// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "ShaderCore.hpp" #include "Device/Renderer.hpp" #include "Reactor/Assert.hpp" #include "System/Debug.hpp" #include // TODO(chromium:1299047) #ifndef SWIFTSHADER_LEGACY_PRECISION # define SWIFTSHADER_LEGACY_PRECISION false #endif namespace sw { Vector4s::Vector4s() { } Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) { this->x = Short4(x); this->y = Short4(y); this->z = Short4(z); this->w = Short4(w); } Vector4s::Vector4s(const Vector4s &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; } Vector4s &Vector4s::operator=(const Vector4s &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; return *this; } Short4 &Vector4s::operator[](int i) { switch(i) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; } return x; } Vector4f::Vector4f() { } Vector4f::Vector4f(float x, float y, float z, float w) { this->x = Float4(x); this->y = Float4(y); this->z = Float4(z); this->w = Float4(w); } Vector4f::Vector4f(const Vector4f &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; } Vector4f &Vector4f::operator=(const Vector4f &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; return *this; } Float4 &Vector4f::operator[](int i) { switch(i) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; } return x; } Vector4i::Vector4i() { } Vector4i::Vector4i(int x, int y, int z, int w) { this->x = Int4(x); this->y = Int4(y); this->z = Int4(z); this->w = Int4(w); } Vector4i::Vector4i(const Vector4i &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; } Vector4i &Vector4i::operator=(const Vector4i &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; return *this; } Int4 &Vector4i::operator[](int i) { switch(i) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; } return x; } // Approximation of atan in [0..1] static RValue Atan_01(SIMD::Float x) { // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun const SIMD::Float a2(-0.3333314528f); const SIMD::Float a4(0.1999355085f); const SIMD::Float a6(-0.1420889944f); const SIMD::Float a8(0.1065626393f); const SIMD::Float a10(-0.0752896400f); const SIMD::Float a12(0.0429096138f); const SIMD::Float a14(-0.0161657367f); const SIMD::Float a16(0.0028662257f); SIMD::Float x2 = x * x; return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); } // Polynomial approximation of order 5 for sin(x * 2 * pi) in the range [-1/4, 1/4] static RValue Sin5(SIMD::Float x) { // A * x^5 + B * x^3 + C * x // Exact at x = 0, 1/12, 1/6, 1/4, and their negatives, which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2 const SIMD::Float A = (36288 - 20736 * sqrt(3)) / 5; const SIMD::Float B = 288 * sqrt(3) - 540; const SIMD::Float C = (47 - 9 * sqrt(3)) / 5; SIMD::Float x2 = x * x; return MulAdd(MulAdd(A, x2, B), x2, C) * x; } RValue Sin(RValue x, bool relaxedPrecision) { const SIMD::Float q = 0.25f; const SIMD::Float pi2 = 1 / (2 * 3.1415926535f); // Range reduction and mirroring SIMD::Float x_2 = MulAdd(x, -pi2, q); SIMD::Float z = q - Abs(x_2 - Round(x_2)); return Sin5(z); } RValue Cos(RValue x, bool relaxedPrecision) { const SIMD::Float q = 0.25f; const SIMD::Float pi2 = 1 / (2 * 3.1415926535f); // Phase shift, range reduction, and mirroring SIMD::Float x_2 = x * pi2; SIMD::Float z = q - Abs(x_2 - Round(x_2)); return Sin5(z); } RValue Tan(RValue x, bool relaxedPrecision) { return Sin(x, relaxedPrecision) / Cos(x, relaxedPrecision); } static RValue Asin_4_terms(RValue x) { // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun // |e(x)| <= 5e-8 const SIMD::Float half_pi(1.57079632f); const SIMD::Float a0(1.5707288f); const SIMD::Float a1(-0.2121144f); const SIMD::Float a2(0.0742610f); const SIMD::Float a3(-0.0187293f); SIMD::Float absx = Abs(x); return As(As(half_pi - Sqrt(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ (As(x) & SIMD::Int(0x80000000))); } static RValue Asin_8_terms(RValue