// Copyright 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // //////////////////////////////////////////////////////////////////////////////// #include "tink/hybrid/hybrid_decrypt_wrapper.h" #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/str_cat.h" #include "tink/hybrid/failing_hybrid.h" #include "tink/hybrid_decrypt.h" #include "tink/internal/registry_impl.h" #include "tink/monitoring/monitoring.h" #include "tink/monitoring/monitoring_client_mocks.h" #include "tink/primitive_set.h" #include "tink/util/status.h" #include "tink/util/test_matchers.h" #include "tink/util/test_util.h" #include "proto/tink.pb.h" using ::crypto::tink::test::DummyHybridDecrypt; using ::crypto::tink::test::DummyHybridEncrypt; using ::crypto::tink::test::IsOk; using ::crypto::tink::test::IsOkAndHolds; using ::crypto::tink::test::StatusIs; using ::google::crypto::tink::KeysetInfo; using ::google::crypto::tink::KeyStatusType; using ::google::crypto::tink::OutputPrefixType; using ::testing::_; using ::testing::ByMove; using ::testing::IsNull; using ::testing::NiceMock; using ::testing::Not; using ::testing::NotNull; using ::testing::Return; using ::testing::Test; namespace crypto { namespace tink { namespace { class HybridDecryptSetWrapperTest : public ::testing::Test { protected: void SetUp() override { } void TearDown() override { } }; TEST_F(HybridDecryptSetWrapperTest, Basic) { { // hybrid_decrypt_set is nullptr. auto hybrid_decrypt_result = HybridDecryptWrapper().Wrap(nullptr); EXPECT_FALSE(hybrid_decrypt_result.ok()); EXPECT_EQ(absl::StatusCode::kInternal, hybrid_decrypt_result.status().code()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "non-NULL", std::string(hybrid_decrypt_result.status().message())); } { // hybrid_decrypt_set has no primary primitive. std::unique_ptr> hybrid_decrypt_set(new PrimitiveSet()); auto hybrid_decrypt_result = HybridDecryptWrapper().Wrap( std::move(hybrid_decrypt_set)); EXPECT_FALSE(hybrid_decrypt_result.ok()); EXPECT_EQ(absl::StatusCode::kInvalidArgument, hybrid_decrypt_result.status().code()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "no primary", std::string(hybrid_decrypt_result.status().message())); } { // Correct hybrid_decrypt_set; KeysetInfo::KeyInfo* key; KeysetInfo keyset; uint32_t key_id_0 = 1234543; key = keyset.add_key_info(); key->set_output_prefix_type(OutputPrefixType::RAW); key->set_key_id(key_id_0); key->set_status(KeyStatusType::ENABLED); uint32_t key_id_1 = 726329; key = keyset.add_key_info(); key->set_output_prefix_type(OutputPrefixType::LEGACY); key->set_key_id(key_id_1); key->set_status(KeyStatusType::ENABLED); uint32_t key_id_2 = 7213743; key = keyset.add_key_info(); key->set_output_prefix_type(OutputPrefixType::TINK); key->set_key_id(key_id_2); key->set_status(KeyStatusType::ENABLED); std::string hybrid_name_0 = "hybrid_0"; std::string hybrid_name_1 = "hybrid_1"; std::string hybrid_name_2 = "hybrid_2"; std::unique_ptr> hybrid_decrypt_set( new PrimitiveSet()); std::unique_ptr hybrid_decrypt( new DummyHybridDecrypt(hybrid_name_0)); auto entry_result = hybrid_decrypt_set->AddPrimitive( std::move(hybrid_decrypt), keyset.key_info(0)); ASSERT_TRUE(entry_result.ok()); hybrid_decrypt.reset(new DummyHybridDecrypt(hybrid_name_1)); entry_result = hybrid_decrypt_set->AddPrimitive(std::move(hybrid_decrypt), keyset.key_info(1)); ASSERT_TRUE(entry_result.ok()); std::string prefix_id_1 = entry_result.value()->get_identifier(); hybrid_decrypt.reset(new DummyHybridDecrypt(hybrid_name_2)); entry_result = hybrid_decrypt_set->AddPrimitive(std::move(hybrid_decrypt), keyset.key_info(2)); ASSERT_TRUE(entry_result.ok()); // The