// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "SamplerCore.hpp" #include "Constants.hpp" #include "PixelRoutine.hpp" #include "System/Debug.hpp" #include "Vulkan/VkSampler.hpp" namespace sw { SamplerCore::SamplerCore(Pointer &constants, const Sampler &state, SamplerFunction function) : constants(constants) , state(state) , function(function) { } SIMD::Float4 SamplerCore::sampleTexture(Pointer &texture, SIMD::Float uvwa[4], const SIMD::Float &dRef, const Float &lodOrBias, const SIMD::Float &dsx, const SIMD::Float &dsy, SIMD::Int offset[4], const SIMD::Int &sample) { SIMD::Float4 c; for(int i = 0; i < SIMD::Width / 4; i++) { Float4 uvwa128[4]; uvwa128[0] = Extract128(uvwa[0], i); uvwa128[1] = Extract128(uvwa[1], i); uvwa128[2] = Extract128(uvwa[2], i); uvwa128[3] = Extract128(uvwa[3], i); Vector4i offset128; offset128[0] = Extract128(offset[0], i); offset128[1] = Extract128(offset[1], i); offset128[2] = Extract128(offset[2], i); offset128[3] = Extract128(offset[3], i); Vector4f c128 = sampleTexture128(texture, uvwa128, Extract128(dRef, i), lodOrBias, Extract128(dsx, i), Extract128(dsy, i), offset128, Extract128(sample, i)); c.x = Insert128(c.x, c128.x, i); c.y = Insert128(c.y, c128.y, i); c.z = Insert128(c.z, c128.z, i); c.w = Insert128(c.w, c128.w, i); } return c; } Vector4f SamplerCore::sampleTexture128(Pointer &texture, Float4 uvwa[4], const Float4 &dRef, const Float &lodOrBias, const Float4 &dsx, const Float4 &dsy, Vector4i &offset, const Int4 &sample) { Vector4f c; Float4 u = uvwa[0]; Float4 v = uvwa[1]; Float4 w = uvwa[2]; Float4 a; // Array layer coordinate switch(state.textureType) { case VK_IMAGE_VIEW_TYPE_1D_ARRAY: a = uvwa[1]; break; case VK_IMAGE_VIEW_TYPE_2D_ARRAY: a = uvwa[2]; break; case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: a = uvwa[3]; break; default: break; } Float lod; Float anisotropy; Float4 uDelta; Float4 vDelta; Float4 M; // Major axis if(state.isCube()) { Int4 face = cubeFace(u, v, uvwa[0], uvwa[1], uvwa[2], M); w = As(face); } // Determine if we can skip the LOD computation. This is the case when the mipmap has only one level, except for LOD query, // where we have to return the computed value. Anisotropic filtering requires computing the anisotropy factor even for a single mipmap level. bool singleMipLevel = (state.minLod == state.maxLod); bool requiresLodComputation = (function == Query) || (state.textureFilter == FILTER_ANISOTROPIC); bool skipLodComputation = singleMipLevel && !requiresLodComputation; if(skipLodComputation) { lod = state.minLod; } else if(function == Implicit || function == Bias || function == Grad || function == Query) { if(state.is1D()) { computeLod1D(texture, lod, u, dsx, dsy); } else if(state.is2D()) { computeLod2D(texture, lod, anisotropy, uDelta, vDelta, u, v, dsx, dsy); } else if(state.isCube()) { computeLodCube(texture, lod, uvwa[0], uvwa[1], uvwa[2], dsx, dsy, M); } else { computeLod3D(texture, lod, u, v, w, dsx, dsy); } Float bias = state.mipLodBias; if(function == Bias) { // Add SPIR-V Bias operand to the sampler provided bias and clamp to maxSamplerLodBias limit. bias = Min(Max(bias + lodOrBias, -vk::MAX_SAMPLER_LOD_BIAS), vk::MAX_SAMPLER_LOD_BIAS); } lod += bias; } else if(function == Lod) { // Vulkan 1.1: "The absolute value of mipLodBias must be less than or equal to VkPhysicalDeviceLimits::maxSamplerLodBias" // Hence no explicit clamping to maxSamplerLodBias is required in this case. lod = lodOrBias + state.mipLodBias; } else if(function == Fetch) { // TODO: Eliminate int-float-int conversion. lod = Float(As(lodOrBias)); lod = Max(lod, state.minLod); lod = Min(lod, state.maxLod); } else if(function == Base || function == Gather) { lod = Float(0); } else UNREACHABLE("Sampler function %d", int(function)); if(function != Base && function != Fetch && function != Gather) { if(function == Query) { c.y = Float4(lod); // Unclamped LOD. } if(!skipLodComputation) { lod = Max(lod, state.minLod); lod = Min(lod, state.maxLod); } if(function == Query) { if(state.mipmapFilter == MIPMAP_POINT) { lod = Round(lod); // TODO: Preferred formula is ceil(lod + 0.5) - 1 } c.x = lod; // c.y contains unclamped LOD. return c; } } bool force32BitFiltering = state.highPrecisionFiltering && !isYcbcrFormat() && (state.textureFilter != FILTER_POINT); bool use32BitFiltering = hasFloatTexture() || hasUnnormalizedIntegerTexture() || force32BitFiltering || state.isCube() || state.unnormalizedCoordinates || state.compareEnable || borderModeActive() || (function == Gather) || (function == Fetch); int numComponents = (function == Gather) ? 4 : textureComponentCount(); if(use32BitFiltering) { c = sampleFloatFilter(texture, u, v, w, a, dRef, offset, sample, lod, anisotropy, uDelta, vDelta); } else // 16-bit filtering. { Vector4s cs = sampleFilter(texture, u, v, w, a, offset, sample, lod, anisotropy, uDelta, vDelta); for(int component = 0; component < numComponents; component++) { if(hasUnsignedTextureComponent(component)) { c[component] = Float4(As(cs[component])); } else { c[component] = Float4(cs[component]); } } } if(hasNormalizedFormat() && !state.compareEnable) { sw::float4 scale = getComponentScale(); for(int component = 0; component < numComponents; component++) { int texelComponent = (function == Gather) ? getGatherComponent() : component; c[component] *= Float4(1.0f / scale[texelComponent]); } } if(state.textureFormat.isSignedNormalized()) { for(int component = 0; component < numComponents; component++) { c[component] = Max(c[component], Float4(-1.0f)); } } if(state.textureFilter != FILTER_GATHER) { if((state.swizzle.r != VK_COMPONENT_SWIZZLE_R) || (state.swizzle.g != VK_COMPONENT_SWIZZLE_G) || (state.swizzle.b != VK_COMPONENT_SWIZZLE_B) || (state.swizzle.a != VK_COMPONENT_SWIZZLE_A)) { const Vector4f col = c; bool integer = hasUnnormalizedIntegerTexture(); c.x = applySwizzle(col, state.swizzle.r, integer); c.y = applySwizzle(col, state.swizzle.g, integer); c.z = applySwizzle(col, state.swizzle.b, integer); c.w = applySwizzle(col, state.swizzle.a, integer); } } else // Gather { VkComponentSwizzle swizzle = gatherSwizzle(); // R/G/B/A swizzles affect the component collected from each texel earlier. // Handle the ZERO and ONE cases here because we don't need to know the format. if(swizzle == VK_COMPONENT_SWIZZLE_ZERO) { c.x = c.y = c.z = c.w = Float4(0); } else if(swizzle == VK_COMPONENT_SWIZZLE_ONE) { bool integer = hasUnnormalizedIntegerTexture(); c.x = c.y = c.z = c.w = integer ? As(Int4(1)) : RValue(Float4(1.0f)); } } return c; } Float4 SamplerCore::applySwizzle(const Vector4f &c, VkComponentSwizzle swizzle, bool integer) { switch(swizzle) { default: UNSUPPORTED("VkComponentSwizzle %d", (int)swizzle); case VK_COMPONENT_SWIZZLE_R: return c.x; case VK_COMPONENT_SWIZZLE_G: return c.y; case VK_COMPONENT_SWIZZLE_B: return c.z; case VK_COMPONENT_SWIZZLE_A: return c.w; case VK_COMPONENT_SWIZZLE_ZERO: return Float4(0.0f, 0.0f, 0.0f, 0.0f); case VK_COMPONENT_SWIZZLE_ONE: if(integer) { return Float4(As(sw::Int4(1, 1, 1, 1))); } else { return Float4(1.0f, 1.0f, 1.0f, 1.0f); } break; } }; Short4 SamplerCore::offsetSample(Short4 &uvw, Pointer &mipmap, int halfOffset, bool wrap, int count, Float &lod) { Short4 offset = *Pointer(mipmap + halfOffset); if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT) { offset &= Short4(CmpNLE(Float4(lod), Float4(0.0f))); } else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR) { offset &= Short4(CmpLE(Float4(lod), Float4(0.0f))); } if(wrap) { switch(count) { case -1: return uvw - offset; case 0: return uvw; case +1: return uvw + offset; case 2: return uvw + offset + offset; } } else // Clamp or mirror { switch(count) { case -1: return SubSat(As(uvw), As(offset)); case 0: return uvw; case +1: return AddSat(As(uvw), As(offset)); case 2: return AddSat(AddSat(As(uvw), As(offset)), As(offset)); } } return uvw; } Vector4s SamplerCore::sampleFilter(Pointer &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta) { Vector4s c = sampleAniso(texture, u, v, w, a, offset, sample, lod, anisotropy, uDelta, vDelta, false); if(function == Fetch) { return c; } if(state.mipmapFilter == MIPMAP_LINEAR) { Vector4s cc = sampleAniso(texture, u, v, w, a, offset, sample, lod, anisotropy, uDelta, vDelta, true); lod *= Float(1 << 16); UShort4 utri = UShort4(Float4(lod)); // TODO: Optimize Short4 stri = utri >> 1; // TODO: Optimize if(hasUnsignedTextureComponent(0)) cc.x = MulHigh(As(cc.x), utri); else cc.x = MulHigh(cc.x, stri); if(hasUnsignedTextureComponent(1)) cc.y = MulHigh(As(cc.y), utri); else cc.y = MulHigh(cc.y, stri); if(hasUnsignedTextureComponent(2)) cc.z = MulHigh(As(cc.z), utri); else cc.z = MulHigh(cc.z, stri); if(hasUnsignedTextureComponent(3)) cc.w = MulHigh(As(cc.w), utri); else cc.w = MulHigh(cc.w, stri); utri = ~utri; stri = Short4(0x7FFF) - stri; if(hasUnsignedTextureComponent(0)) c.x = MulHigh(As(c.x), utri); else c.x = MulHigh(c.x, stri); if(hasUnsignedTextureComponent(1)) c.y = MulHigh(As(c.y), utri); else c.y = MulHigh(c.y, stri); if(hasUnsignedTextureComponent(2)) c.z = MulHigh(As(c.z), utri); else c.z = MulHigh(c.z, stri); if(hasUnsignedTextureComponent(3)) c.w = MulHigh(As(c.w), utri); else c.w = MulHigh(c.w, stri); c.x += cc.x; c.y += cc.y; c.z += cc.z; c.w += cc.w; if(!hasUnsignedTextureComponent(0)) c.x += c.x; if(!hasUnsignedTextureComponent(1)) c.y += c.y; if(!hasUnsignedTextureComponent(2)) c.z += c.z; if(!hasUnsignedTextureComponent(3)) c.w += c.w; } return c; } Vector4s