x) { // From 4.4.46, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun // |e(x)| <= 0e-8 const SIMD::Float half_pi(1.5707963268f); const SIMD::Float a0(1.5707963050f); const SIMD::Float a1(-0.2145988016f); const SIMD::Float a2(0.0889789874f); const SIMD::Float a3(-0.0501743046f); const SIMD::Float a4(0.0308918810f); const SIMD::Float a5(-0.0170881256f); const SIMD::Float a6(0.006700901f); const SIMD::Float a7(-0.0012624911f); SIMD::Float absx = Abs(x); return As(As(half_pi - Sqrt(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * (a3 + absx * (a4 + absx * (a5 + absx * (a6 + absx * a7)))))))) ^ (As(x) & SIMD::Int(0x80000000))); } RValue Asin(RValue x, bool relaxedPrecision) { // TODO(b/169755566): Surprisingly, deqp-vk's precision.acos.highp/mediump tests pass when using the 4-term polynomial // approximation version of acos, unlike for Asin, which requires higher precision algorithms. if(!relaxedPrecision) { return Asin(x); } return Asin_8_terms(x); } RValue Acos(RValue x, bool relaxedPrecision) { // pi/2 - arcsin(x) return 1.57079632e+0f - Asin_4_terms(x); } RValue Atan(RValue x, bool relaxedPrecision) { SIMD::Float absx = Abs(x); SIMD::Int O = CmpNLT(absx, 1.0f); SIMD::Float y = As((O & As(1.0f / absx)) | (~O & As(absx))); // FIXME: Vector select const SIMD::Float half_pi(1.57079632f); SIMD::Float theta = Atan_01(y); return As(((O & As(half_pi - theta)) | (~O & As(theta))) ^ // FIXME: Vector select (As(x) & SIMD::Int(0x80000000))); } RValue Atan2(RValue y, RValue x, bool relaxedPrecision) { const SIMD::Float pi(3.14159265f); // pi const SIMD::Float minus_pi(-3.14159265f); // -pi const SIMD::Float half_pi(1.57079632f); // pi/2 const SIMD::Float quarter_pi(7.85398163e-1f); // pi/4 // Rotate to upper semicircle when in lower semicircle SIMD::Int S = CmpLT(y, 0.0f); SIMD::Float theta = As(S & As(minus_pi)); SIMD::Float x0 = As((As(y) & SIMD::Int(0x80000000)) ^ As(x)); SIMD::Float y0 = Abs(y); // Rotate to right quadrant when in left quadrant SIMD::Int Q = CmpLT(x0, 0.0f); theta += As(Q & As(half_pi)); SIMD::Float x1 = As((Q & As(y0)) | (~Q & As(x0))); // FIXME: Vector select SIMD::Float y1 = As((Q & As(-x0)) | (~Q & As(y0))); // FIXME: Vector select // Mirror to first octant when in second octant SIMD::Int O = CmpNLT(y1, x1); SIMD::Float x2 = As((O & As(y1)) | (~O & As(x1))); // FIXME: Vector select SIMD::Float y2 = As((O & As(x1)) | (~O & As(y1))); // FIXME: Vector select // Approximation of atan in [0..1] SIMD::Int zero_x = CmpEQ(x2, 0.0f); SIMD::Int inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 SIMD::Float atan2_theta = Atan_01(y2 / x2); theta += As((~zero_x & ~inf_y & ((O & As(half_pi - atan2_theta)) | (~O & (As(atan2_theta))))) | // FIXME: Vector select (inf_y & As(quarter_pi))); // Recover loss of precision for tiny theta angles // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta SIMD::Int precision_loss = S & Q & O & ~inf_y; return As((precision_loss & As(-atan2_theta)) | (~precision_loss & As(theta))); // FIXME: Vector select } // TODO(chromium:1299047) static RValue Exp2_legacy(RValue x0) { SIMD::Int i = RoundInt(x0 - 0.5f); SIMD::Float ii = As((i + SIMD::Int(127)) << 23); SIMD::Float f = x0 - SIMD::Float(i); SIMD::Float ff = As(SIMD::Int(0x3AF61905)); ff = ff * f + As(SIMD::Int(0x3C134806)); ff = ff * f + As(SIMD::Int(0x3D64AA23)); ff = ff * f + As(SIMD::Int(0x3E75EAD4)); ff = ff * f + As(SIMD::Int(0x3F31727B)); ff = ff * f + 1.0f; return ii * ff; } RValue Exp2(RValue x, bool relaxedPrecision) { // Clamp to prevent overflow past the representation of infinity. SIMD::Float x0 = x; x0 = Min(x0, 128.0f); x0 = Max(x0, As(SIMD::Int(0xC2FDFFFF))); // -126.999992 if(SWIFTSHADER_LEGACY_PRECISION) // TODO(chromium:1299047) { return Exp2_legacy(x0); } SIMD::Float xi = Floor(x0); SIMD::Float f = x0 - xi; if(!relaxedPrecision) // highp { // Polynomial which approximates (2^x-x-1)/x. Multiplying with x // gives us a correction term to be added to 1+x to obtain 2^x. const SIMD::Float a = 1.8852974e-3f; const SIMD::Float b = 8.9733787e-3f; const SIMD::Float c = 5.5835927e-2f; const SIMD::Float d = 2.4015281e-1f; const SIMD::Float e = -3.0684753e-1f; SIMD::Float r = MulAdd(MulAdd(MulAdd(MulAdd(a, f, b), f, c), f, d), f, e); // bit_cast(int(x * 2^23)) is a piecewise linear approximation of 2^x. // See "Fast Exponential Computation on SIMD Architectures" by Malossi et al. SIMD::Float y = MulAdd(r, f, x0); SIMD::Int i = SIMD::Int(y * (1 << 23)) + (127 << 23); return As(i); } else // RelaxedPrecision / mediump { // Polynomial which approximates (2^x-x-1)/x. Multiplying with x // gives us a correction term to be added to 1+x to obtain 2^x. const SIMD::Float a = 7.8145574e-2f; const SIMD::Float b = 2.2617357e-1f; const SIMD::Float c = -3.0444314e-1f; SIMD::Float r = MulAdd(MulAdd(a, f, b), f, c); // bit_cast(int(x * 2^23)) is a piecewise linear approximation of 2^x. // See "Fast Exponential Computation on SIMD Architectures" by Malossi et al. SIMD::Float y = MulAdd(r, f, x0); SIMD::Int i = SIMD::Int(MulAdd((1 << 23), y, (127 << 23))); return As(i); } } RValue Log2_legacy(RValue x) { SIMD::Float x1 = As(As(x) & SIMD::Int(0x7F800000)); x1 = As(As(x1) >> 8); x1 = As(As(x1) | As(SIMD::Float(1.0f))); x1 = (x1 - 1.4960938f) * 256.0f; SIMD::Float x0 = As((As(x) & SIMD::Int(0x007FFFFF)) | As(SIMD::Float(1.0f))); SIMD::Float x2 = MulAdd(MulAdd(9.5428179e-2f, x0, 4.7779095e-1f), x0, 1.9782813e-1f); SIMD::Float x3 = MulAdd(MulAdd(MulAdd(1.6618466e-2f, x0, 2.0350508e-1f), x0, 2.7382900e-1f), x0, 4.0496687e-2f); x1 += (x0 - 1.0f) * (x2 / x3); SIMD::Int pos_inf_x = CmpEQ(As(x), SIMD::Int(0x7F800000)); return As((pos_inf_x & As(x)) | (~pos_inf_x & As(x1))); } RValue Log2(RValue x, bool relaxedPrecision) { if(SWIFTSHADER_LEGACY_PRECISION) // TODO(chromium:1299047) { return Log2_legacy(x); } if(!relaxedPrecision) // highp { // Reinterpretation as an integer provides a piecewise linear // approximation of log2(). Scale to the radix and subtract exponent bias. SIMD::Int im = As(x); SIMD::Float y = SIMD::Float(im - (127 << 23)) * (1.0f / (1 << 23)); // Handle log2(inf) = inf. y = As(As(y) | (CmpEQ(im, 0x7F800000) & As(SIMD::Float::infinity()))); SIMD::Float m = SIMD::Float(im & 0x007FFFFF) * (1.0f / (1 << 23)); // Normalized mantissa of x. // Add a polynomial approximation of log2(m+1)-m to the result's mantissa. const SIMD::Float a = -9.3091638e-3f; const SIMD::Float b = 5.2059003e-2f; const SIMD::Float c = -1.3752135e-1f; const SIMD::Float d = 2.4186478e-1f; const SIMD::Float e = -3.4730109e-1f; const SIMD::Float f = 4.786837e-1f; const SIMD::Float g = -7.2116581e-1f; const SIMD::Float h = 4.4268988e-1f; SIMD::Float z = MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(a, m, b), m, c), m, d), m, e), m, f), m, g), m, h); return MulAdd(z, m, y); } else // RelaxedPrecision / mediump { // Reinterpretation as an integer provides a piecewise linear // approximation of log2(). Scale to the radix and subtract exponent bias. SIMD::Int im = As(x); SIMD::Float y = MulAdd(SIMD::Float(im), (1.0f / (1 << 23)), -127.0f); // Handle log2(inf) = inf. y = As(As(y) | (CmpEQ(im, 0x7F800000) & As(SIMD::Float::infinity()))); SIMD::Float m = SIMD::Float(im & 0x007FFFFF); // Unnormalized mantissa of x. // Add a polynomial approximation of log2(m+1)-m to the result's mantissa. const SIMD::Float a = 2.8017103e-22f; const SIMD::Float b = -8.373131e-15f; const SIMD::Float c = 5.0615534e-8f; SIMD::Float f = MulAdd(MulAdd(a, m, b), m, c); return MulAdd(f, m, y); } } RValue Exp(RValue x, bool relaxedPrecision) { return Exp2(1.44269504f * x, relaxedPrecision); // 1/ln(2) } RValue Log(RValue x, bool relaxedPrecision) { return 6.93147181e-1f * Log2(x, relaxedPrecision); // ln(2) } RValue Pow(RValue x, RValue y, bool