// Copyright 2018 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "VkImage.hpp" #include "VkBuffer.hpp" #include "VkDevice.hpp" #include "VkDeviceMemory.hpp" #include "VkImageView.hpp" #include "VkStringify.hpp" #include "VkStructConversion.hpp" #include "Device/ASTC_Decoder.hpp" #include "Device/BC_Decoder.hpp" #include "Device/Blitter.hpp" #include "Device/ETC_Decoder.hpp" #ifdef __ANDROID__ # include # include "VkDeviceMemoryExternalAndroid.hpp" #endif #include namespace { ETC_Decoder::InputType GetInputType(const vk::Format &format) { switch(format) { case VK_FORMAT_EAC_R11_UNORM_BLOCK: return ETC_Decoder::ETC_R_UNSIGNED; case VK_FORMAT_EAC_R11_SNORM_BLOCK: return ETC_Decoder::ETC_R_SIGNED; case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: return ETC_Decoder::ETC_RG_UNSIGNED; case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: return ETC_Decoder::ETC_RG_SIGNED; case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: return ETC_Decoder::ETC_RGB; case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: return ETC_Decoder::ETC_RGB_PUNCHTHROUGH_ALPHA; case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: return ETC_Decoder::ETC_RGBA; default: UNSUPPORTED("format: %d", int(format)); return ETC_Decoder::ETC_RGBA; } } int GetBCn(const vk::Format &format) { switch(format) { case VK_FORMAT_BC1_RGB_UNORM_BLOCK: case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: case VK_FORMAT_BC1_RGB_SRGB_BLOCK: case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: return 1; case VK_FORMAT_BC2_UNORM_BLOCK: case VK_FORMAT_BC2_SRGB_BLOCK: return 2; case VK_FORMAT_BC3_UNORM_BLOCK: case VK_FORMAT_BC3_SRGB_BLOCK: return 3; case VK_FORMAT_BC4_UNORM_BLOCK: case VK_FORMAT_BC4_SNORM_BLOCK: return 4; case VK_FORMAT_BC5_UNORM_BLOCK: case VK_FORMAT_BC5_SNORM_BLOCK: return 5; case VK_FORMAT_BC6H_UFLOAT_BLOCK: case VK_FORMAT_BC6H_SFLOAT_BLOCK: return 6; case VK_FORMAT_BC7_UNORM_BLOCK: case VK_FORMAT_BC7_SRGB_BLOCK: return 7; default: UNSUPPORTED("format: %d", int(format)); return 0; } } // Returns true for BC1 if we have an RGB format, false for RGBA // Returns true for BC4, BC5, BC6H if we have an unsigned format, false for signed // Ignored by BC2, BC3, and BC7 bool GetNoAlphaOrUnsigned(const vk::Format &format) { switch(format) { case VK_FORMAT_BC1_RGB_UNORM_BLOCK: case VK_FORMAT_BC1_RGB_SRGB_BLOCK: case VK_FORMAT_BC4_UNORM_BLOCK: case VK_FORMAT_BC5_UNORM_BLOCK: case VK_FORMAT_BC6H_UFLOAT_BLOCK: return true; case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: case VK_FORMAT_BC2_UNORM_BLOCK: case VK_FORMAT_BC2_SRGB_BLOCK: case VK_FORMAT_BC3_UNORM_BLOCK: case VK_FORMAT_BC3_SRGB_BLOCK: case VK_FORMAT_BC4_SNORM_BLOCK: case VK_FORMAT_BC5_SNORM_BLOCK: case VK_FORMAT_BC6H_SFLOAT_BLOCK: case VK_FORMAT_BC7_SRGB_BLOCK: case VK_FORMAT_BC7_UNORM_BLOCK: return false; default: UNSUPPORTED("format: %d", int(format)); return false; } } VkFormat GetImageFormat(const VkImageCreateInfo *pCreateInfo) { const auto *nextInfo = reinterpret_cast(pCreateInfo->pNext); while(nextInfo) { // Casting to an int since some structures, such as VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID and // VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID, are not enumerated in the official Vulkan headers. switch((int)(nextInfo->sType)) { #ifdef __ANDROID__ case VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID: { const VkExternalFormatANDROID *externalFormatAndroid = reinterpret_cast(nextInfo); // VkExternalFormatANDROID: "If externalFormat is zero, the effect is as if the VkExternalFormatANDROID structure was not present." if(externalFormatAndroid->externalFormat == 0) { break; } const VkFormat correspondingVkFormat = AHardwareBufferExternalMemory::GetVkFormatFromAHBFormat(externalFormatAndroid->externalFormat); ASSERT(pCreateInfo->format == VK_FORMAT_UNDEFINED || pCreateInfo->format == correspondingVkFormat); return correspondingVkFormat; } break; case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID: break; case VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID: break; #endif // We support these extensions, but they don't affect the image format. case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO: case VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR: case VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO: case VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO: break; case VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT: { // Explicitly ignored, since VK_EXT_image_drm_format_modifier is not supported } break; case VK_STRUCTURE_TYPE_MAX_ENUM: // dEQP tests that this value is ignored. break; default: UNSUPPORTED("pCreateInfo->pNext->sType = %s", vk::Stringify(nextInfo->sType).c_str()); break; } nextInfo = nextInfo->pNext; } return pCreateInfo->format; } } // anonymous namespace namespace vk { Image::Image(const VkImageCreateInfo *pCreateInfo, void *mem, Device *device) : device(device) , flags(pCreateInfo->flags) , imageType(pCreateInfo->imageType) , format(GetImageFormat(pCreateInfo)) , extent(pCreateInfo->extent) , mipLevels(pCreateInfo->mipLevels) , arrayLayers(pCreateInfo->arrayLayers) , samples(pCreateInfo->samples) , tiling(pCreateInfo->tiling) , usage(pCreateInfo->usage) { if(format.isCompressed()) { VkImageCreateInfo compressedImageCreateInfo = *pCreateInfo; compressedImageCreateInfo.format = format.getDecompressedFormat(); decompressedImage = new(mem) Image(&compressedImageCreateInfo, nullptr, device); } const auto *externalInfo = GetExtendedStruct(pCreateInfo->pNext, VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO); if(externalInfo) { supportedExternalMemoryHandleTypes = externalInfo->handleTypes; } } void Image::destroy(const VkAllocationCallbacks *pAllocator) { if(decompressedImage) { vk::freeHostMemory(decompressedImage, pAllocator); } } size_t Image::ComputeRequiredAllocationSize(const VkImageCreateInfo *pCreateInfo) { return Format(pCreateInfo->format).isCompressed() ? sizeof(Image) : 0; } const VkMemoryRequirements Image::getMemoryRequirements() const { VkMemoryRequirements memoryRequirements; memoryRequirements.alignment = vk::MEMORY_REQUIREMENTS_OFFSET_ALIGNMENT; memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT; memoryRequirements.size = getStorageSize(format.getAspects()) + (decompressedImage ? decompressedImage->getStorageSize(decompressedImage->format.getAspects()) : 0); return memoryRequirements; } void Image::getMemoryRequirements(VkMemoryRequirements2 *pMemoryRequirements) const { VkBaseOutStructure *extensionRequirements = reinterpret_cast(pMemoryRequirements->pNext); while(extensionRequirements) { switch(extensionRequirements->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { auto *requirements = reinterpret_cast(extensionRequirements); device->getRequirements(requirements); #if SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER if(getSupportedExternalMemoryHandleTypes() == VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) { requirements->prefersDedicatedAllocation = VK_TRUE; requirements->requiresDedicatedAllocation = VK_TRUE; } #endif } break; default: UNSUPPORTED("pMemoryRequirements->pNext sType = %s", vk::Stringify(extensionRequirements->sType).c_str()); break; } extensionRequirements = extensionRequirements->pNext; } pMemoryRequirements->memoryRequirements = getMemoryRequirements(); } size_t Image::getSizeInBytes(const VkImageSubresourceRange &subresourceRange) const { size_t size = 0; uint32_t lastLayer = getLastLayerIndex(subresourceRange); uint32_t lastMipLevel = getLastMipLevel(subresourceRange); uint32_t layerCount = lastLayer - subresourceRange.baseArrayLayer + 1; uint32_t mipLevelCount = lastMipLevel - subresourceRange.baseMipLevel + 1; auto aspect = static_cast(subresourceRange.aspectMask); if(layerCount > 1) { if(mipLevelCount < mipLevels) // Compute size for all layers except the last one, then add relevant mip level sizes only for last layer { size = (layerCount - 1) * getLayerSize(aspect); for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel) { size += getMultiSampledLevelSize(aspect, mipLevel); } } else // All mip levels used, compute full layer sizes { size = layerCount * getLayerSize(aspect); } } else // Single layer, add all mip levels in the subresource range { for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel) { size += getMultiSampledLevelSize(aspect, mipLevel); } } return size; } bool Image::canBindToMemory(DeviceMemory *pDeviceMemory) const { return pDeviceMemory->checkExternalMemoryHandleType(supportedExternalMemoryHandleTypes); } void Image::bind(DeviceMemory *pDeviceMemory, VkDeviceSize pMemoryOffset) { deviceMemory = pDeviceMemory; memoryOffset = pMemoryOffset; if(decompressedImage) { decompressedImage->deviceMemory = deviceMemory; decompressedImage->memoryOffset = memoryOffset + getStorageSize(format.getAspects()); } } #ifdef __ANDROID__ VkResult Image::prepareForExternalUseANDROID() const { VkExtent3D extent = getMipLevelExtent(VK_IMAGE_ASPECT_COLOR_BIT, 0); AHardwareBuffer_Desc ahbDesc = {}; ahbDesc.width = extent.width; ahbDesc.height = extent.height; ahbDesc.layers = 1; ahbDesc.format = static_cast(backingMemory.nativeBufferInfo.format); ahbDesc.usage = static_cast(backingMemory.nativeBufferInfo.usage); ahbDesc.stride = static_cast(backingMemory.nativeBufferInfo.stride); AHardwareBuffer *ahb = nullptr; if(AHardwareBuffer_createFromHandle(&ahbDesc, backingMemory.nativeBufferInfo.handle, AHARDWAREBUFFER_CREATE_FROM_HANDLE_METHOD_CLONE, &ahb) != 0) { return VK_ERROR_OUT_OF_DATE_KHR; } if(!ahb) { return VK_ERROR_OUT_OF_DATE_KHR; } ARect ahbRect = {}; ahbRect.left = 0; ahbRect.top = 0; ahbRect.right = static_cast(extent.width); ahbRect.bottom = static_cast(extent.height); AHardwareBuffer_Planes ahbPlanes = {}; if(AHardwareBuffer_lockPlanes(ahb, AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, /*fence=*/-1, &ahbRect, &ahbPlanes) != 0) { return VK_ERROR_OUT_OF_DATE_KHR; } int imageRowBytes = rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); int bufferRowBytes = backingMemory.nativeBufferInfo.stride * getFormat().bytes(); ASSERT(imageRowBytes <= bufferRowBytes); uint8_t *srcBuffer = static_cast(deviceMemory->getOffsetPointer(0)); uint8_t *dstBuffer = static_cast(ahbPlanes.planes[0].data); for(uint32_t i = 0; i < extent.height; i++) { memcpy(dstBuffer + (i * bufferRowBytes), srcBuffer + (i * imageRowBytes), imageRowBytes); } AHardwareBuffer_unlock(ahb, /*fence=*/nullptr); AHardwareBuffer_release(ahb); return VK_SUCCESS; } VkDeviceMemory Image::getExternalMemory() const { return backingMemory.externalMemory ? *deviceMemory : VkDeviceMemory{ VK_NULL_HANDLE }; } #endif void Image::getSubresourceLayout(const VkImageSubresource *pSubresource, VkSubresourceLayout *pLayout) const { // By spec, aspectMask has a single bit set. if(!