last key is the primary. ASSERT_THAT(hybrid_decrypt_set->set_primary(entry_result.value()), IsOk()); // Wrap hybrid_decrypt_set and test the resulting HybridDecrypt. auto hybrid_decrypt_result = HybridDecryptWrapper().Wrap( std::move(hybrid_decrypt_set)); EXPECT_TRUE(hybrid_decrypt_result.ok()) << hybrid_decrypt_result.status(); hybrid_decrypt = std::move(hybrid_decrypt_result.value()); std::string plaintext = "some_plaintext"; std::string context_info = "some_context"; { // RAW key std::string ciphertext = DummyHybridEncrypt(hybrid_name_0) .Encrypt(plaintext, context_info) .value(); auto decrypt_result = hybrid_decrypt->Decrypt(ciphertext, context_info); EXPECT_TRUE(decrypt_result.ok()) << decrypt_result.status(); EXPECT_EQ(plaintext, decrypt_result.value()); } { // No ciphertext prefix. std::string ciphertext = plaintext + hybrid_name_1; auto decrypt_result = hybrid_decrypt->Decrypt(ciphertext, context_info); EXPECT_FALSE(decrypt_result.ok()); EXPECT_EQ(absl::StatusCode::kInvalidArgument, decrypt_result.status().code()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "decryption failed", std::string(decrypt_result.status().message())); } { // Correct ciphertext prefix. std::string ciphertext = prefix_id_1 + DummyHybridEncrypt(hybrid_name_1) .Encrypt(plaintext, context_info) .value(); auto decrypt_result = hybrid_decrypt->Decrypt(ciphertext, context_info); EXPECT_TRUE(decrypt_result.ok()) << decrypt_result.status(); EXPECT_EQ(plaintext, decrypt_result.value()); } { // Bad ciphertext. std::string ciphertext = "some bad ciphertext"; auto decrypt_result = hybrid_decrypt->Decrypt(ciphertext, context_info); EXPECT_FALSE(decrypt_result.ok()); EXPECT_EQ(absl::StatusCode::kInvalidArgument, decrypt_result.status().code()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "decryption failed", std::string(decrypt_result.status().message())); } } } KeysetInfo::KeyInfo PopulateKeyInfo(uint32_t key_id, OutputPrefixType out_prefix_type, KeyStatusType status) { KeysetInfo::KeyInfo key_info; key_info.set_output_prefix_type(out_prefix_type); key_info.set_key_id(key_id); key_info.set_status(status); return key_info; } // Creates a test keyset info object. KeysetInfo CreateTestKeysetInfo() { KeysetInfo keyset_info; *keyset_info.add_key_info() = PopulateKeyInfo(/*key_id=*/1234543, OutputPrefixType::TINK, /*status=*/KeyStatusType::ENABLED); *keyset_info.add_key_info() = PopulateKeyInfo(/*key_id=*/726329, OutputPrefixType::LEGACY, /*status=*/KeyStatusType::ENABLED); *keyset_info.add_key_info() = PopulateKeyInfo(/*key_id=*/7213743, OutputPrefixType::TINK, /*status=*/KeyStatusType::ENABLED); return keyset_info; } // Tests for the monitoring behavior. class HybridDecryptSetWrapperWithMonitoringTest : public Test { protected: // Perform some common initialization: reset the global registry, set expected // calls for the mock monitoring factory and the returned clients. void SetUp() override { Registry::Reset(); // Setup mocks for catching Monitoring calls. auto monitoring_client_factory = absl::make_unique(); auto decryption_monitoring_client = absl::make_unique>(); decryption_monitoring_client_ = decryption_monitoring_client.get(); // Monitoring tests expect that the client factory will create the // corresponding MockMonitoringClients. EXPECT_CALL(*monitoring_client_factory, New(_)) .WillOnce( Return(ByMove(util::StatusOr>( std::move(decryption_monitoring_client))))); ASSERT_THAT(internal::RegistryImpl::GlobalInstance() .RegisterMonitoringClientFactory( std::move(monitoring_client_factory)), IsOk()); ASSERT_THAT( internal::RegistryImpl::GlobalInstance().GetMonitoringClientFactory(), Not(IsNull())); } // Cleanup