relaxedPrecision) { SIMD::Float log = Log2(x, relaxedPrecision); log *= y; return Exp2(log, relaxedPrecision); } RValue Sinh(RValue x, bool relaxedPrecision) { return (Exp(x, relaxedPrecision) - Exp(-x, relaxedPrecision)) * 0.5f; } RValue Cosh(RValue x, bool relaxedPrecision) { return (Exp(x, relaxedPrecision) + Exp(-x, relaxedPrecision)) * 0.5f; } RValue Tanh(RValue x, bool relaxedPrecision) { SIMD::Float e_x = Exp(x, relaxedPrecision); SIMD::Float e_minus_x = Exp(-x, relaxedPrecision); return (e_x - e_minus_x) / (e_x + e_minus_x); } RValue Asinh(RValue x, bool relaxedPrecision) { return Log(x + Sqrt(x * x + 1.0f, relaxedPrecision), relaxedPrecision); } RValue Acosh(RValue x, bool relaxedPrecision) { return Log(x + Sqrt(x + 1.0f, relaxedPrecision) * Sqrt(x - 1.0f, relaxedPrecision), relaxedPrecision); } RValue Atanh(RValue x, bool relaxedPrecision) { return Log((1.0f + x) / (1.0f - x), relaxedPrecision) * 0.5f; } RValue Sqrt(RValue x, bool relaxedPrecision) { return Sqrt(x); // TODO(b/222218659): Optimize for relaxed precision. } std::pair Frexp(RValue val) { // Assumes IEEE 754 auto isNotZero = CmpNEQ(val, 0.0f); auto v = As(val); auto significand = As((v & 0x807FFFFF) | (0x3F000000 & isNotZero)); auto exponent = (((v >> 23) & 0xFF) - 126) & isNotZero; return std::make_pair(significand, exponent); } RValue Ldexp(RValue significand, RValue exponent) { // "load exponent" // Ldexp(significand,exponent) computes // significand * 2**exponent // with edge case handling as permitted by the spec. // // The interesting cases are: // - significand is subnormal and the exponent is positive. The mantissa // bits of the significand shift left. The result *may* be normal, and // in that case the leading 1 bit in the mantissa is no longer explicitly // represented. Computing the result with bit operations would be quite // complex. // - significand has very small magnitude, and exponent is large. // Example: significand = 0x1p-125, exponent = 250, result 0x1p125 // If we compute the result directly with the reference formula, then // the intermediate value 2.0**exponent overflows, and then the result // would overflow. Instead, it is sufficient to split the exponent // and use two multiplies: // (significand * 2**(exponent/2)) * (2**(exponent - exponent/2)) // In this formulation, the intermediates will not overflow when the // correct result does not overflow. Also, this method naturally handles // underflows, infinities, and NaNs. // // This implementation uses the two-multiplies approach described above, // and also used by Mesa. // // The SPIR-V GLSL.std.450 extended instruction spec says: // // if exponent < -126 the result may be flushed to zero // if exponent > 128 the result may be undefined // // Clamping exponent to [-254,254] allows us implement well beyond // what is required by the spec, but still use simple algorithms. // // We decompose as follows: // 2 ** exponent = powA * powB // where // powA = 2 ** (exponent / 2) // powB = 2 ** (exponent - exponent / 2) // // We use a helper expression to compute these powers of two as float // numbers using bit shifts, where X is an unbiased integer exponent // in range [-127,127]: // // pow2i(X) = As((X + 127)<<23) // // This places the biased exponent into position, and places all // zeroes in the mantissa bit positions. The implicit 1 bit in the // mantissa is hidden. When X = -127, the result is float 0.0, as // if the value was flushed to zero. Otherwise X is in [-126,127] // and the biased exponent is in [1,254] and the result is a normal // float number with value 2**X. // // So we have: // // powA = pow2i(exponent/2) // powB = pow2i(exponent - exponent/2) // // With exponent in [-254,254], we split into cases: // // exponent = -254: // exponent/2 = -127 // exponent - exponent/2 = -127 // powA = pow2i(exponent/2) = pow2i(-127) = 0.0 // powA * powB is 0.0, which is a permitted flush-to-zero case. // // exponent = -253: // exponent/2 = -126 // (exponent - exponent/2) = -127 // powB = pow2i(exponent - exponent/2) = pow2i(-127) = 0.0 // powA * powB is 0.0, which is a permitted flush-to-zero case. // // exponent in [-252,254]: // exponent/2 is in [-126, 127] // (exponent - exponent/2) is in [-126, 127] // // powA = pow2i(exponent/2), a normal number // powB = pow2i(exponent - exponent/2), a normal number // // For the Mesa implementation, see // https://gitlab.freedesktop.org/mesa/mesa/-/blob/1eb7a85b55f0c7c2de6f5dac7b5f6209a6eb401c/src/compiler/nir/nir_opt_algebraic.py#L2241 // Clamp exponent to limits auto exp = Min(Max(exponent, -254), 254); // Split exponent into two terms auto expA = exp >> 1; auto expB = exp - expA; // Construct two powers of 2 with the exponents above auto powA = As((expA + 127) << 23); auto powB = As((expB + 127) << 23); // Multiply the input value by the two powers to get the final value. // Note that multiplying powA and powB together may result in an overflow, // so ensure that significand is multiplied by powA, *then* the result of that with powB. return (significand * powA) * powB; } UInt4 halfToFloatBits(RValue halfBits) { auto magic = UInt4(126 << 23); auto sign16 = halfBits & UInt4(0x8000); auto man16 = halfBits & UInt4(0x03FF); auto exp16 = halfBits & UInt4(0x7C00); auto isDnormOrZero = CmpEQ(exp16, UInt4(0)); auto isInfOrNaN = CmpEQ(exp16, UInt4(0x7C00)); auto sign32 = sign16 << 16; auto man32 = man16 << 13; auto exp32 = (exp16 + UInt4(0x1C000)) << 13; auto norm32 = (man32 | exp32) | (isInfOrNaN & UInt4(0x7F800000)); auto denorm32 = As(As(magic + man16) - As(magic)); return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); } UInt4 floatToHalfBits(RValue floatBits, bool storeInUpperBits) { UInt4 sign = floatBits & UInt4(0x80000000); UInt4 abs = floatBits & UInt4(0x7FFFFFFF); UInt4 normal = CmpNLE(abs, UInt4(0x38800000)); UInt4 mantissa = (abs & UInt4(0x007FFFFF)) | UInt4(0x00800000); UInt4 e = UInt4(113) - (abs >> 23); UInt4 denormal = CmpLT(e, UInt4(24)) & (mantissa >> e); UInt4 base = (normal & abs) | (~normal & denormal); // TODO: IfThenElse() // float exponent bias is 127, half bias is 15, so adjust by -112 UInt4 bias = normal & UInt4(0xC8000000); UInt4 rounded = base + bias + UInt4(0x00000FFF) + ((base >> 13) & UInt4(1)); UInt4 fp16u = rounded >> 13; // Infinity fp16u |= CmpNLE(abs, UInt4(0x47FFEFFF)) & UInt4(0x7FFF); return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u); } SIMD::Float linearToSRGB(const SIMD::Float &c) { SIMD::Float lc = c * 12.92f; SIMD::Float ec = MulAdd(1.055f, Pow(c, (1.0f / 2.4f)), -0.055f); // TODO(b/149574741): Use a custom approximation. SIMD::Int linear = CmpLT(c, 0.0031308f); return As((linear & As(lc)) | (~linear & As(ec))); // TODO: IfThenElse() } SIMD::Float sRGBtoLinear(const SIMD::Float &c) { SIMD::Float lc = c * (1.0f / 12.92f); SIMD::Float ec = Pow(MulAdd(c, 1.0f / 1.055f, 0.055f / 1.055f), 2.4f); // TODO(b/149574741): Use a custom approximation. SIMD::Int linear = CmpLT(c, 0.04045f); return As((linear & As(lc)) | (~linear & As(ec))); // TODO: IfThenElse() } RValue reciprocal(RValue x, bool pp, bool exactAtPow2) { return Rcp(x, pp, exactAtPow2); } RValue reciprocal(RValue x, bool pp, bool exactAtPow2) { return Rcp(x, pp, exactAtPow2); } RValue reciprocalSquareRoot(RValue x, bool absolute, bool pp) { Float4 abs = x; if(absolute) { abs = Abs(abs); } return Rcp(abs, pp); } // TODO(chromium:1299047): Eliminate when Chromium tests accept both fused and unfused multiply-add. RValue mulAdd(RValue x, RValue y, RValue z) { if(SWIFTSHADER_LEGACY_PRECISION) { return x * y + z; } return MulAdd(x, y, z); } RValue Pow(RValue x, RValue y, bool relaxedPrecision) { // TODO(b/214588983): Eliminate by using only the wide SIMD variant (or specialize or templatize the