called with thread lock held void Track::resumeAck() { if (mState == RESUMING) { mState = ACTIVE; } // Other possibility of pending resume is stopping_1 state // Do not update the state from stopping as this prevents // drain being called. if (mState == STOPPING_1) { mResumeToStopping = false; } } //To be called with thread lock held void Track::updateTrackFrameInfo( int64_t trackFramesReleased, int64_t sinkFramesWritten, uint32_t halSampleRate, const ExtendedTimestamp &timeStamp) { // Make the kernel frametime available. const FrameTime ft{ timeStamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL], timeStamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]}; // ALOGD("FrameTime: %lld %lld", (long long)ft.frames, (long long)ft.timeNs); mKernelFrameTime.store(ft); if (!audio_is_linear_pcm(mFormat)) { return; } //update frame map mFrameMap.push(trackFramesReleased, sinkFramesWritten); // adjust server times and set drained state. // // Our timestamps are only updated when the track is on the Thread active list. // We need to ensure that tracks are not removed before full drain. ExtendedTimestamp local = timeStamp; bool drained = true; // default assume drained, if no server info found bool checked = false; for (int i = ExtendedTimestamp::LOCATION_MAX - 1; i >= ExtendedTimestamp::LOCATION_SERVER; --i) { // Lookup the track frame corresponding to the sink frame position. if (local.mTimeNs[i] > 0) { local.mPosition[i] = mFrameMap.findX(local.mPosition[i]); // check drain state from the latest stage in the pipeline. if (!checked && i <= ExtendedTimestamp::LOCATION_KERNEL) { drained = local.mPosition[i] >= mAudioTrackServerProxy->framesReleased(); checked = true; } } } ALOGV("%s: trackFramesReleased:%lld sinkFramesWritten:%lld setDrained: %d", __func__, (long long)trackFramesReleased, (long long)sinkFramesWritten, drained); mAudioTrackServerProxy->setDrained(drained); // Set correction for flushed frames that are not accounted for in released. local.mFlushed = mAudioTrackServerProxy->framesFlushed(); mServerProxy->setTimestamp(local); // Compute latency info. const bool useTrackTimestamp = !drained; const double latencyMs = useTrackTimestamp ? local.getOutputServerLatencyMs(sampleRate()) : timeStamp.getOutputServerLatencyMs(halSampleRate); mServerLatencyFromTrack.store(useTrackTimestamp); mServerLatencyMs.store(latencyMs); if (mLogStartCountdown > 0 && local.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] > 0 && local.mPosition[ExtendedTimestamp::LOCATION_KERNEL] > 0) { if (mLogStartCountdown > 1) { --mLogStartCountdown; } else if (latencyMs < mLogLatencyMs) { // wait for latency to stabilize (dip) mLogStartCountdown = 0; // startup is the difference in times for the current timestamp and our start double startUpMs = (local.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] - mLogStartTimeNs) * 1e-6; // adjust for frames played. startUpMs -= (local.mPosition[ExtendedTimestamp::LOCATION_KERNEL] - mLogStartFrames) * 1e3 / mSampleRate; ALOGV("%s: latencyMs:%lf startUpMs:%lf" " localTime:%lld startTime:%lld" " localPosition:%lld startPosition:%lld", __func__, latencyMs, startUpMs, (long long)local.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL], (long long)mLogStartTimeNs, (long long)local.mPosition[ExtendedTimestamp::LOCATION_KERNEL], (long long)mLogStartFrames); mTrackMetrics.logLatencyAndStartup(latencyMs, startUpMs); } mLogLatencyMs = latencyMs; } } bool Track::AudioVibrationController::setMute(bool muted) { const sp thread = mTrack->mThread.promote(); if (thread != 0) { // Lock for updating mHapticPlaybackEnabled. audio_utils::lock_guard _l(thread->mutex()); auto* const playbackThread = thread->asIAfPlaybackThread().get(); if ((mTrack->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE && playbackThread->hapticChannelCount() > 0) { ALOGD("%s, haptic playback was %s for track %d", __func__, muted ? "muted" : "unmuted", mTrack->id()); mTrack->setHapticPlaybackEnabled(!muted); return true; } } return false; } binder::Status Track::AudioVibrationController::mute( /*out*/ bool *ret) { *ret = setMute(true); return binder::Status::ok(); } binder::Status Track::AudioVibrationController::unmute( /*out*/ bool *ret) { *ret = setMute(false); return binder::Status::ok(); } // ---------------------------------------------------------------------------- #undef LOG_TAG #define LOG_TAG "AF::OutputTrack" /* static */ sp IAfOutputTrack::create( IAfPlaybackThread* playbackThread, IAfDuplicatingThread* sourceThread, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, const AttributionSourceState& attributionSource) { return sp::make( playbackThread, sourceThread, sampleRate, format, channelMask, frameCount, attributionSource); } OutputTrack::OutputTrack( IAfPlaybackThread* playbackThread, IAfDuplicatingThread* sourceThread, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, const AttributionSourceState& attributionSource) : Track(playbackThread, NULL, AUDIO_STREAM_PATCH, AUDIO_ATTRIBUTES_INITIALIZER , sampleRate, format, channelMask, frameCount, nullptr /* buffer */, (size_t)0 /* bufferSize */, nullptr /* sharedBuffer */, AUDIO_SESSION_NONE, getpid(), attributionSource, AUDIO_OUTPUT_FLAG_NONE, TYPE_OUTPUT), mActive(false), mSourceThread(sourceThread) { if (mCblk != NULL) { mOutBuffer.frameCount = 0; playbackThread->addOutputTrack_l(this); ALOGV("%s(): mCblk %p, mBuffer %p, " "frameCount %zu, mChannelMask 0x%08x", __func__, mCblk, mBuffer, frameCount, mChannelMask); // since client and server are in the same process, // the buffer has the same virtual address on both sides mClientProxy = new AudioTrackClientProxy(mCblk, mBuffer, mFrameCount, mFrameSize, true /*clientInServer*/); mClientProxy->setVolumeLR(GAIN_MINIFLOAT_PACKED_UNITY); mClientProxy->setSendLevel(0.0); mClientProxy->setSampleRate(sampleRate); } else { ALOGW("%s(%d): Error creating output track on thread %d", __func__, mId, (int)mThreadIoHandle); } } OutputTrack::~OutputTrack() { clearBufferQueue(); // superclass destructor will now delete the server proxy and shared memory both refer to } status_t OutputTrack::start(AudioSystem::sync_event_t event, audio_session_t triggerSession) { status_t status = Track::start(event, triggerSession); if (status != NO_ERROR) { return status; } mActive = true; mRetryCount = 127; return status; } void OutputTrack::stop() { Track::stop(); clearBufferQueue(); mOutBuffer.frameCount = 0; mActive = false; } ssize_t OutputTrack::write(void* data, uint32_t frames) { if (!mActive && frames != 0) { const sp thread = mThread.promote(); if (thread != nullptr && thread->inStandby()) { // preload one silent buffer to trigger mixer on start() ClientProxy::Buffer buf { .mFrameCount = mClientProxy->getStartThresholdInFrames() }; status_t status = mClientProxy->obtainBuffer(&buf); if (status != NO_ERROR && status != NOT_ENOUGH_DATA && status != WOULD_BLOCK) { ALOGE("%s(%d): could not obtain buffer on start", __func__, mId); return 0; } memset(buf.mRaw, 0, buf.mFrameCount * mFrameSize); mClientProxy->releaseBuffer(&buf); (void) start(); // wait for HAL stream to start before sending actual audio. Doing this on each // OutputTrack makes that playback start on all output streams is synchronized. // If another OutputTrack has already started it can underrun but this is OK // as only silence has been played so far and the retry count is very high on // OutputTrack. auto* const pt = thread->asIAfPlaybackThread().get(); if (!pt->waitForHalStart()) { ALOGW("%s(%d): timeout waiting for thread to exit standby", __func__, mId); stop(); return 0; } // enqueue the first buffer and exit so that other OutputTracks will also start before // write() is called again and this buffer actually consumed. Buffer firstBuffer; firstBuffer.frameCount = frames; firstBuffer.raw = data; queueBuffer(firstBuffer); return frames; } else { (void) start(); } } Buffer *pInBuffer; Buffer inBuffer; inBuffer.frameCount = frames; inBuffer.raw = data; uint32_t waitTimeLeftMs = mSourceThread->waitTimeMs(); while (waitTimeLeftMs) { // First write pending buffers, then new data if (mBufferQueue.size()) { pInBuffer = mBufferQueue.itemAt(0); } else { pInBuffer = &inBuffer; } if (pInBuffer->frameCount == 0) { break; } if (mOutBuffer.frameCount == 0) { mOutBuffer.frameCount = pInBuffer->frameCount; nsecs_t startTime = systemTime(); status_t status = obtainBuffer(&mOutBuffer, waitTimeLeftMs); if (status != NO_ERROR && status != NOT_ENOUGH_DATA) { ALOGV("%s(%d): thread %d no more output buffers; status %d", __func__, mId, (int)mThreadIoHandle, status); break; } uint32_t waitTimeMs = (uint32_t)ns2ms(systemTime() - startTime); if (waitTimeLeftMs >= waitTimeMs) { waitTimeLeftMs -= waitTimeMs; } else { waitTimeLeftMs = 0; } if (status == NOT_ENOUGH_DATA) { deferRestartIfDisabled(); continue; } } uint32_t outFrames = pInBuffer->frameCount > mOutBuffer.frameCount ? mOutBuffer.frameCount : pInBuffer->frameCount; memcpy(mOutBuffer.raw, pInBuffer->raw, outFrames * mFrameSize); Proxy::Buffer buf; buf.mFrameCount = outFrames; buf.mRaw = NULL; mClientProxy->releaseBuffer(&buf); deferRestartIfDisabled(); pInBuffer->frameCount -= outFrames; pInBuffer->raw = (int8_t *)pInBuffer->raw + outFrames * mFrameSize; mOutBuffer.frameCount -= outFrames; mOutBuffer.raw = (int8_t *)mOutBuffer.raw + outFrames * mFrameSize; if (pInBuffer->frameCount == 0) { if (mBufferQueue.size()) { mBufferQueue.removeAt(0); free(pInBuffer->mBuffer); if (pInBuffer != &inBuffer) { delete pInBuffer; } ALOGV("%s(%d): thread %d released overflow buffer %zu", __func__, mId, (int)mThreadIoHandle, mBufferQueue.size()); } else { break; } } } // If we could not write all frames, allocate a buffer and queue it for next time. if (inBuffer.frameCount) { const sp thread = mThread.promote(); if (thread != nullptr && !thread->inStandby()) { queueBuffer(inBuffer); } } // Calling write() with a 0 length buffer means that no more data will be written: // We rely on stop() to set the appropriate flags to allow the remaining frames to play out. if (frames == 0 && mBufferQueue.size() == 0 && mActive) { stop(); } return frames - inBuffer.frameCount; // number of frames consumed. } void OutputTrack::queueBuffer(Buffer& inBuffer) { if (mBufferQueue.size() < kMaxOverFlowBuffers) { Buffer *pInBuffer = new Buffer; const size_t bufferSize = inBuffer.frameCount * mFrameSize; pInBuffer->mBuffer = malloc(bufferSize); LOG_ALWAYS_FATAL_IF(pInBuffer->mBuffer == nullptr, "%s: Unable to malloc size %zu", __func__, bufferSize); pInBuffer->frameCount = inBuffer.frameCount; pInBuffer->raw = pInBuffer->mBuffer; memcpy(pInBuffer->raw, inBuffer.raw, inBuffer.frameCount * mFrameSize); mBufferQueue.add(pInBuffer); ALOGV("%s(%d): thread %d adding overflow buffer %zu", __func__, mId, (int)mThreadIoHandle, mBufferQueue.size()); // audio data is consumed (stored locally); set frameCount to 0. inBuffer.frameCount = 0; } else { ALOGW("%s(%d): thread %d no more overflow buffers", __func__, mId, (int)mThreadIoHandle); // TODO: return error for this. } } void OutputTrack::copyMetadataTo(MetadataInserter& backInserter) const { audio_utils::lock_guard lock(trackMetadataMutex()); backInserter = std::copy(mTrackMetadatas.begin(), mTrackMetadatas.end(), backInserter); } void OutputTrack::setMetadatas(const SourceMetadatas& metadatas) { { audio_utils::lock_guard lock(trackMetadataMutex()); mTrackMetadatas = metadatas; } // No need to adjust metadata track volumes as OutputTrack volumes are always 0dBFS. setMetadataHasChanged(); } status_t OutputTrack::obtainBuffer( AudioBufferProvider::Buffer* buffer, uint32_t waitTimeMs) { ClientProxy::Buffer buf; buf.mFrameCount = buffer->frameCount; struct timespec timeout; timeout.tv_sec = waitTimeMs / 1000; timeout.tv_nsec = (int) (waitTimeMs % 1000) * 1000000; status_t status = mClientProxy->obtainBuffer(&buf, &timeout); buffer->frameCount = buf.mFrameCount; buffer->raw = buf.mRaw; return status; } void OutputTrack::clearBufferQueue() { size_t size = mBufferQueue.size(); for (size_t i = 0; i < size; i++) { Buffer *pBuffer = mBufferQueue.itemAt(i); free(pBuffer->mBuffer); delete pBuffer; } mBufferQueue.clear(); } void OutputTrack::restartIfDisabled() { int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags); if (mActive && (flags & CBLK_DISABLED)) { start(); } } // ---------------------------------------------------------------------------- #undef LOG_TAG #define LOG_TAG "AF::PatchTrack" /* static */ sp IAfPatchTrack::create( IAfPlaybackThread* playbackThread, audio_stream_type_t streamType, uint32_t sampleRate, audio_channel_mask_t channelMask, audio_format_t format, size_t frameCount, void* buffer, size_t bufferSize, audio_output_flags_t flags, const Timeout& timeout, size_t frameCountToBeReady, /** Default behaviour is to start * as soon as possible to have * the lowest possible latency * even if it might glitch. */ float speed, float volume, bool muted) { return sp::make( playbackThread, streamType, sampleRate, channelMask, format, frameCount, buffer, bufferSize, flags, timeout, frameCountToBeReady, speed, volume, muted); } PatchTrack::PatchTrack(IAfPlaybackThread* playbackThread, audio_stream_type_t streamType, uint32_t sampleRate, audio_channel_mask_t channelMask, audio_format_t format, size_t frameCount, void *buffer, size_t bufferSize, audio_output_flags_t flags, const Timeout& timeout, size_t frameCountToBeReady, float speed, float volume, bool muted) : Track(playbackThread, NULL, streamType, AUDIO_ATTRIBUTES_INITIALIZER, sampleRate, format, channelMask, frameCount, buffer, bufferSize, nullptr /* sharedBuffer */, AUDIO_SESSION_NONE, getpid(), audioServerAttributionSource(getpid()), flags, TYPE_PATCH, AUDIO_PORT_HANDLE_NONE, frameCountToBeReady, speed, false /*isSpatialized*/, false /*isBitPerfect*/, volume, muted), PatchTrackBase(mCblk ? new AudioTrackClientProxy(mCblk, mBuffer, frameCount, mFrameSize, true /*clientInServer*/) : nullptr, playbackThread, timeout) { if (mProxy != nullptr) { sp::cast(mProxy)->setPlaybackRate({ /* .mSpeed = */ speed, /* .mPitch = */ AUDIO_TIMESTRETCH_PITCH_NORMAL, /* .mStretchMode = */ AUDIO_TIMESTRETCH_STRETCH_DEFAULT, /* .mFallbackMode = */ AUDIO_TIMESTRETCH_FALLBACK_FAIL }); } ALOGV("%s(%d): sampleRate %d mPeerTimeout %d.%03d sec", __func__, mId, sampleRate, (int)mPeerTimeout.tv_sec, (int)(mPeerTimeout.tv_nsec / 1000000)); } PatchTrack::~PatchTrack() { ALOGV("%s(%d)", __func__, mId); } size_t PatchTrack::framesReady() const { if (mPeerProxy && mPeerProxy->producesBufferOnDemand()) { return std::numeric_limits::max(); } else { return Track::framesReady(); } } status_t PatchTrack::start(AudioSystem::sync_event_t event, audio_session_t triggerSession) { status_t status = Track::start(event, triggerSession); if (status != NO_ERROR) { return status; } android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags); return status; } // AudioBufferProvider interface status_t PatchTrack::getNextBuffer( AudioBufferProvider::Buffer* buffer) { ALOG_ASSERT(mPeerProxy != 0, "%s(%d): called without peer proxy", __func__, mId); Proxy::Buffer buf; buf.mFrameCount = buffer->frameCount; if (ATRACE_ENABLED()) { std::string traceName("PTnReq"); traceName += std::to_string(id()); ATRACE_INT(traceName.c_str(), buf.mFrameCount); } status_t status = mPeerProxy->obtainBuffer(&buf, &mPeerTimeout); ALOGV_IF(status != NO_ERROR, "%s(%d): getNextBuffer status %d", __func__, mId, status); buffer->frameCount = buf.mFrameCount; if (ATRACE_ENABLED()) { std::string traceName("PTnObt"); traceName += std::to_string(id()); ATRACE_INT(traceName.c_str(), buf.mFrameCount); } if (buf.mFrameCount == 0) { return WOULD_BLOCK; } status = Track::getNextBuffer(buffer); return status; } void PatchTrack::releaseBuffer(AudioBufferProvider::Buffer* buffer) { ALOG_ASSERT(mPeerProxy != 0, "%s(%d): called without peer proxy", __func__, mId); Proxy::Buffer buf; buf.mFrameCount = buffer->frameCount; buf.mRaw = buffer->raw; mPeerProxy->releaseBuffer(&buf); TrackBase::releaseBuffer(buffer); // Note: this is the base class. } status_t PatchTrack::obtainBuffer(Proxy::Buffer* buffer, const struct timespec *timeOut) { status_t status = NO_ERROR; static const int32_t kMaxTries = 5; int32_t tryCounter = kMaxTries; const size_t originalFrameCount = buffer->mFrameCount; do { if (status == NOT_ENOUGH_DATA) { deferRestartIfDisabled(); buffer->mFrameCount = originalFrameCount; // cleared on error, must be restored. } status = mProxy->obtainBuffer(buffer, timeOut); } while ((status == NOT_ENOUGH_DATA) && (tryCounter-- > 0)); return status; } void PatchTrack::releaseBuffer(Proxy::Buffer* buffer) { mProxy->releaseBuffer(buffer); deferRestartIfDisabled(); // Check if the PatchTrack has enough data to write once in releaseBuffer(). // If not, prevent an underrun from occurring by moving the track into FS_FILLING; // this logic avoids glitches when suspending A2DP with AudioPlaybackCapture. // TODO: perhaps underrun avoidance could be a track property checked in isReady() instead. if (mFillingStatus == FS_ACTIVE && audio_is_linear_pcm(mFormat) && !isOffloadedOrDirect()) { if (const sp thread = mThread.promote(); thread != 0) { auto* const playbackThread = thread->asIAfPlaybackThread().get(); const size_t frameCount = playbackThread->frameCount() * sampleRate() / playbackThread->sampleRate(); if (framesReady() < frameCount) { ALOGD("%s(%d) Not enough data, wait for buffer to fill", __func__, mId); mFillingStatus = FS_FILLING; } } } } void PatchTrack::restartIfDisabled() { if (android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags) & CBLK_DISABLED) { ALOGW("%s(%d): disabled due to previous underrun, restarting", __func__, mId); start(); } } // ---------------------------------------------------------------------------- // Record // ---------------------------------------------------------------------------- #undef LOG_TAG #define LOG_TAG "AF::RecordHandle" class RecordHandle : public android::media::BnAudioRecord { public: explicit RecordHandle(const sp& recordTrack); ~RecordHandle() override; binder::Status start(int /*AudioSystem::sync_event_t*/ event, int /*audio_session_t*/ triggerSession) final; binder::Status stop() final; binder::Status getActiveMicrophones( std::vector* activeMicrophones) final; binder::Status setPreferredMicrophoneDirection( int /*audio_microphone_direction_t*/ direction) final; binder::Status setPreferredMicrophoneFieldDimension(float zoom) final; binder::Status shareAudioHistory( const std::string& sharedAudioPackageName, int64_t sharedAudioStartMs) final; private: const sp mRecordTrack; // for use from destructor void stop_nonvirtual(); }; /* static */ sp IAfRecordTrack::createIAudioRecordAdapter( const sp& recordTrack) { return sp::make(recordTrack); } RecordHandle::RecordHandle( const sp& recordTrack) : BnAudioRecord(), mRecordTrack(recordTrack) { setMinSchedulerPolicy(SCHED_NORMAL, ANDROID_PRIORITY_AUDIO); setInheritRt(true); } RecordHandle::~RecordHandle() { stop_nonvirtual(); mRecordTrack->destroy(); } binder::Status RecordHandle::start(int /*AudioSystem::sync_event_t*/ event, int /*audio_session_t*/ triggerSession) { ALOGV("%s()", __func__); return binderStatusFromStatusT( mRecordTrack->start((AudioSystem::sync_event_t)event, (audio_session_t) triggerSession)); } binder::Status RecordHandle::stop() { stop_nonvirtual(); return binder::Status::ok(); } void RecordHandle::stop_nonvirtual() { ALOGV("%s()", __func__); mRecordTrack->stop(); } binder::Status RecordHandle::getActiveMicrophones( std::vector* activeMicrophones) { ALOGV("%s()", __func__); return binderStatusFromStatusT(mRecordTrack->getActiveMicrophones(activeMicrophones)); } binder::Status RecordHandle::setPreferredMicrophoneDirection( int /*audio_microphone_direction_t*/ direction) { ALOGV("%s()", __func__); return binderStatusFromStatusT(mRecordTrack->setPreferredMicrophoneDirection( static_cast(direction))); } binder::Status RecordHandle::setPreferredMicrophoneFieldDimension(float zoom) { ALOGV("%s()", __func__); return binderStatusFromStatusT(mRecordTrack->setPreferredMicrophoneFieldDimension(zoom)); } binder::Status RecordHandle::shareAudioHistory( const std::string& sharedAudioPackageName, int64_t sharedAudioStartMs) { return binderStatusFromStatusT( mRecordTrack->shareAudioHistory(sharedAudioPackageName, sharedAudioStartMs)); } // ---------------------------------------------------------------------------- #undef LOG_TAG #define LOG_TAG "AF::RecordTrack" /* static */ sp IAfRecordTrack::create(IAfRecordThread* thread, const sp& client, const audio_attributes_t& attr, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, void* buffer, size_t bufferSize, audio_session_t sessionId, pid_t creatorPid, const AttributionSourceState& attributionSource, audio_input_flags_t flags, track_type type, audio_port_handle_t portId, int32_t startFrames) { return sp::make( thread, client, attr, sampleRate, format, channelMask, frameCount, buffer, bufferSize, sessionId, creatorPid, attributionSource, flags, type, portId, startFrames); } // RecordTrack constructor must be called with AudioFlinger::mLock and ThreadBase::mLock held RecordTrack::RecordTrack( IAfRecordThread* thread, const sp& client, const audio_attributes_t& attr, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, void *buffer, size_t bufferSize, audio_session_t sessionId, pid_t creatorPid, const AttributionSourceState& attributionSource, audio_input_flags_t flags, track_type type, audio_port_handle_t portId, int32_t startFrames) : TrackBase(thread, client, attr, sampleRate, format, channelMask, frameCount, buffer, bufferSize, sessionId, creatorPid, VALUE_OR_FATAL(aidl2legacy_int32_t_uid_t(attributionSource.uid)), false /*isOut*/, (type == TYPE_DEFAULT) ? ((flags & AUDIO_INPUT_FLAG_FAST) ? ALLOC_PIPE : ALLOC_CBLK) : ((buffer == NULL) ? ALLOC_LOCAL : ALLOC_NONE), type, portId, std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_RECORD) + std::to_string(portId)), mOverflow(false), mResamplerBufferProvider(NULL), // initialize in case of early constructor exit mRecordBufferConverter(NULL), mFlags(flags), mSilenced(false), mStartFrames(startFrames) { if (mCblk == NULL) { return; } if (!isDirect()) { mRecordBufferConverter = new RecordBufferConverter( thread->channelMask(), thread->format(), thread->sampleRate(), channelMask, format, sampleRate); // Check if the RecordBufferConverter construction was successful. // If not, don't continue with construction. // // NOTE: It would be extremely rare that the record track cannot be created // for the current device, but a pending or future device change would make // the record track configuration valid. if (mRecordBufferConverter->initCheck() != NO_ERROR) { ALOGE("%s(%d): RecordTrack unable to create record buffer converter", __func__, mId); return; } } mServerProxy = new AudioRecordServerProxy(mCblk, mBuffer, frameCount, mFrameSize, !isExternalTrack()); mResamplerBufferProvider = new ResamplerBufferProvider(this); if (flags & AUDIO_INPUT_FLAG_FAST) { ALOG_ASSERT(thread->fastTrackAvailable()); thread->setFastTrackAvailable(false); } else { // TODO: only Normal Record has timestamps (Fast Record does not). mServerLatencySupported = checkServerLatencySupported(mFormat, flags); } #ifdef TEE_SINK mTee.setId(std::string("_") + std::to_string(mThreadIoHandle) + "_" + std::to_string(mId) + "_R"); #endif // Once this item is logged by the server, the client can add properties. mTrackMetrics.logConstructor(creatorPid, uid(), id()); } RecordTrack::~RecordTrack() { ALOGV("%s()", __func__); delete mRecordBufferConverter; delete mResamplerBufferProvider; } status_t RecordTrack::initCheck() const { status_t status = TrackBase::initCheck(); if (status == NO_ERROR && mServerProxy == 0) { status = BAD_VALUE; } return status; } // AudioBufferProvider interface status_t RecordTrack::getNextBuffer(AudioBufferProvider::Buffer* buffer) { ServerProxy::Buffer buf; buf.mFrameCount = buffer->frameCount; status_t status = mServerProxy->obtainBuffer(&buf); buffer->frameCount = buf.mFrameCount; buffer->raw = buf.mRaw; if (buf.mFrameCount == 0) { // FIXME also wake futex so that overrun is noticed more quickly (void) android_atomic_or(CBLK_OVERRUN, &mCblk->mFlags); } return status; } status_t RecordTrack::start(AudioSystem::sync_event_t event, audio_session_t triggerSession) { if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceActionId.c_str(), audio_utils::trace::Object{} .set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_START) .toTrace().c_str()); } const sp thread = mThread.promote(); if (thread != 0) { auto* const recordThread = thread->asIAfRecordThread().get(); return recordThread->start(this, event, triggerSession); } else { ALOGW("%s track %d: thread was destroyed", __func__, portId()); return DEAD_OBJECT; } } void RecordTrack::stop() { if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceActionId.c_str(), audio_utils::trace::Object{} .set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_STOP) .toTrace().c_str()); } const sp thread = mThread.promote(); if (thread != 0) { auto* const recordThread = thread->asIAfRecordThread().get(); if (recordThread->stop(this) && isExternalTrack()) { AudioSystem::stopInput(mPortId); } } } void RecordTrack::destroy() { // see comments at Track::destroy() sp keep(this); { track_state priorState = mState; const sp thread = mThread.promote(); if (thread != 0) { audio_utils::lock_guard _l(thread->mutex()); auto* const recordThread = thread->asIAfRecordThread().get(); priorState = mState; if (!mSharedAudioPackageName.empty()) { recordThread->resetAudioHistory_l(); } recordThread->destroyTrack_l(this); // move mState to STOPPED, terminate } // APM portid/client management done outside of lock. // NOTE: if thread doesn't exist, the input descriptor probably doesn't either. if (isExternalTrack()) { switch (priorState) { case ACTIVE: // invalidated while still active case STARTING_2: // invalidated/start-aborted after startInput successfully called case PAUSING: // invalidated while in the middle of stop() pausing (still active) AudioSystem::stopInput(mPortId); break; case STARTING_1: // invalidated/start-aborted and startInput not successful case PAUSED: // OK, not active case IDLE: // OK, not active break; case STOPPED: // unexpected (destroyed) default: LOG_ALWAYS_FATAL("%s(%d): invalid prior state: %d", __func__, mId, priorState); } AudioSystem::releaseInput(mPortId); } } } void RecordTrack::invalidate() { TrackBase::invalidate(); // FIXME should use proxy, and needs work audio_track_cblk_t* cblk = mCblk; android_atomic_or(CBLK_INVALID, &cblk->mFlags); android_atomic_release_store(0x40000000, &cblk->mFutex); // client is not in server, so FUTEX_WAKE is needed instead of FUTEX_WAKE_PRIVATE (void) syscall(__NR_futex, &cblk->mFutex, FUTEX_WAKE, INT_MAX); } void RecordTrack::appendDumpHeader(String8& result) const { const auto res = IAfRecordTrack::getLogHeader(); result.append(res.data(), res.size()); } void RecordTrack::appendDump(String8& result, bool active) const { result.appendFormat("%c%5s %6d %7u/%7u %7u %7u %2s 0x%03X " "%08X %08X %6u %6X " "%08X %6zu %6zu %3c", isFastTrack() ? 'F' : ' ', active ? "yes" : "no", mId, mClient ? mClient->pid() : getpid(), mClient ? mClient->uid() : getuid(), mSessionId, mPortId, getTrackStateAsCodedString(), mCblk->mFlags, mFormat, mChannelMask, mSampleRate, mAttr.source, mCblk->mServer, mFrameCount, mServerProxy->framesReadySafe(), isSilenced() ? 's' : 'n' ); if (isServerLatencySupported()) { double latencyMs; bool fromTrack; if (getTrackLatencyMs(&latencyMs, &fromTrack) == OK) { // Show latency in msec, followed by 't' if from track timestamp (the most accurate) // or 'k' if estimated from kernel (usually for debugging). result.appendFormat(" %7.2lf %c", latencyMs, fromTrack ? 't' : 'k'); } else { result.appendFormat("%10s", mCblk->mServer != 0 ? "unavail" : "new"); } } result.append("\n"); } // This is invoked by SyncEvent callback. void RecordTrack::handleSyncStartEvent( const sp& event) { size_t framesToDrop = 0; const sp threadBase = mThread.promote(); if (threadBase != 0) { // TODO: use actual buffer filling status instead of 2 buffers when info is available // from audio HAL framesToDrop = threadBase->frameCount() * 2; } mSynchronizedRecordState.onPlaybackFinished(event, framesToDrop); } void RecordTrack::clearSyncStartEvent() { mSynchronizedRecordState.clear(); } void RecordTrack::updateTrackFrameInfo( int64_t trackFramesReleased, int64_t sourceFramesRead, uint32_t halSampleRate, const ExtendedTimestamp ×tamp) { // Make the kernel frametime available. const FrameTime ft{ timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL], timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]}; // ALOGD("FrameTime: %lld %lld", (long long)ft.frames, (long long)ft.timeNs); mKernelFrameTime.store(ft); if (!audio_is_linear_pcm(mFormat)) { // Stream is direct, return provided timestamp with no conversion mServerProxy->setTimestamp(timestamp); return; } ExtendedTimestamp local = timestamp; // Convert HAL frames to server-side track frames at track sample rate. // We use trackFramesReleased and sourceFramesRead