the registry to avoid mock leaks. ~HybridDecryptSetWrapperWithMonitoringTest() override { Registry::Reset(); } MockMonitoringClient* decryption_monitoring_client_; }; // Test that successful encrypt operations are logged. TEST_F(HybridDecryptSetWrapperWithMonitoringTest, WrapKeysetWithMonitoringEncryptSuccess) { // Create a primitive set and fill it with some entries KeysetInfo keyset_info = CreateTestKeysetInfo(); const absl::flat_hash_map annotations = { {"key1", "value1"}, {"key2", "value2"}, {"key3", "value3"}}; auto hybrid_decrypt_primitive_set = absl::make_unique>(annotations); ASSERT_THAT( hybrid_decrypt_primitive_set ->AddPrimitive(absl::make_unique("hybrid0"), keyset_info.key_info(0)) .status(), IsOk()); ASSERT_THAT( hybrid_decrypt_primitive_set ->AddPrimitive(absl::make_unique("hybrid1"), keyset_info.key_info(1)) .status(), IsOk()); // Set the last as primary. util::StatusOr::Entry*> last = hybrid_decrypt_primitive_set->AddPrimitive( absl::make_unique("hybrid2"), keyset_info.key_info(2)); ASSERT_THAT(last, IsOk()); ASSERT_THAT(hybrid_decrypt_primitive_set->set_primary(*last), IsOk()); // Record the ID of the primary key. const uint32_t primary_key_id = keyset_info.key_info(2).key_id(); // Create a Hybrid Encrypt and encrypt some data, so we can decrypt it later. util::StatusOr> hybrid_decrypt = HybridDecryptWrapper().Wrap(std::move(hybrid_decrypt_primitive_set)); ASSERT_THAT(hybrid_decrypt, IsOkAndHolds(NotNull())); constexpr absl::string_view plaintext = "This is some plaintext!"; constexpr absl::string_view context = "Some context!"; std::string ciphertext = absl::StrCat((*last)->get_identifier(), DummyHybridEncrypt("hybrid2").Encrypt(plaintext, context).value()); // Check that calling Decrypt triggers a Log() call. EXPECT_CALL(*decryption_monitoring_client_, Log(primary_key_id, ciphertext.size())); EXPECT_THAT((*hybrid_decrypt)->Decrypt(ciphertext, context), IsOkAndHolds(plaintext)); } TEST_F(HybridDecryptSetWrapperWithMonitoringTest, WrapKeysetWithMonitoringEncryptFailures) { // Create a primitive set and fill it with some entries KeysetInfo keyset_info = CreateTestKeysetInfo(); const absl::flat_hash_map annotations = { {"key1", "value1"}, {"key2", "value2"}, {"key3", "value3"}}; auto hybrid_decrypt_primitive_set = absl::make_unique>(annotations); ASSERT_THAT(hybrid_decrypt_primitive_set ->AddPrimitive(CreateAlwaysFailingHybridDecrypt("hybrid0"), keyset_info.key_info(0)) .status(), IsOk()); ASSERT_THAT(hybrid_decrypt_primitive_set ->AddPrimitive(CreateAlwaysFailingHybridDecrypt("hybrid1"), keyset_info.key_info(1)) .status(), IsOk()); // Set the last as primary. util::StatusOr::Entry*> last = hybrid_decrypt_primitive_set->AddPrimitive( CreateAlwaysFailingHybridDecrypt("hybrid2"), keyset_info.key_info(2)); ASSERT_THAT(last, IsOkAndHolds(NotNull())); ASSERT_THAT(hybrid_decrypt_primitive_set->set_primary(*last), IsOk()); // Create a Hybrid Decrypt and decrypt some invalid ciphertext. util::StatusOr> hybrid_decrypt = HybridDecryptWrapper().Wrap(std::move(hybrid_decrypt_primitive_set)); ASSERT_THAT(hybrid_decrypt, IsOk()); constexpr absl::string_view ciphertext = "This is some ciphertext!"; constexpr absl::string_view context = "Some context!"; // Check that calling Decrypt triggers a LogFailure() call. EXPECT_CALL(*decryption_monitoring_client_, LogFailure()); EXPECT_THAT((*hybrid_decrypt)->Decrypt(ciphertext, context).status(), StatusIs(absl::StatusCode::kInvalidArgument)); } } // namespace } // namespace tink } // namespace crypto