implementation). SIMD::Float xx; SIMD::Float yy; xx = Insert128(xx, x, 0); yy = Insert128(yy, y, 0); return Extract128(Pow(xx, yy, relaxedPrecision), 0); } RValue Sqrt(RValue x, bool relaxedPrecision) { // TODO(b/214588983): Eliminate by using only the wide SIMD variant (or specialize or templatize the implementation). SIMD::Float xx; xx = Insert128(xx, x, 0); return Extract128(Sqrt(xx, relaxedPrecision), 0); } void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) { Int2 tmp0 = UnpackHigh(row0, row1); Int2 tmp1 = UnpackHigh(row2, row3); Int2 tmp2 = UnpackLow(row0, row1); Int2 tmp3 = UnpackLow(row2, row3); row0 = UnpackLow(tmp2, tmp3); row1 = UnpackHigh(tmp2, tmp3); row2 = UnpackLow(tmp0, tmp1); row3 = UnpackHigh(tmp0, tmp1); } void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) { Int2 tmp0 = UnpackHigh(row0, row1); Int2 tmp1 = UnpackHigh(row2, row3); Int2 tmp2 = UnpackLow(row0, row1); Int2 tmp3 = UnpackLow(row2, row3); row0 = UnpackLow(tmp2, tmp3); row1 = UnpackHigh(tmp2, tmp3); row2 = UnpackLow(tmp0, tmp1); } void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); Float4 tmp2 = UnpackHigh(row0, row1); Float4 tmp3 = UnpackHigh(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); row2 = Float4(tmp2.xy, tmp3.xy); row3 = Float4(tmp2.zw, tmp3.zw); } void transpose4x4zyxw(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); Float4 tmp2 = UnpackHigh(row0, row1); Float4 tmp3 = UnpackHigh(row2, row3); row2 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); row0 = Float4(tmp2.xy, tmp3.xy); row3 = Float4(tmp2.zw, tmp3.zw); } void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); Float4 tmp2 = UnpackHigh(row0, row1); Float4 tmp3 = UnpackHigh(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); row2 = Float4(tmp2.xy, tmp3.xy); } void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); } void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); } void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp01 = UnpackLow(row0, row1); Float4 tmp23 = UnpackHigh(row0, row1); row0 = tmp01; row1 = Float4(tmp01.zw, row1.zw); row2 = tmp23; row3 = Float4(tmp23.zw, row3.zw); } void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) { switch(N) { case 1: transpose4x1(row0, row1, row2, row3); break; case 2: transpose4x2(row0, row1, row2, row3); break; case 3: transpose4x3(row0, row1, row2, row3); break; case 4: transpose4x4(row0, row1, row2, row3); break; } } SIMD::UInt halfToFloatBits(SIMD::UInt halfBits) { auto magic = SIMD::UInt(126 << 23); auto sign16 = halfBits & SIMD::UInt(0x8000); auto man16 = halfBits & SIMD::UInt(0x03FF); auto exp16 = halfBits & SIMD::UInt(0x7C00); auto isDnormOrZero = CmpEQ(exp16, SIMD::UInt(0)); auto isInfOrNaN = CmpEQ(exp16, SIMD::UInt(0x7C00)); auto sign32 = sign16 << 16; auto man32 = man16 << 13; auto exp32 = (exp16 + SIMD::UInt(0x1C000)) << 13; auto norm32 = (man32 | exp32) | (isInfOrNaN & SIMD::UInt(0x7F800000)); auto denorm32 = As(As(magic + man16) - As(magic)); return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); } SIMD::UInt floatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits) { SIMD::UInt sign = floatBits & SIMD::UInt(0x80000000); SIMD::UInt abs = floatBits & SIMD::UInt(0x7FFFFFFF); SIMD::UInt normal = CmpNLE(abs, SIMD::UInt(0x38800000)); SIMD::UInt mantissa = (abs & SIMD::UInt(0x007FFFFF)) | SIMD::UInt(0x00800000); SIMD::UInt e = SIMD::UInt(113) - (abs >> 23); SIMD::UInt denormal = CmpLT(e, SIMD::UInt(24)) & (mantissa >> e); SIMD::UInt base = (normal & abs) | (~normal & denormal); // TODO: IfThenElse() // float exponent bias is 127, half bias is 15, so adjust by -112 SIMD::UInt bias = normal & SIMD::UInt(0xC8000000); SIMD::UInt rounded = base + bias + SIMD::UInt(0x00000FFF) + ((base >> 13) & SIMD::UInt(1)); SIMD::UInt fp16u = rounded >> 13; // Infinity fp16u |= CmpNLE(abs, SIMD::UInt(0x47FFEFFF)) & SIMD::UInt(0x7FFF); return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u); } Float4 r11g11b10Unpack(UInt r11g11b10bits) { // 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa. // Since the Half float format also has a 5 bit exponent, we can convert these formats to half by // copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format. // In this case, we have: // MSB | B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R | LSB UInt4 halfBits; halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x000007FFu)) << 4, 0); halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x003FF800u)) >> 7, 1); halfBits = Insert(halfBits, (r11g11b10bits & UInt(0xFFC00000u)) >> 17, 2); halfBits = Insert(halfBits, UInt(0x00003C00u), 3); return As(halfToFloatBits(halfBits)); } UInt r11g11b10Pack(const Float4 &value) { // 10 and 11 bit floats are unsigned, so their minimal value is 0 auto halfBits = floatToHalfBits(As(Max(value, Float4(0.0f))), true); // Truncates instead of rounding. See b/147900455 UInt4 truncBits = halfBits & UInt4(0x7FF00000, 0x7FF00000, 0x7FE00000, 0); return (UInt(truncBits.x) >> 20) | (UInt(truncBits.y) >> 9) | (UInt(truncBits.z) << 1); } Float4 linearToSRGB(const Float4 &c) { Float4 lc = c * 12.92f; Float4 ec = MulAdd(1.055f, Pow(c, (1.0f / 2.4f)), -0.055f); // TODO(b/149574741): Use a custom approximation. Int4 linear = CmpLT(c, 0.0031308f); return As((linear & As(lc)) | (~linear & As(ec))); // TODO: IfThenElse() } Float4 sRGBtoLinear(const Float4 &c) { Float4 lc = c * (1.0f / 12.92f); Float4 ec = Pow(MulAdd(c, 1.0f / 1.055f, 0.055f / 1.055f), 2.4f); // TODO(b/149574741): Use a custom approximation. Int4 linear = CmpLT(c, 0.04045f); return As((linear & As(lc)) | (~linear & As(ec))); // TODO: IfThenElse() } rr::RValue Sign(const rr::RValue &val) { return rr::As((rr::As(val) & SIMD::UInt(0x80000000)) | SIMD::UInt(0x3f800000)); } // Returns the of val. // Both whole and frac will have the same sign as val. std::pair, rr::RValue> Modf(const rr::RValue &val) { auto abs = Abs(val); auto sign = Sign(val); auto whole = Floor(abs) * sign; auto frac = Frac(abs) * sign; return std::make_pair(whole, frac); } // Returns the number of 1s in bits, per lane. SIMD::UInt CountBits(const rr::RValue &bits) { // TODO: Add an intrinsic to reactor. Even if there isn't a // single vector instruction, there may be target-dependent // ways to make this faster. // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel SIMD::UInt c = bits - ((bits >> 1) & SIMD::UInt(0x55555555)); c = ((c >> 2) & SIMD::UInt(0x33333333)) + (c & SIMD::UInt(0x33333333)); c = ((c >> 4) + c) & SIMD::UInt(0x0F0F0F0F); c = ((c >> 8) + c) & SIMD::UInt(0x00FF00FF); c = ((c >> 16) + c) & SIMD::UInt(0x0000FFFF); return c; } // Returns 1 << bits. // If the resulting bit overflows a 32 bit integer, 0 is returned. rr::RValue NthBit32(const rr::RValue &bits) { return ((SIMD::UInt(1) << bits) & CmpLT(bits, SIMD::UInt(32))); } // Returns bitCount number of of 1's starting from the LSB. rr::RValue Bitmask32(const rr::RValue &bitCount) { return NthBit32(bitCount) - SIMD::UInt(1); } // Returns y if y < x; otherwise result is x. // If one operand is a NaN, the other operand is the result. // If both operands are NaN, the result is a NaN. rr::RValue NMin(const rr::RValue &x, const rr::RValue &y) { auto xIsNan = IsNan(x); auto yIsNan = IsNan(y); return As( // If neither are NaN, return min ((~xIsNan & ~yIsNan) & As(Min(x, y))) | // If one operand is a NaN, the other operand is the result // If both operands are NaN, the result is a NaN. ((~xIsNan & yIsNan) & As(x)) | (xIsNan & As(y))); } // Returns y if y > x; otherwise result is x. // If one operand is a NaN, the other operand is the result. // If both operands are NaN, the result is a NaN. rr::RValue NMax(const rr::RValue &x, const rr::RValue &y) { auto xIsNan = IsNan(x); auto yIsNan = IsNan(y); return