as an anchor point. for (int i = ExtendedTimestamp::LOCATION_SERVER; i < ExtendedTimestamp::LOCATION_MAX; ++i) { if (local.mTimeNs[i] != 0) { const int64_t relativeServerFrames = local.mPosition[i] - sourceFramesRead; const int64_t relativeTrackFrames = relativeServerFrames * mSampleRate / halSampleRate; // TODO: potential computation overflow local.mPosition[i] = relativeTrackFrames + trackFramesReleased; } } mServerProxy->setTimestamp(local); // Compute latency info. const bool useTrackTimestamp = true; // use track unless debugging. const double latencyMs = - (useTrackTimestamp ? local.getOutputServerLatencyMs(sampleRate()) : timestamp.getOutputServerLatencyMs(halSampleRate)); mServerLatencyFromTrack.store(useTrackTimestamp); mServerLatencyMs.store(latencyMs); } status_t RecordTrack::getActiveMicrophones( std::vector* activeMicrophones) const { const sp thread = mThread.promote(); if (thread != 0) { auto* const recordThread = thread->asIAfRecordThread().get(); return recordThread->getActiveMicrophones(activeMicrophones); } else { return BAD_VALUE; } } status_t RecordTrack::setPreferredMicrophoneDirection( audio_microphone_direction_t direction) { const sp thread = mThread.promote(); if (thread != 0) { auto* const recordThread = thread->asIAfRecordThread().get(); return recordThread->setPreferredMicrophoneDirection(direction); } else { return BAD_VALUE; } } status_t RecordTrack::setPreferredMicrophoneFieldDimension(float zoom) { const sp thread = mThread.promote(); if (thread != 0) { auto* const recordThread = thread->asIAfRecordThread().get(); return recordThread->setPreferredMicrophoneFieldDimension(zoom); } else { return BAD_VALUE; } } status_t RecordTrack::shareAudioHistory( const std::string& sharedAudioPackageName, int64_t sharedAudioStartMs) { const uid_t callingUid = IPCThreadState::self()->getCallingUid(); const pid_t callingPid = IPCThreadState::self()->getCallingPid(); if (callingUid != mUid || callingPid != mCreatorPid) { return PERMISSION_DENIED; } AttributionSourceState attributionSource{}; attributionSource.uid = VALUE_OR_RETURN_STATUS(legacy2aidl_uid_t_int32_t(callingUid)); attributionSource.pid = VALUE_OR_RETURN_STATUS(legacy2aidl_uid_t_int32_t(callingPid)); attributionSource.token = sp::make(); if (!captureHotwordAllowed(attributionSource)) { return PERMISSION_DENIED; } const sp thread = mThread.promote(); if (thread != 0) { auto* const recordThread = thread->asIAfRecordThread().get(); status_t status = recordThread->shareAudioHistory( sharedAudioPackageName, mSessionId, sharedAudioStartMs); if (status == NO_ERROR) { mSharedAudioPackageName = sharedAudioPackageName; } return status; } else { return BAD_VALUE; } } void RecordTrack::copyMetadataTo(MetadataInserter& backInserter) const { // Do not forward PatchRecord metadata with unspecified audio source if (mAttr.source == AUDIO_SOURCE_DEFAULT) { return; } // No track is invalid as this is called after prepareTrack_l in the same critical section record_track_metadata_v7_t metadata; metadata.base = { .source = mAttr.source, .gain = 1, // capture tracks do not have volumes }; metadata.channel_mask = mChannelMask; strncpy(metadata.tags, mAttr.tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE); *backInserter++ = metadata; } void RecordTrack::setSilenced(bool silenced) { if (!isPatchTrack() && mSilenced != silenced) { mSilenced = silenced; ALOGD("%s: track with port id: %d, (%s)", __func__, mPortId, mSilenced ? "silenced" : "unsilenced"); } } // ---------------------------------------------------------------------------- #undef LOG_TAG #define LOG_TAG "AF::PatchRecord" /* static */ sp IAfPatchRecord::create( IAfRecordThread* recordThread, uint32_t sampleRate, audio_channel_mask_t channelMask, audio_format_t format, size_t frameCount, void *buffer, size_t bufferSize, audio_input_flags_t flags, const Timeout& timeout, audio_source_t source) { return sp::make( recordThread, sampleRate, channelMask, format, frameCount, buffer, bufferSize, flags, timeout, source); } PatchRecord::PatchRecord(IAfRecordThread* recordThread, uint32_t sampleRate, audio_channel_mask_t channelMask, audio_format_t format, size_t frameCount, void *buffer, size_t bufferSize, audio_input_flags_t flags, const Timeout& timeout, audio_source_t source) : RecordTrack(recordThread, NULL, audio_attributes_t{ .source = source } , sampleRate, format, channelMask, frameCount, buffer, bufferSize, AUDIO_SESSION_NONE, getpid(), audioServerAttributionSource(getpid()), flags, TYPE_PATCH), PatchTrackBase(mCblk ? new ClientProxy(mCblk, mBuffer, frameCount, mFrameSize, false, true) : nullptr, recordThread, timeout) { ALOGV("%s(%d): sampleRate %d mPeerTimeout %d.%03d sec", __func__, mId, sampleRate, (int)mPeerTimeout.tv_sec, (int)(mPeerTimeout.tv_nsec / 1000000)); } PatchRecord::~PatchRecord() { ALOGV("%s(%d)", __func__, mId); } static size_t writeFramesHelper( AudioBufferProvider* dest, const void* src, size_t frameCount, size_t frameSize) { AudioBufferProvider::Buffer patchBuffer; patchBuffer.frameCount = frameCount; auto status = dest->getNextBuffer(&patchBuffer); if (status != NO_ERROR) { ALOGW("%s PathRecord getNextBuffer failed with error %d: %s", __func__, status, strerror(-status)); return 0; } ALOG_ASSERT(patchBuffer.frameCount <= frameCount); memcpy(patchBuffer.raw, src, patchBuffer.frameCount * frameSize); size_t framesWritten = patchBuffer.frameCount; dest->releaseBuffer(&patchBuffer); return framesWritten; } // static size_t PatchRecord::writeFrames( AudioBufferProvider* dest, const void* src, size_t frameCount, size_t frameSize) { size_t framesWritten = writeFramesHelper(dest, src, frameCount, frameSize); // On buffer wrap, the buffer frame count will be less than requested, // when this happens a second buffer needs to be used to write the leftover audio const size_t