((pSubresource->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || (pSubresource->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || (pSubresource->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) { UNSUPPORTED("aspectMask %X", pSubresource->aspectMask); } auto aspect = static_cast(pSubresource->aspectMask); pLayout->offset = getSubresourceOffset(aspect, pSubresource->mipLevel, pSubresource->arrayLayer); pLayout->size = getMultiSampledLevelSize(aspect, pSubresource->mipLevel); pLayout->rowPitch = rowPitchBytes(aspect, pSubresource->mipLevel); pLayout->depthPitch = slicePitchBytes(aspect, pSubresource->mipLevel); pLayout->arrayPitch = getLayerSize(aspect); } void Image::copyTo(Image *dstImage, const VkImageCopy2KHR ®ion) const { static constexpr VkImageAspectFlags CombinedDepthStencilAspects = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; if((region.srcSubresource.aspectMask == CombinedDepthStencilAspects) && (region.dstSubresource.aspectMask == CombinedDepthStencilAspects)) { // Depth and stencil can be specified together, copy each separately VkImageCopy2KHR singleAspectRegion = region; singleAspectRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; singleAspectRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; copySingleAspectTo(dstImage, singleAspectRegion); singleAspectRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; singleAspectRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; copySingleAspectTo(dstImage, singleAspectRegion); return; } copySingleAspectTo(dstImage, region); } void Image::copySingleAspectTo(Image *dstImage, const VkImageCopy2KHR ®ion) const { // Image copy does not perform any conversion, it simply copies memory from // an image to another image that has the same number of bytes per pixel. if(!((region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) { UNSUPPORTED("srcSubresource.aspectMask %X", region.srcSubresource.aspectMask); } if(!((region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) { UNSUPPORTED("dstSubresource.aspectMask %X", region.dstSubresource.aspectMask); } VkImageAspectFlagBits srcAspect = static_cast(region.srcSubresource.aspectMask); VkImageAspectFlagBits dstAspect = static_cast(region.dstSubresource.aspectMask); Format srcFormat = getFormat(srcAspect); Format dstFormat = dstImage->getFormat(dstAspect); int bytesPerBlock = srcFormat.bytesPerBlock(); ASSERT(bytesPerBlock == dstFormat.bytesPerBlock()); ASSERT(samples == dstImage->samples); VkExtent3D srcExtent = getMipLevelExtent(srcAspect, region.srcSubresource.mipLevel); VkExtent3D dstExtent = dstImage->getMipLevelExtent(dstAspect, region.dstSubresource.mipLevel); VkExtent3D copyExtent = imageExtentInBlocks(region.extent, srcAspect); VkImageType srcImageType = imageType; VkImageType dstImageType = dstImage->getImageType(); bool one3D = (srcImageType == VK_IMAGE_TYPE_3D) != (dstImageType == VK_IMAGE_TYPE_3D); bool both3D = (srcImageType == VK_IMAGE_TYPE_3D) && (dstImageType == VK_IMAGE_TYPE_3D); // Texel layout pitches, using the VkSubresourceLayout nomenclature. int srcRowPitch = rowPitchBytes(srcAspect, region.srcSubresource.mipLevel); int srcDepthPitch = slicePitchBytes(srcAspect, region.srcSubresource.mipLevel); int dstRowPitch = dstImage->rowPitchBytes(dstAspect, region.dstSubresource.mipLevel); int dstDepthPitch = dstImage->slicePitchBytes(dstAspect, region.dstSubresource.mipLevel); VkDeviceSize srcArrayPitch = getLayerSize(srcAspect); VkDeviceSize dstArrayPitch = dstImage->getLayerSize(dstAspect); // These are the pitches used when iterating over the layers that are being copied by the // vkCmdCopyImage command. They can differ from the above array piches because the spec states that: // "If one image is VK_IMAGE_TYPE_3D and the other image is VK_IMAGE_TYPE_2D with multiple // layers, then each slice is copied to or from a different layer." VkDeviceSize srcLayerPitch = (srcImageType == VK_IMAGE_TYPE_3D) ? srcDepthPitch : srcArrayPitch; VkDeviceSize dstLayerPitch = (dstImageType == VK_IMAGE_TYPE_3D) ? dstDepthPitch : dstArrayPitch; // If one image is 3D, extent.depth must match the layer count. If both images are 2D, // depth is 1 but the source and destination subresource layer count must match. uint32_t layerCount = one3D ? copyExtent.depth : region.srcSubresource.layerCount; // Copies between 2D and 3D images are treated as layers, so only use depth as the slice count when // both images are 3D. // Multisample images are currently implemented similar to 3D images by storing one sample per slice. // TODO(b/160600347): Store samples consecutively. uint32_t sliceCount = both3D ? copyExtent.depth : samples; bool isSingleSlice = (sliceCount == 1); bool isSingleRow = (copyExtent.height == 1) && isSingleSlice; // In order to copy multiple rows using a single memcpy call, we // have to make sure that we need to copy the entire row and that // both source and destination rows have the same size in bytes bool isEntireRow = (region.extent.width == srcExtent.width) && (region.extent.width == dstExtent.width) && // For non-compressed formats, blockWidth is 1. For compressed // formats, rowPitchBytes returns the number of bytes for a row of // blocks, so we have to divide by the block height, which means: // srcRowPitchBytes / srcBlockWidth == dstRowPitchBytes / dstBlockWidth // And, to avoid potential non exact integer division, for example if a // block has 16 bytes and represents 5 rows, we change the equation to: // srcRowPitchBytes * dstBlockWidth == dstRowPitchBytes * srcBlockWidth ((srcRowPitch * dstFormat.blockWidth()) == (dstRowPitch * srcFormat.blockWidth())); // In order to copy multiple slices using a single memcpy call, we // have to make sure that we need to copy the entire slice and that // both source and destination slices have the same size in bytes bool isEntireSlice = isEntireRow && (copyExtent.height == srcExtent.height) && (copyExtent.height == dstExtent.height) && (srcDepthPitch == dstDepthPitch); const uint8_t *srcLayer = static_cast(getTexelPointer(region.srcOffset, ImageSubresource(region.srcSubresource))); uint8_t *dstLayer = static_cast(dstImage->getTexelPointer(region.dstOffset, ImageSubresource(region.dstSubresource))); for(uint32_t layer = 0; layer < layerCount; layer++) { if(isSingleRow) // Copy one row { size_t copySize = copyExtent.width * bytesPerBlock; ASSERT((srcLayer + copySize) < end()); ASSERT((dstLayer + copySize) < dstImage->end()); memcpy(dstLayer, srcLayer, copySize); } else if(isEntireRow && isSingleSlice) // Copy one slice { size_t copySize = copyExtent.height * srcRowPitch; ASSERT((srcLayer + copySize) < end()); ASSERT((dstLayer + copySize) < dstImage->end()); memcpy(dstLayer, srcLayer, copySize); } else if(isEntireSlice) // Copy multiple slices { size_t copySize = sliceCount * srcDepthPitch; ASSERT((srcLayer + copySize) < end()); ASSERT((dstLayer + copySize) < dstImage->end()); memcpy(dstLayer, srcLayer, copySize); } else if(isEntireRow) // Copy slice by slice { size_t sliceSize = copyExtent.height * srcRowPitch; const uint8_t *srcSlice = srcLayer; uint8_t *dstSlice = dstLayer; for(uint32_t z = 0; z < sliceCount; z++) { ASSERT((srcSlice + sliceSize) < end()); ASSERT((dstSlice + sliceSize) < dstImage->end()); memcpy(dstSlice, srcSlice, sliceSize); dstSlice += dstDepthPitch; srcSlice += srcDepthPitch; } } else // Copy row by row { size_t rowSize = copyExtent.width * bytesPerBlock; const uint8_t *srcSlice = srcLayer; uint8_t *dstSlice = dstLayer; for(uint32_t z = 0; z < sliceCount; z++) { const uint8_t *srcRow = srcSlice; uint8_t *dstRow = dstSlice; for(uint32_t y = 0; y < copyExtent.height; y++) { ASSERT((srcRow + rowSize) < end()); ASSERT((dstRow + rowSize) < dstImage->end()); memcpy(dstRow, srcRow, rowSize); srcRow += srcRowPitch; dstRow += dstRowPitch; } srcSlice += srcDepthPitch; dstSlice += dstDepthPitch; } } srcLayer += srcLayerPitch; dstLayer += dstLayerPitch; } dstImage->contentsChanged(ImageSubresourceRange(region.dstSubresource)); } void Image::copy(const void *srcCopyMemory, void *dstCopyMemory, uint32_t rowLength, uint32_t imageHeight, const VkImageSubresourceLayers &imageSubresource, const VkOffset3D &imageCopyOffset, const VkExtent3D &imageCopyExtent) { // Decide on whether copying from buffer/memory or to buffer/memory ASSERT((srcCopyMemory == nullptr) != (dstCopyMemory == nullptr)); const bool memoryIsSource = srcCopyMemory != nullptr; switch(imageSubresource.aspectMask) { case VK_IMAGE_ASPECT_COLOR_BIT: case VK_IMAGE_ASPECT_DEPTH_BIT: case VK_IMAGE_ASPECT_STENCIL_BIT: case VK_IMAGE_ASPECT_PLANE_0_BIT: case VK_IMAGE_ASPECT_PLANE_1_BIT: case VK_IMAGE_ASPECT_PLANE_2_BIT: break; default: UNSUPPORTED("aspectMask %x", int(imageSubresource.aspectMask)); break; } auto aspect = static_cast(imageSubresource.aspectMask); Format copyFormat = getFormat(aspect); VkExtent3D imageExtent = imageExtentInBlocks(imageCopyExtent, aspect); if(imageExtent.width == 0 || imageExtent.height == 0 || imageExtent.depth == 0) { return; } VkExtent2D extent = bufferExtentInBlocks(Extent2D(imageExtent), rowLength, imageHeight, imageSubresource, imageCopyOffset); int bytesPerBlock = copyFormat.bytesPerBlock(); int memoryRowPitchBytes = extent.width * bytesPerBlock; int memorySlicePitchBytes = extent.height * memoryRowPitchBytes; ASSERT(samples == 1); uint8_t *imageMemory = static_cast(getTexelPointer(imageCopyOffset, ImageSubresource(imageSubresource))); const uint8_t *srcMemory = memoryIsSource ? static_cast(srcCopyMemory) : imageMemory; uint8_t *dstMemory = memoryIsSource ? imageMemory : static_cast(dstCopyMemory); int imageRowPitchBytes = rowPitchBytes(aspect, imageSubresource.mipLevel); int imageSlicePitchBytes = slicePitchBytes(aspect, imageSubresource.mipLevel); int srcSlicePitchBytes = memoryIsSource ? memorySlicePitchBytes : imageSlicePitchBytes; int dstSlicePitchBytes = memoryIsSource ? imageSlicePitchBytes : memorySlicePitchBytes; int srcRowPitchBytes = memoryIsSource ? memoryRowPitchBytes : imageRowPitchBytes; int dstRowPitchBytes = memoryIsSource ? imageRowPitchBytes : memoryRowPitchBytes; VkDeviceSize copySize = imageExtent.width * bytesPerBlock; VkDeviceSize imageLayerSize = getLayerSize(aspect); VkDeviceSize srcLayerSize = memoryIsSource ? memorySlicePitchBytes : imageLayerSize; VkDeviceSize dstLayerSize = memoryIsSource ? imageLayerSize : memorySlicePitchBytes; for(uint32_t i = 0; i < imageSubresource.layerCount; i++) { const uint8_t *srcLayerMemory = srcMemory; uint8_t *dstLayerMemory = dstMemory; for(uint32_t z = 0; z < imageExtent.depth; z++) { const uint8_t *srcSliceMemory = srcLayerMemory; uint8_t *dstSliceMemory = dstLayerMemory; for(uint32_t y = 0; y < imageExtent.height; y++) { ASSERT(((memoryIsSource ? dstSliceMemory : srcSliceMemory) + copySize) < end()); memcpy(dstSliceMemory, srcSliceMemory, copySize); srcSliceMemory += srcRowPitchBytes; dstSliceMemory += dstRowPitchBytes; } srcLayerMemory += srcSlicePitchBytes; dstLayerMemory += dstSlicePitchBytes; } srcMemory += srcLayerSize; dstMemory += dstLayerSize; } if(memoryIsSource) { contentsChanged(ImageSubresourceRange(imageSubresource)); } } void Image::copyTo(Buffer *dstBuffer, const VkBufferImageCopy2KHR ®ion) { copy(nullptr, dstBuffer->getOffsetPointer(region.bufferOffset), region.bufferRowLength, region.bufferImageHeight, region.imageSubresource, region.imageOffset, region.imageExtent); } void Image::copyFrom(Buffer *srcBuffer, const VkBufferImageCopy2KHR ®ion) { copy(srcBuffer->getOffsetPointer(region.bufferOffset), nullptr, region.bufferRowLength, region.bufferImageHeight, region.imageSubresource, region.imageOffset, region.imageExtent); } void Image::copyToMemory(const VkImageToMemoryCopyEXT ®ion) { copy(nullptr, region.pHostPointer, region.memoryRowLength, region.memoryImageHeight, region.imageSubresource, region.imageOffset, region.imageExtent); } void Image::copyFromMemory(const VkMemoryToImageCopyEXT ®ion) { copy(region.pHostPointer, nullptr, region.memoryRowLength, region.memoryImageHeight, region.imageSubresource, region.imageOffset, region.imageExtent); } void *Image::getTexelPointer(const VkOffset3D &offset, const VkImageSubresource &subresource) const { VkImageAspectFlagBits aspect = static_cast(subresource.aspectMask); return