As( // If neither are NaN, return max ((~xIsNan & ~yIsNan) & As(Max(x, y))) | // If one operand is a NaN, the other operand is the result // If both operands are NaN, the result is a NaN. ((~xIsNan & yIsNan) & As(x)) | (xIsNan & As(y))); } // Returns the determinant of a 2x2 matrix. rr::RValue Determinant( const rr::RValue &a, const rr::RValue &b, const rr::RValue &c, const rr::RValue &d) { return a * d - b * c; } // Returns the determinant of a 3x3 matrix. rr::RValue Determinant( const rr::RValue &a, const rr::RValue &b, const rr::RValue &c, const rr::RValue &d, const rr::RValue &e, const rr::RValue &f, const rr::RValue &g, const rr::RValue &h, const rr::RValue &i) { return a * e * i + b * f * g + c * d * h - c * e * g - b * d * i - a * f * h; } // Returns the determinant of a 4x4 matrix. rr::RValue Determinant( const rr::RValue &a, const rr::RValue &b, const rr::RValue &c, const rr::RValue &d, const rr::RValue &e, const rr::RValue &f, const rr::RValue &g, const rr::RValue &h, const rr::RValue &i, const rr::RValue &j, const rr::RValue &k, const rr::RValue &l, const rr::RValue &m, const rr::RValue &n, const rr::RValue &o, const rr::RValue &p) { return a * Determinant(f, g, h, j, k, l, n, o, p) - b * Determinant(e, g, h, i, k, l, m, o, p) + c * Determinant(e, f, h, i, j, l, m, n, p) - d * Determinant(e, f, g, i, j, k, m, n, o); } // Returns the inverse of a 2x2 matrix. std::array, 4> MatrixInverse( const rr::RValue &a, const rr::RValue &b, const rr::RValue &c, const rr::RValue &d) { auto s = SIMD::Float(1.0f) / Determinant(a, b, c, d); return { { s * d, -s * b, -s * c, s * a } }; } // Returns the inverse of a 3x3 matrix. std::array, 9> MatrixInverse( const rr::RValue &a, const rr::RValue &b, const rr::RValue &c, const rr::RValue &d, const rr::RValue &e, const rr::RValue &f, const rr::RValue &g, const rr::RValue &h, const rr::RValue &i) { auto s = SIMD::Float(1.0f) / Determinant( a, b, c, d, e, f, g, h, i); // TODO: duplicate arithmetic calculating the det and below. return { { s * (e * i - f * h), s * (c * h - b * i), s * (b * f - c * e), s * (f * g - d * i), s * (a * i - c * g), s * (c * d - a * f), s * (d * h - e * g), s * (b * g - a * h), s * (a * e - b * d), } }; } // Returns the inverse of a 4x4 matrix. std::array, 16> MatrixInverse( const rr::RValue &a, const rr::RValue &b, const rr::RValue &c, const rr::RValue &d, const rr::RValue &e, const rr::RValue &f, const rr::RValue &g, const rr::RValue &h, const rr::RValue &i, const rr::RValue &j, const rr::RValue &k, const rr::RValue &l, const rr::RValue &m, const rr::RValue &n, const rr::RValue &o, const rr::RValue &p) { auto s = SIMD::Float(1.0f) / Determinant( a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); // TODO: duplicate arithmetic calculating the det and below. auto kplo = k * p - l * o, jpln = j * p - l * n, jokn = j * o - k * n; auto gpho = g * p - h * o, fphn = f * p - h * n, fogn = f * o - g * n; auto glhk = g * l - h * k, flhj = f * l - h * j, fkgj = f * k - g * j; auto iplm = i * p - l * m, iokm = i * o - k * m, ephm = e * p - h * m; auto eogm = e * o - g * m, elhi = e * l - h * i, ekgi = e * k - g * i; auto injm = i * n - j * m, enfm = e * n - f * m, ejfi = e * j - f * i; return { { s * (f * kplo - g * jpln + h * jokn), s * (-b * kplo + c * jpln - d * jokn), s * (b * gpho - c * fphn + d * fogn), s * (-b * glhk + c * flhj - d * fkgj), s * (-e * kplo + g * iplm - h * iokm), s * (a * kplo - c * iplm + d * iokm), s * (-a * gpho + c * ephm - d * eogm), s * (a * glhk - c * elhi + d * ekgi), s * (e * jpln - f * iplm + h * injm), s * (-a * jpln + b * iplm - d * injm), s * (a * fphn - b * ephm + d * enfm), s * (-a * flhj + b * elhi - d * ejfi), s * (-e * jokn + f * iokm - g * injm), s * (a * jokn - b * iokm + c * injm), s * (-a * fogn + b * eogm - c * enfm), s * (a * fkgj - b * ekgi + c * ejfi), } }; } } // namespace sw