framesLeft = frameCount - framesWritten; if (framesWritten != 0 && framesLeft != 0) { framesWritten += writeFramesHelper(dest, (const char*)src + framesWritten * frameSize, framesLeft, frameSize); } return framesWritten; } // AudioBufferProvider interface status_t PatchRecord::getNextBuffer( AudioBufferProvider::Buffer* buffer) { ALOG_ASSERT(mPeerProxy != 0, "%s(%d): called without peer proxy", __func__, mId); Proxy::Buffer buf; buf.mFrameCount = buffer->frameCount; status_t status = mPeerProxy->obtainBuffer(&buf, &mPeerTimeout); ALOGV_IF(status != NO_ERROR, "%s(%d): mPeerProxy->obtainBuffer status %d", __func__, mId, status); buffer->frameCount = buf.mFrameCount; if (ATRACE_ENABLED()) { std::string traceName("PRnObt"); traceName += std::to_string(id()); ATRACE_INT(traceName.c_str(), buf.mFrameCount); } if (buf.mFrameCount == 0) { return WOULD_BLOCK; } status = RecordTrack::getNextBuffer(buffer); return status; } void PatchRecord::releaseBuffer(AudioBufferProvider::Buffer* buffer) { ALOG_ASSERT(mPeerProxy != 0, "%s(%d): called without peer proxy", __func__, mId); Proxy::Buffer buf; buf.mFrameCount = buffer->frameCount; buf.mRaw = buffer->raw; mPeerProxy->releaseBuffer(&buf); TrackBase::releaseBuffer(buffer); } status_t PatchRecord::obtainBuffer(Proxy::Buffer* buffer, const struct timespec *timeOut) { return mProxy->obtainBuffer(buffer, timeOut); } void PatchRecord::releaseBuffer(Proxy::Buffer* buffer) { mProxy->releaseBuffer(buffer); } #undef LOG_TAG #define LOG_TAG "AF::PthrPatchRecord" static std::unique_ptr allocAligned(size_t alignment, size_t size) { void *ptr = nullptr; (void)posix_memalign(&ptr, alignment, size); return {ptr, free}; } /* static */ sp IAfPatchRecord::createPassThru( IAfRecordThread* recordThread, uint32_t sampleRate, audio_channel_mask_t channelMask, audio_format_t format, size_t frameCount, audio_input_flags_t flags, audio_source_t source) { return sp::make( recordThread, sampleRate, channelMask, format, frameCount, flags, source); } PassthruPatchRecord::PassthruPatchRecord( IAfRecordThread* recordThread, uint32_t sampleRate, audio_channel_mask_t channelMask, audio_format_t format, size_t frameCount, audio_input_flags_t flags, audio_source_t source) : PatchRecord(recordThread, sampleRate, channelMask, format, frameCount, nullptr /*buffer*/, 0 /*bufferSize*/, flags, {} /* timeout */, source), mPatchRecordAudioBufferProvider(*this), mSinkBuffer(allocAligned(32, mFrameCount * mFrameSize)), mStubBuffer(allocAligned(32, mFrameCount * mFrameSize)) { memset(mStubBuffer.get(), 0, mFrameCount * mFrameSize); } sp PassthruPatchRecord::obtainStream( sp* thread) { *thread = mThread.promote(); if (!*thread) return nullptr; auto* const recordThread = (*thread)->asIAfRecordThread().get(); audio_utils::lock_guard _l(recordThread->mutex()); return recordThread->getInput() ? recordThread->getInput()->stream : nullptr; } // PatchProxyBufferProvider methods are called on DirectOutputThread status_t PassthruPatchRecord::obtainBuffer( Proxy::Buffer* buffer, const struct timespec* timeOut) { if (mUnconsumedFrames) { buffer->mFrameCount = std::min(buffer->mFrameCount, mUnconsumedFrames); // mUnconsumedFrames is decreased in releaseBuffer to use actual frame consumption figure. return PatchRecord::obtainBuffer(buffer, timeOut); } // Otherwise, execute a read from HAL and write into the buffer. nsecs_t startTimeNs = 0; if (timeOut && (timeOut->tv_sec != 0 || timeOut->tv_nsec != 0) && timeOut->tv_sec != INT_MAX) { // Will need to correct timeOut by elapsed time. startTimeNs = systemTime(); } const size_t framesToRead = std::min(buffer->mFrameCount, mFrameCount); buffer->mFrameCount = 0; buffer->mRaw = nullptr; sp thread; sp stream = obtainStream(&thread); if (!stream) return NO_INIT; // If there is no stream, RecordThread is not reading. status_t result = NO_ERROR; size_t bytesRead = 0; { ATRACE_NAME("read"); result = stream->read(mSinkBuffer.get(), framesToRead * mFrameSize, &bytesRead); if (result != NO_ERROR) goto stream_error; if (bytesRead == 0) return NO_ERROR; } { audio_utils::lock_guard lock(readMutex()); mReadBytes += bytesRead; mReadError = NO_ERROR; } mReadCV.notify_one(); // writeFrames handles wraparound and should write all the provided frames. // If it couldn't, there is something wrong with the client/server buffer of the software patch. buffer->mFrameCount = writeFrames( &mPatchRecordAudioBufferProvider, mSinkBuffer.get(), bytesRead / mFrameSize, mFrameSize); ALOGW_IF(buffer->mFrameCount < bytesRead / mFrameSize, "Lost %zu frames obtained from HAL", bytesRead / mFrameSize - buffer->mFrameCount); mUnconsumedFrames = buffer->mFrameCount; struct timespec newTimeOut; if (startTimeNs) { // Correct the timeout by elapsed time. nsecs_t newTimeOutNs = audio_utils_ns_from_timespec(timeOut) - (systemTime() - startTimeNs); if (newTimeOutNs < 0) newTimeOutNs = 0; newTimeOut.tv_sec = newTimeOutNs / NANOS_PER_SECOND; newTimeOut.tv_nsec = newTimeOutNs - newTimeOut.tv_sec * NANOS_PER_SECOND; timeOut = &newTimeOut; } return PatchRecord::obtainBuffer(buffer, timeOut); stream_error: stream->standby(); { audio_utils::lock_guard lock(readMutex()); mReadError = result; } mReadCV.notify_one(); return result; } void PassthruPatchRecord::releaseBuffer(Proxy::Buffer* buffer) { if (buffer->mFrameCount <= mUnconsumedFrames) { mUnconsumedFrames -= buffer->mFrameCount; } else { ALOGW("Write side has consumed more frames than we had: %zu > %zu", buffer->mFrameCount, mUnconsumedFrames); mUnconsumedFrames = 0; } PatchRecord::releaseBuffer(buffer); } // AudioBufferProvider and Source methods are called on RecordThread // 'read' emulates actual audio data with 0's. This is OK as 'getNextBuffer' // and 'releaseBuffer' are stubbed out and ignore their input. // It's not possible to retrieve actual data here w/o blocking 