deviceMemory->getOffsetPointer(getMemoryOffset(aspect) + texelOffsetBytesInStorage(offset, subresource) + getSubresourceOffset(aspect, subresource.mipLevel, subresource.arrayLayer)); } VkExtent3D Image::imageExtentInBlocks(const VkExtent3D &extent, VkImageAspectFlagBits aspect) const { VkExtent3D adjustedExtent = extent; Format usedFormat = getFormat(aspect); if(usedFormat.isCompressed()) { // When using a compressed format, we use the block as the base unit, instead of the texel int blockWidth = usedFormat.blockWidth(); int blockHeight = usedFormat.blockHeight(); // Mip level allocations will round up to the next block for compressed texture adjustedExtent.width = ((adjustedExtent.width + blockWidth - 1) / blockWidth); adjustedExtent.height = ((adjustedExtent.height + blockHeight - 1) / blockHeight); } return adjustedExtent; } VkOffset3D Image::imageOffsetInBlocks(const VkOffset3D &offset, VkImageAspectFlagBits aspect) const { VkOffset3D adjustedOffset = offset; Format usedFormat = getFormat(aspect); if(usedFormat.isCompressed()) { // When using a compressed format, we use the block as the base unit, instead of the texel int blockWidth = usedFormat.blockWidth(); int blockHeight = usedFormat.blockHeight(); ASSERT(((offset.x % blockWidth) == 0) && ((offset.y % blockHeight) == 0)); // We can't offset within a block adjustedOffset.x /= blockWidth; adjustedOffset.y /= blockHeight; } return adjustedOffset; } VkExtent2D Image::bufferExtentInBlocks(const VkExtent2D &extent, uint32_t rowLength, uint32_t imageHeight, const VkImageSubresourceLayers &imageSubresource, const VkOffset3D &imageOffset) const { VkExtent2D adjustedExtent = extent; VkImageAspectFlagBits aspect = static_cast(imageSubresource.aspectMask); Format usedFormat = getFormat(aspect); if(rowLength != 0) { adjustedExtent.width = rowLength; if(usedFormat.isCompressed()) { int blockWidth = usedFormat.blockWidth(); ASSERT((adjustedExtent.width % blockWidth == 0) || (adjustedExtent.width + imageOffset.x == extent.width)); adjustedExtent.width = (rowLength + blockWidth - 1) / blockWidth; } } if(imageHeight != 0) { adjustedExtent.height = imageHeight; if(usedFormat.isCompressed()) { int blockHeight = usedFormat.blockHeight(); ASSERT((adjustedExtent.height % blockHeight == 0) || (adjustedExtent.height + imageOffset.y == extent.height)); adjustedExtent.height = (imageHeight + blockHeight - 1) / blockHeight; } } return adjustedExtent; } int Image::borderSize() const { // We won't add a border to compressed cube textures, we'll add it when we decompress the texture return (isCubeCompatible() && !format.isCompressed()) ? 1 : 0; } VkDeviceSize Image::texelOffsetBytesInStorage(const VkOffset3D &offset, const VkImageSubresource &subresource) const { VkImageAspectFlagBits aspect = static_cast(subresource.aspectMask); VkOffset3D adjustedOffset = imageOffsetInBlocks(offset, aspect); int border = borderSize(); return adjustedOffset.z * slicePitchBytes(aspect, subresource.mipLevel) + (adjustedOffset.y + border) * rowPitchBytes(aspect, subresource.mipLevel) + (adjustedOffset.x + border) * getFormat(aspect).bytesPerBlock(); } VkExtent3D Image::getMipLevelExtent(VkImageAspectFlagBits aspect, uint32_t mipLevel) const { VkExtent3D mipLevelExtent; mipLevelExtent.width = extent.width >> mipLevel; mipLevelExtent.height = extent.height >> mipLevel; mipLevelExtent.depth = extent.depth >> mipLevel; if(mipLevelExtent.width == 0) { mipLevelExtent.width = 1; } if(mipLevelExtent.height == 0) { mipLevelExtent.height = 1; } if(mipLevelExtent.depth == 0) { mipLevelExtent.depth = 1; } switch(aspect) { case VK_IMAGE_ASPECT_COLOR_BIT: case VK_IMAGE_ASPECT_DEPTH_BIT: case VK_IMAGE_ASPECT_STENCIL_BIT: case VK_IMAGE_ASPECT_PLANE_0_BIT: // Vulkan 1.1 Table 31. Plane Format Compatibility Table: plane 0 of all defined formats is full resolution. break; case VK_IMAGE_ASPECT_PLANE_1_BIT: case VK_IMAGE_ASPECT_PLANE_2_BIT: switch(format) { case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: ASSERT(mipLevelExtent.width % 2 == 0 && mipLevelExtent.height % 2 == 0); // Vulkan 1.1: "Images in this format must be defined with a width and height that is a multiple of two." // Vulkan 1.1 Table 31. Plane Format Compatibility Table: // Half-resolution U and V planes. mipLevelExtent.width /= 2; mipLevelExtent.height /= 2; break; default: UNSUPPORTED("format %d", int(format)); } break; default: UNSUPPORTED("aspect %x", int(aspect)); } return mipLevelExtent; } size_t Image::rowPitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const { if(deviceMemory && deviceMemory->hasExternalImagePlanes()) { return deviceMemory->externalImageRowPitchBytes(aspect); } // Depth and Stencil pitch should be computed separately ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel); Format usedFormat = getFormat(aspect); if(usedFormat.isCompressed()) { VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect); return extentInBlocks.width * usedFormat.bytesPerBlock(); } return usedFormat.pitchB(mipLevelExtent.width, borderSize()); } size_t Image::slicePitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const { // Depth and Stencil slice should be computed separately ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel); Format usedFormat = getFormat(aspect); if(usedFormat.isCompressed()) { VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect); return extentInBlocks.height * extentInBlocks.width * usedFormat.bytesPerBlock(); } return usedFormat.sliceB(mipLevelExtent.width, mipLevelExtent.height, borderSize()); } Format Image::getFormat(VkImageAspectFlagBits aspect) const { return format.getAspectFormat(aspect); } bool Image::isCubeCompatible() const { bool cubeCompatible = (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT); ASSERT(!cubeCompatible || (imageType == VK_IMAGE_TYPE_2D)); // VUID-VkImageCreateInfo-flags-00949 ASSERT(!cubeCompatible || (arrayLayers >= 6)); // VUID-VkImageCreateInfo-imageType-00954 return cubeCompatible; } uint8_t *Image::end() const { return reinterpret_cast(deviceMemory->getOffsetPointer(deviceMemory->getCommittedMemoryInBytes() + 1)); } VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect) const { if(deviceMemory && deviceMemory->hasExternalImagePlanes()) { return deviceMemory->externalImageMemoryOffset(aspect); } return memoryOffset; } VkDeviceSize Image::getAspectOffset(VkImageAspectFlagBits aspect) const { switch(format) { case VK_FORMAT_D16_UNORM_S8_UINT: case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_D32_SFLOAT_S8_UINT: if(aspect == VK_IMAGE_ASPECT_STENCIL_BIT) { // Offset by depth buffer to get to stencil buffer return getStorageSize(VK_IMAGE_ASPECT_DEPTH_BIT); } break; case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: if(aspect == VK_IMAGE_ASPECT_PLANE_2_BIT) { return getStorageSize(VK_IMAGE_ASPECT_PLANE_1_BIT) + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT); } // Fall through to 2PLANE case: case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: if(aspect == VK_IMAGE_ASPECT_PLANE_1_BIT) { return getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT); } else { ASSERT(aspect == VK_IMAGE_ASPECT_PLANE_0_BIT); return 0; } break; default: break; } return 0; } VkDeviceSize Image::getSubresourceOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel, uint32_t layer) const { // "If the image is disjoint, then the offset is relative to the base address of the plane. // If the image is non-disjoint, then the offset is relative to the base address of the image." // Multi-plane external images are essentially disjoint. bool disjoint = (flags & VK_IMAGE_CREATE_DISJOINT_BIT) || (deviceMemory && deviceMemory->hasExternalImagePlanes()); VkDeviceSize offset = !disjoint ? getAspectOffset(aspect) : 0; for(uint32_t i = 0; i < mipLevel; i++) { offset += getMultiSampledLevelSize(aspect, i); } return offset + layer * getLayerOffset(aspect, mipLevel); } VkDeviceSize Image::getMipLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const { return slicePitchBytes(aspect, mipLevel) * getMipLevelExtent(aspect, mipLevel).depth; } VkDeviceSize Image::getMultiSampledLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const { return getMipLevelSize(aspect, mipLevel) * samples; } bool Image::is3DSlice() const { return ((imageType == VK_IMAGE_TYPE_3D) && (flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT)); } VkDeviceSize Image::getLayerOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const { if(is3DSlice()) { // When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D // image's mip level in order to create a 2D or 2D array image view of a 3D image created with // VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and layerCount specify the first // slice index and the number of slices to include in the created image view. ASSERT(samples == VK_SAMPLE_COUNT_1_BIT); // Offset to the proper slice of the 3D image's mip level return slicePitchBytes(aspect, mipLevel); } return getLayerSize(aspect); } VkDeviceSize Image::getLayerSize(VkImageAspectFlagBits aspect) const { VkDeviceSize layerSize = 0; for(uint32_t mipLevel = 0; mipLevel < mipLevels; ++mipLevel) { layerSize += getMultiSampledLevelSize(aspect, mipLevel); } return layerSize; } VkDeviceSize Image::getStorageSize(VkImageAspectFlags aspectMask) const { if((aspectMask & ~(VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT)) != 0) { UNSUPPORTED("aspectMask %x", int(aspectMask)); } VkDeviceSize storageSize = 0; if(aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_COLOR_BIT); if(aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_DEPTH_BIT); if(aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_STENCIL_BIT); if(aspectMask & VK_IMAGE_ASPECT_PLANE_0_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_0_BIT); if(aspectMask & VK_IMAGE_ASPECT_PLANE_1_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_1_BIT); if(aspectMask & VK_IMAGE_ASPECT_PLANE_2_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_2_BIT); return arrayLayers * storageSize; } const Image *Image::getSampledImage(const vk::Format &imageViewFormat) const { bool isImageViewCompressed = imageViewFormat.isCompressed(); if(decompressedImage && !isImageViewCompressed) { ASSERT(flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT); ASSERT(format.bytesPerBlock() == imageViewFormat.bytesPerBlock()); } // If the ImageView's format is compressed, then we do need to decompress the image so that // it may be sampled properly by texture sampling functions, which don't support compressed // textures. If the ImageView's format is NOT compressed, then we reinterpret cast the // compressed image into the ImageView's format, so we must return the compressed image as is. return (decompressedImage && isImageViewCompressed) ? decompressedImage : this; } void Image::blitTo(Image *dstImage, const VkImageBlit2KHR ®ion, VkFilter filter) const { prepareForSampling(ImageSubresourceRange(region.srcSubresource)); device->getBlitter()->blit(decompressedImage ? decompressedImage : this, dstImage, region, filter); } void Image::copyTo(uint8_t *dst, unsigned int dstPitch) const { device->getBlitter()->copy(this, dst, dstPitch); } void Image::resolveTo(Image *dstImage, const VkImageResolve2KHR ®ion) const { device->getBlitter()->resolve(this, dstImage, region); } void Image::resolveDepthStencilTo(const ImageView *src, ImageView *dst, VkResolveModeFlagBits depthResolveMode, VkResolveModeFlagBits stencilResolveMode) const { device->getBlitter()->resolveDepthStencil(src, dst, depthResolveMode, stencilResolveMode); } uint32_t Image::getLastLayerIndex(const VkImageSubresourceRange &subresourceRange) const { return ((subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS) ? arrayLayers : (subresourceRange.baseArrayLayer + subresourceRange.layerCount)) - 1; } uint32_t Image::getLastMipLevel(const VkImageSubresourceRange &subresourceRange) const { return ((subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS) ? mipLevels : (subresourceRange.baseMipLevel + subresourceRange.levelCount)) - 1; } void Image::clear(const void *pixelData, VkFormat pixelFormat, const vk::Format &viewFormat, const VkImageSubresourceRange &subresourceRange, const VkRect2D *renderArea) { device->getBlitter()->clear(pixelData, pixelFormat, this, viewFormat, subresourceRange, renderArea); } void Image::clear(const VkClearColorValue &color, const VkImageSubresourceRange &subresourceRange) { ASSERT(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); clear(color.float32, format.getClearFormat(), format, subresourceRange, nullptr); } void Image::clear(const VkClearDepthStencilValue &color, const VkImageSubresourceRange &subresourceRange) { ASSERT((subresourceRange.aspectMask & ~(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) == 0); if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { VkImageSubresourceRange depthSubresourceRange = subresourceRange; depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clear(&color.depth, VK_FORMAT_D32_SFLOAT, format, depthSubresourceRange, nullptr); } if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) { VkImageSubresourceRange stencilSubresourceRange = subresourceRange; stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; clear(&color.stencil, VK_FORMAT_S8_UINT, format, stencilSubresourceRange, nullptr); } } void Image::clear(const VkClearValue &clearValue, const vk::Format &viewFormat, const VkRect2D &renderArea, const VkImageSubresourceRange &subresourceRange) { ASSERT((subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || (subresourceRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))); if(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) { clear(clearValue.color.float32, viewFormat.getClearFormat(), viewFormat, subresourceRange, &renderArea); } else { if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { VkImageSubresourceRange depthSubresourceRange = subresourceRange; depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clear(&clearValue.depthStencil.depth, VK_FORMAT_D32_SFLOAT, viewFormat, depthSubresourceRange, &renderArea); } if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) { VkImageSubresourceRange stencilSubresourceRange = subresourceRange; stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; clear(&clearValue.depthStencil.stencil, VK_FORMAT_S8_UINT, viewFormat, stencilSubresourceRange, &renderArea); } } } bool Image::requiresPreprocessing() const { return isCubeCompatible() || decompressedImage; } void Image::contentsChanged(const VkImageSubresourceRange &subresourceRange, ContentsChangedContext contentsChangedContext) { // If this function is called after (possibly) writing to this image from a shader, // this must have the VK_IMAGE_USAGE_STORAGE_BIT set for the write operation to be // valid. Otherwise, we can't have legally written to this image, so we know we can // skip updating dirtyResources. if((contentsChangedContext == USING_STORAGE) && !(usage & VK_IMAGE_USAGE_STORAGE_BIT)) { return; } // If this isn't a cube or a compressed image, we'll never need dirtyResources, // so we can skip updating dirtyResources if(!requiresPreprocessing()) { return; } uint32_t lastLayer = getLastLayerIndex(subresourceRange); uint32_t lastMipLevel = getLastMipLevel(subresourceRange); VkImageSubresource subresource = { subresourceRange.aspectMask, subresourceRange.baseMipLevel, subresourceRange.baseArrayLayer }; marl::lock lock(mutex); for(subresource.arrayLayer = subresourceRange.baseArrayLayer; subresource.arrayLayer <= lastLayer; subresource.arrayLayer++) { for(subresource.mipLevel = subresourceRange.baseMipLevel; subresource.mipLevel <= lastMipLevel; subresource.mipLevel++) { dirtySubresources.insert(subresource); } } } void Image::prepareForSampling(const VkImageSubresourceRange &subresourceRange) const { // If this isn't a cube or a compressed image, there's nothing to do if(!requiresPreprocessing()) { return; } uint32_t lastLayer = getLastLayerIndex(subresourceRange); uint32_t lastMipLevel = getLastMipLevel(subresourceRange); VkImageSubresource subresource = { subresourceRange.aspectMask, subresourceRange.baseMipLevel, subresourceRange.baseArrayLayer }; marl::lock lock(mutex); if(dirtySubresources.empty()) { return; } // First, decompress all relevant dirty subregions if(decompressedImage) { for(subresource.mipLevel = subresourceRange.baseMipLevel; subresource.mipLevel <= lastMipLevel; subresource.mipLevel++) { for(subresource.arrayLayer = subresourceRange.baseArrayLayer; subresource.arrayLayer <= lastLayer; subresource.arrayLayer++) { auto it = dirtySubresources.find(subresource); if(it != dirtySubresources.end()) { decompress(subresource); } } } } // Second, update cubemap borders if(isCubeCompatible()) { for(subresource.mipLevel = subresourceRange.baseMipLevel; subresource.mipLevel <= lastMipLevel; subresource.mipLevel++) { for(subresource.arrayLayer = subresourceRange.baseArrayLayer; subresource.arrayLayer <= lastLayer; subresource.arrayLayer++) { auto it = dirtySubresources.find(subresource); if(it != dirtySubresources.end()) { // Since cube faces affect each other's borders, we update all 6 layers. subresource.arrayLayer -= subresource.arrayLayer % 6; // Round down to a multiple of 6. if(subresource.arrayLayer + 5 <= lastLayer) { device->getBlitter()->updateBorders(decompressedImage ? decompressedImage : this, subresource); } subresource.arrayLayer += 5; // Together with the loop increment, advances to the next cube. } } } } // Finally, mark all updated subregions clean for(subresource.mipLevel = subresourceRange.baseMipLevel; subresource.mipLevel <= lastMipLevel; subresource.mipLevel++) { for(subresource.arrayLayer = subresourceRange.baseArrayLayer; subresource.arrayLayer <= lastLayer; subresource.arrayLayer++) { auto it = dirtySubresources.find(subresource); if(it != dirtySubresources.end()) { dirtySubresources.erase(it); } } } } void Image::decompress(const VkImageSubresource &subresource) const { switch(format) { case VK_FORMAT_EAC_R11_UNORM_BLOCK: case VK_FORMAT_EAC_R11_SNORM_BLOCK: case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: decodeETC2(subresource); break; case VK_FORMAT_BC1_RGB_UNORM_BLOCK: case VK_FORMAT_BC1_RGB_SRGB_BLOCK: case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: case VK_FORMAT_BC2_UNORM_BLOCK: case VK_FORMAT_BC2_SRGB_BLOCK: case VK_FORMAT_BC3_UNORM_BLOCK: case VK_FORMAT_BC3_SRGB_BLOCK: case VK_FORMAT_BC4_UNORM_BLOCK: case VK_FORMAT_BC4_SNORM_BLOCK: case VK_FORMAT_BC5_UNORM_BLOCK: case VK_FORMAT_BC5_SNORM_BLOCK: case VK_FORMAT_BC6H_UFLOAT_BLOCK: case VK_FORMAT_BC6H_SFLOAT_BLOCK: case VK_FORMAT_BC7_UNORM_BLOCK: case VK_FORMAT_BC7_SRGB_BLOCK: decodeBC(subresource); break; case VK_FORMAT_ASTC_4x4_UNORM_BLOCK: case VK_FORMAT_ASTC_5x4_UNORM_BLOCK: case VK_FORMAT_ASTC_5x5_UNORM_BLOCK: case VK_FORMAT_ASTC_6x5_UNORM_BLOCK: case VK_FORMAT_ASTC_6x6_UNORM_BLOCK: case VK_FORMAT_ASTC_8x5_UNORM_BLOCK: case VK_FORMAT_ASTC_8x6_UNORM_BLOCK: case VK_FORMAT_ASTC_8x8_UNORM_BLOCK: case VK_FORMAT_ASTC_10x5_UNORM_BLOCK: case VK_FORMAT_ASTC_10x6_UNORM_BLOCK: case VK_FORMAT_ASTC_10x8_UNORM_BLOCK: case VK_FORMAT_ASTC_10x10_UNORM_BLOCK: case VK_FORMAT_ASTC_12x10_UNORM_BLOCK: case VK_FORMAT_ASTC_12x12_UNORM_BLOCK: case VK_FORMAT_ASTC_4x4_SRGB_BLOCK: case VK_FORMAT_ASTC_5x4_SRGB_BLOCK: case VK_FORMAT_ASTC_5x5_SRGB_BLOCK: case VK_FORMAT_ASTC_6x5_SRGB_BLOCK: case VK_FORMAT_ASTC_6x6_SRGB_BLOCK: case VK_FORMAT_ASTC_8x5_SRGB_BLOCK: case VK_FORMAT_ASTC_8x6_SRGB_BLOCK: case VK_FORMAT_ASTC_8x8_SRGB_BLOCK: case VK_FORMAT_ASTC_10x5_SRGB_BLOCK: case VK_FORMAT_ASTC_10x6_SRGB_BLOCK: case VK_FORMAT_ASTC_10x8_SRGB_BLOCK: case VK_FORMAT_ASTC_10x10_SRGB_BLOCK: case VK_FORMAT_ASTC_12x10_SRGB_BLOCK: case VK_FORMAT_ASTC_12x12_SRGB_BLOCK: decodeASTC(subresource); break; default: UNSUPPORTED("Compressed format %d", (VkFormat)format); break; } } void Image::decodeETC2(const VkImageSubresource &subresource) const { ASSERT(decompressedImage); ETC_Decoder::InputType inputType = GetInputType(format); int bytes = decompressedImage->format.bytes(); bool fakeAlpha = (format == VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK) || (format == VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK); size_t sizeToWrite = 0; VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast(subresource.aspectMask), subresource.mipLevel); int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); if(fakeAlpha) { // To avoid overflow in case of cube textures, which are offset in memory to account for the border, // compute the size from the first pixel to the last pixel, excluding any padding or border before // the first pixel or after the last pixel. sizeToWrite = ((mipLevelExtent.height - 1) * pitchB) + (mipLevelExtent.width * bytes); } for(int32_t depth = 0; depth < static_cast(mipLevelExtent.depth); depth++) { uint8_t *source = static_cast(getTexelPointer({ 0, 0, depth }, subresource)); uint8_t *dest = static_cast(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource)); if(fakeAlpha) { ASSERT((dest + sizeToWrite) < decompressedImage->end()); memset(dest, 0xFF, sizeToWrite); } ETC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, pitchB, bytes, inputType); } } void Image::decodeBC(const VkImageSubresource &subresource) const { ASSERT(decompressedImage); int n = GetBCn(format); int noAlphaU = GetNoAlphaOrUnsigned(format); int bytes = decompressedImage->format.bytes(); VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast(subresource.aspectMask), subresource.mipLevel); int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); for(int32_t depth = 0; depth < static_cast(mipLevelExtent.depth); depth++) { uint8_t *source = static_cast(getTexelPointer({ 0, 0, depth }, subresource)); uint8_t *dest = static_cast(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource)); BC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, pitchB, bytes, n, noAlphaU); } } void Image::decodeASTC(const VkImageSubresource &subresource) const { ASSERT(decompressedImage); int xBlockSize = format.blockWidth(); int yBlockSize = format.blockHeight(); int zBlockSize = 1; bool isUnsigned = format.isUnsignedComponent(0); int bytes = decompressedImage->format.bytes(); VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast(subresource.aspectMask), subresource.mipLevel); int xblocks = (mipLevelExtent.width + xBlockSize - 1) / xBlockSize; int yblocks = (mipLevelExtent.height + yBlockSize - 1) / yBlockSize; int zblocks = (zBlockSize > 1) ? (mipLevelExtent.depth + zBlockSize - 1) / zBlockSize : 1; if(xblocks <= 0 || yblocks <= 0 || zblocks <= 0) { return; } int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); int sliceB = decompressedImage->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); for(int32_t depth = 0; depth < static_cast(mipLevelExtent.depth); depth++) { uint8_t *source = static_cast(getTexelPointer({ 0, 0, depth }, subresource)); uint8_t *dest = static_cast(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource)); ASTC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, mipLevelExtent.depth, bytes, pitchB, sliceB, xBlockSize, yBlockSize, zBlockSize, xblocks, yblocks, zblocks, isUnsigned); } } } // namespace vk