'obtainBuffer' // until we copy it. status_t PassthruPatchRecord::read( void* buffer, size_t bytes, size_t* read) { bytes = std::min(bytes, mFrameCount * mFrameSize); { audio_utils::unique_lock lock(readMutex()); mReadCV.wait(lock, [&]{ return mReadError != NO_ERROR || mReadBytes != 0; }); if (mReadError != NO_ERROR) { mLastReadFrames = 0; return mReadError; } *read = std::min(bytes, mReadBytes); mReadBytes -= *read; } mLastReadFrames = *read / mFrameSize; memset(buffer, 0, *read); return 0; } status_t PassthruPatchRecord::getCapturePosition( int64_t* frames, int64_t* time) { sp thread; sp stream = obtainStream(&thread); return stream ? stream->getCapturePosition(frames, time) : NO_INIT; } status_t PassthruPatchRecord::standby() { // RecordThread issues 'standby' command in two major cases: // 1. Error on read--this case is handled in 'obtainBuffer'. // 2. Track is stopping--as PassthruPatchRecord assumes continuous // output, this can only happen when the software patch // is being torn down. In this case, the RecordThread // will terminate and close the HAL stream. return 0; } // As the buffer gets filled in obtainBuffer, here we only simulate data consumption. status_t PassthruPatchRecord::getNextBuffer( AudioBufferProvider::Buffer* buffer) { buffer->frameCount = mLastReadFrames; buffer->raw = buffer->frameCount != 0 ? mStubBuffer.get() : nullptr; return NO_ERROR; } void PassthruPatchRecord::releaseBuffer( AudioBufferProvider::Buffer* buffer) { buffer->frameCount = 0; buffer->raw = nullptr; } // ---------------------------------------------------------------------------- #undef LOG_TAG #define LOG_TAG "AF::MmapTrack" /* static */ sp IAfMmapTrack::create(IAfThreadBase* thread, const audio_attributes_t& attr, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, audio_session_t sessionId, bool isOut, const android::content::AttributionSourceState& attributionSource, pid_t creatorPid, audio_port_handle_t portId, float volume, bool muted) { return sp::make( thread, attr, sampleRate, format, channelMask, sessionId, isOut, attributionSource, creatorPid, portId, volume, muted); } MmapTrack::MmapTrack(IAfThreadBase* thread, const audio_attributes_t& attr, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, audio_session_t sessionId, bool isOut, const AttributionSourceState& attributionSource, pid_t creatorPid, audio_port_handle_t portId, float volume, bool muted) : TrackBase(thread, NULL, attr, sampleRate, format, channelMask, (size_t)0 /* frameCount */, nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid, VALUE_OR_FATAL(aidl2legacy_int32_t_uid_t(attributionSource.uid)), isOut, ALLOC_NONE, TYPE_DEFAULT, portId, std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_MMAP) + std::to_string(portId)), mPid(VALUE_OR_FATAL(aidl2legacy_int32_t_uid_t(attributionSource.pid))), mUid(VALUE_OR_FATAL(aidl2legacy_int32_t_uid_t(attributionSource.uid))), mSilenced(false), mSilencedNotified(false), mVolume(volume) { mMutedFromPort = muted; // Once this item is logged by the server, the client can add properties. mTrackMetrics.logConstructor(creatorPid, uid(), id()); if (isOut && (attr.usage == AUDIO_USAGE_CALL_ASSISTANT || attr.usage == AUDIO_USAGE_VIRTUAL_SOURCE)) { // Audio patch and call assistant volume are always max mVolume = 1.0f; mMutedFromPort = false; } } MmapTrack::~MmapTrack() { } status_t MmapTrack::initCheck() const { return NO_ERROR; } status_t MmapTrack::start(AudioSystem::sync_event_t event __unused, audio_session_t triggerSession __unused) { if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceActionId.c_str(), audio_utils::trace::Object{} .set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_START) .toTrace().c_str()); } return NO_ERROR; } void MmapTrack::stop() { if (ATRACE_ENABLED()) [[unlikely]] { ATRACE_INSTANT_FOR_TRACK(mTraceActionId.c_str(), audio_utils::trace::Object{} .set(AUDIO_TRACE_OBJECT_KEY_EVENT, AUDIO_TRACE_EVENT_STOP) .toTrace().c_str()); } } // AudioBufferProvider interface status_t MmapTrack::getNextBuffer(AudioBufferProvider::Buffer* buffer) { buffer->frameCount = 0; buffer->raw = nullptr; return INVALID_OPERATION; } // ExtendedAudioBufferProvider interface size_t MmapTrack::framesReady() const { return 0; } int64_t MmapTrack::framesReleased() const { return 0; } void MmapTrack::onTimestamp(const ExtendedTimestamp& timestamp __unused) { } void MmapTrack::processMuteEvent_l(const sp& audioManager, mute_state_t muteState) { if (mMuteState == muteState) { // mute state did not change, do nothing return; } status_t result = UNKNOWN_ERROR; if (audioManager && mPortId != AUDIO_PORT_HANDLE_NONE) { if (mMuteEventExtras == nullptr) { mMuteEventExtras = std::make_unique(); } mMuteEventExtras->putInt(String16(kExtraPlayerEventMuteKey), static_cast(muteState)); result = audioManager->portEvent(mPortId, PLAYER_UPDATE_MUTED, mMuteEventExtras); } if (result == OK) { ALOGI("%s(%d): processed mute state for port ID %d from %d to %d", __func__, id(), mPortId, static_cast(mMuteState), static_cast(muteState)); mMuteState = muteState; } else { ALOGW("%s(%d): cannot process mute state for port ID %d, status error %d", __func__, id(), mPortId, result); } } void MmapTrack::appendDumpHeader(String8& result) const { const auto res = IAfMmapTrack::getLogHeader(); result.append(res.data(), res.size()); } void MmapTrack::appendDump(String8& result, bool active __unused) const { result.appendFormat("%7u/%7u %7u %7u %08X %08X %6u 0x%03X ", mPid, mUid, mSessionId, mPortId, mFormat, mChannelMask, mSampleRate, mAttr.flags); if (isOut()) { result.appendFormat("%4x %2x", mAttr.usage, mAttr.content_type); result.appendFormat("%11.2g", 20.0 * log10(mVolume)); result.appendFormat("%12s", mMutedFromPort ? "true" : "false"); } else { result.appendFormat("%7x", mAttr.source); } result.append("\n"); } } // namespace android