SamplerCore::sampleAniso(Pointer &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, bool secondLOD) { Vector4s c; if(state.textureFilter != FILTER_ANISOTROPIC) { c = sampleQuad(texture, u, v, w, a, offset, sample, lod, secondLOD); } else { Int N = RoundInt(anisotropy); Vector4s cSum; cSum.x = Short4(0); cSum.y = Short4(0); cSum.z = Short4(0); cSum.w = Short4(0); Float4 A = *Pointer(constants + OFFSET(Constants, uvWeight) + 16 * N); Float4 B = *Pointer(constants + OFFSET(Constants, uvStart) + 16 * N); UShort4 cw = *Pointer(constants + OFFSET(Constants, cWeight) + 8 * N); Short4 sw = Short4(cw >> 1); Float4 du = uDelta; Float4 dv = vDelta; Float4 u0 = u + B * du; Float4 v0 = v + B * dv; du *= A; dv *= A; Int i = 0; Do { c = sampleQuad(texture, u0, v0, w, a, offset, sample, lod, secondLOD); u0 += du; v0 += dv; if(hasUnsignedTextureComponent(0)) cSum.x += As(MulHigh(As(c.x), cw)); else cSum.x += MulHigh(c.x, sw); if(hasUnsignedTextureComponent(1)) cSum.y += As(MulHigh(As(c.y), cw)); else cSum.y += MulHigh(c.y, sw); if(hasUnsignedTextureComponent(2)) cSum.z += As(MulHigh(As(c.z), cw)); else cSum.z += MulHigh(c.z, sw); if(hasUnsignedTextureComponent(3)) cSum.w += As(MulHigh(As(c.w), cw)); else cSum.w += MulHigh(c.w, sw); i++; } Until(i >= N); if(hasUnsignedTextureComponent(0)) c.x = cSum.x; else c.x = AddSat(cSum.x, cSum.x); if(hasUnsignedTextureComponent(1)) c.y = cSum.y; else c.y = AddSat(cSum.y, cSum.y); if(hasUnsignedTextureComponent(2)) c.z = cSum.z; else c.z = AddSat(cSum.z, cSum.z); if(hasUnsignedTextureComponent(3)) c.w = cSum.w; else c.w = AddSat(cSum.w, cSum.w); } return c; } Vector4s SamplerCore::sampleQuad(Pointer &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) { if(state.textureType != VK_IMAGE_VIEW_TYPE_3D) { return sampleQuad2D(texture, u, v, w, a, offset, sample, lod, secondLOD); } else { return sample3D(texture, u, v, w, offset, sample, lod, secondLOD); } } void SamplerCore::bilinearInterpolateFloat(Vector4f &output, const Short4 &uuuu0, const Short4 &vvvv0, Vector4f &c00, Vector4f &c01, Vector4f &c10, Vector4f &c11, const Pointer &mipmap, bool interpolateComponent0, bool interpolateComponent1, bool interpolateComponent2, bool interpolateComponent3) { int componentCount = textureComponentCount(); Float4 unnormalizedUUUU0 = (Float4(uuuu0) / Float4(1 << 16)) * Float4(*Pointer(mipmap + OFFSET(Mipmap, width))); Float4 unnormalizedVVVV0 = (Float4(vvvv0) / Float4(1 << 16)) * Float4(*Pointer(mipmap + OFFSET(Mipmap, height))); Float4 frac0u = Frac(unnormalizedUUUU0); Float4 frac0v = Frac(unnormalizedVVVV0); if(interpolateComponent0 && componentCount >= 1) { c00.x = Mix(c00.x, c10.x, frac0u); c01.x = Mix(c01.x, c11.x, frac0u); output.x = Mix(c00.x, c01.x, frac0v); } if(interpolateComponent1 && componentCount >= 2) { c00.y = Mix(c00.y, c10.y, frac0u); c01.y = Mix(c01.y, c11.y, frac0u); output.y = Mix(c00.y, c01.y, frac0v); } if(interpolateComponent2 && componentCount >= 3) { c00.z = Mix(c00.z, c10.z, frac0u); c01.z = Mix(c01.z, c11.z, frac0u); output.z = Mix(c00.z, c01.z, frac0v); } if(interpolateComponent3 && componentCount >= 4) { c00.w = Mix(c00.w, c10.w, frac0u); c01.w = Mix(c01.w, c11.w, frac0u); output.w = Mix(c00.w, c01.w, frac0v); } } void SamplerCore::bilinearInterpolate(Vector4s &output, const Short4 &uuuu0, const Short4 &vvvv0, Vector4s &c00, Vector4s &c01, Vector4s &c10, Vector4s &c11, const Pointer &mipmap) { int componentCount = textureComponentCount(); // Fractions UShort4 f0u = As(uuuu0) * UShort4(*Pointer(mipmap + OFFSET(Mipmap, width))); UShort4 f0v = As(vvvv0) * UShort4(*Pointer(mipmap + OFFSET(Mipmap, height))); UShort4 f1u = ~f0u; UShort4 f1v = ~f0v; UShort4 f0u0v = MulHigh(f0u, f0v); UShort4 f1u0v = MulHigh(f1u, f0v); UShort4 f0u1v = MulHigh(f0u, f1v); UShort4 f1u1v = MulHigh(f1u, f1v); // Signed fractions Short4 f1u1vs; Short4 f0u1vs; Short4 f1u0vs; Short4 f0u0vs; if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3)) { f1u1vs = f1u1v >> 1; f0u1vs = f0u1v >> 1; f1u0vs = f1u0v >> 1; f0u0vs = f0u0v >> 1; } // Bilinear interpolation if(componentCount >= 1) { if(has16bitTextureComponents() && hasUnsignedTextureComponent(0)) { c00.x = As(c00.x) - MulHigh(As(c00.x), f0u) + MulHigh(As(c10.x), f0u); c01.x = As(c01.x) - MulHigh(As(c01.x), f0u) + MulHigh(As(c11.x), f0u); output.x = As(c00.x) - MulHigh(As(c00.x), f0v) + MulHigh(As(c01.x), f0v); } else { if(hasUnsignedTextureComponent(0)) { c00.x = MulHigh(As(c00.x), f1u1v); c10.x = MulHigh(As(c10.x), f0u1v); c01.x = MulHigh(As(c01.x), f1u0v); c11.x = MulHigh(As(c11.x), f0u0v); } else { c00.x = MulHigh(c00.x, f1u1vs); c10.x = MulHigh(c10.x, f0u1vs); c01.x = MulHigh(c01.x, f1u0vs); c11.x = MulHigh(c11.x, f0u0vs); } output.x = (c00.x + c10.x) + (c01.x + c11.x); if(!hasUnsignedTextureComponent(0)) output.x = AddSat(output.x, output.x); // Correct for signed fractions } } if(componentCount >= 2) { if(has16bitTextureComponents() && hasUnsignedTextureComponent(1)) { c00.y = As(c00.y) - MulHigh(As(c00.y), f0u) + MulHigh(As(c10.y), f0u); c01.y = As(c01.y) - MulHigh(As(c01.y), f0u) + MulHigh(As(c11.y), f0u); output.y = As(c00.y) - MulHigh(As(c00.y), f0v) + MulHigh(As(c01.y), f0v); } else { if(hasUnsignedTextureComponent(1)) { c00.y = MulHigh(As(c00.y), f1u1v); c10.y = MulHigh(As(c10.y), f0u1v); c01.y = MulHigh(As(c01.y), f1u0v); c11.y = MulHigh(As(c11.y), f0u0v); } else { c00.y = MulHigh(c00.y, f1u1vs); c10.y = MulHigh(c10.y, f0u1vs); c01.y = MulHigh(c01.y, f1u0vs); c11.y = MulHigh(c11.y, f0u0vs); } output.y = (c00.y + c10.y) + (c01.y + c11.y); if(!hasUnsignedTextureComponent(1)) output.y = AddSat(output.y, output.y); // Correct for signed fractions } } if(componentCount >= 3) { if(has16bitTextureComponents() && hasUnsignedTextureComponent(2)) { c00.z = As(c00.z) - MulHigh(As(c00.z), f0u) + MulHigh(As(c10.z), f0u); c01.z = As(c01.z) - MulHigh(As(c01.z), f0u) + MulHigh(As(c11.z), f0u); output.z = As(c00.z) - MulHigh(As(c00.z), f0v) + MulHigh(As(c01.z), f0v); } else { if(hasUnsignedTextureComponent(2)) { c00.z = MulHigh(As(c00.z), f1u1v); c10.z = MulHigh(As(c10.z), f0u1v); c01.z = MulHigh(As(c01.z), f1u0v); c11.z = MulHigh(As(c11.z), f0u0v); } else { c00.z = MulHigh(c00.z, f1u1vs); c10.z = MulHigh(c10.z, f0u1vs); c01.z = MulHigh(c01.z, f1u0vs); c11.z = MulHigh(c11.z, f0u0vs); } output.z = (c00.z + c10.z) + (c01.z + c11.z); if(!hasUnsignedTextureComponent(2)) output.z = AddSat(output.z, output.z); // Correct for signed fractions } } if(componentCount >= 4) { if(has16bitTextureComponents() && hasUnsignedTextureComponent(3)) { c00.w = As(c00.w) - MulHigh(As(c00.w), f0u) + MulHigh(As(c10.w), f0u); c01.w = As(c01.w) - MulHigh(As(c01.w), f0u) + MulHigh(As(c11.w), f0u); output.w = As(c00.w) - MulHigh(As(c00.w), f0v) + MulHigh(As(c01.w), f0v); } else { if(hasUnsignedTextureComponent(3)) { c00.w = MulHigh(As(c00.w), f1u1v); c10.w = MulHigh(As(c10.w), f0u1v); c01.w = MulHigh(As(c01.w), f1u0v); c11.w = MulHigh(As(c11.w), f0u0v); } else { c00.w = MulHigh(c00.w, f1u1vs); c10.w = MulHigh(c10.w, f0u1vs); c01.w = MulHigh(c01.w, f1u0vs); c11.w = MulHigh(c11.w, f0u0vs); } output.w = (c00.w + c10.w) + (c01.w + c11.w); if(!hasUnsignedTextureComponent(3)) output.w = AddSat(output.w, output.w); // Correct for signed fractions } } } Vector4s SamplerCore::sampleQuad2D(Pointer &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) { Vector4s c; bool gather = (state.textureFilter == FILTER_GATHER); Pointer mipmap = selectMipmap(texture, lod, secondLOD); Pointer buffer = *Pointer>(mipmap + OFFSET(Mipmap, buffer)); applyOffset(u, v, w, offset, mipmap); Short4 uuuu = address(u, state.addressingModeU); Short4 vvvv = address(v, state.addressingModeV); Short4 wwww = address(w, state.addressingModeW); Short4 layerIndex = computeLayerIndex16(a, mipmap); if(isYcbcrFormat()) { uint8_t lumaBits = 8; uint8_t chromaBits = 8; switch(state.textureFormat) { case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: lumaBits = 8; chromaBits = 8; break; case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: lumaBits = 10; chromaBits = 10; break; default: UNSUPPORTED("state.textureFormat %d", (int)state.textureFormat); break; } // TODO: investigate apparent precision losses in dEQP-VK.ycbcr when sampling and interpolating with Short4. // Unnnormalized YUV values in [0, 255] for 8-bit formats, [0, 1023] for 10-bit formats. Vector4f yuv; Vector4f yuv00; Vector4f yuv10; Vector4f yuv01; Vector4f yuv11; if(state.textureFilter == FILTER_POINT) { sampleLumaTexel(yuv, uuuu, vvvv, wwww, layerIndex, sample, mipmap, buffer); } else { Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, -1, lod); Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, -1, lod); Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, +1, lod); Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, +1, lod); sampleLumaTexel(yuv00, uuuu0, vvvv0, wwww, layerIndex, sample, mipmap, buffer); sampleLumaTexel(yuv01, uuuu0, vvvv1, wwww, layerIndex, sample, mipmap, buffer); sampleLumaTexel(yuv10, uuuu1, vvvv0, wwww, layerIndex, sample, mipmap, buffer); sampleLumaTexel(yuv11, uuuu1, vvvv1, wwww, layerIndex, sample, mipmap, buffer); bilinearInterpolateFloat(yuv, uuuu0, vvvv0, yuv00, yuv01, yuv10, yuv11, mipmap, false, true, false, false); } // Pointers to the planes of YCbCr images are stored in consecutive mipmap levels. Pointer mipmapU = Pointer(mipmap + 1 * sizeof(Mipmap)); Pointer mipmapV = Pointer(mipmap + 2 * sizeof(Mipmap)); Pointer bufferU = *Pointer>(mipmapU + OFFSET(Mipmap, buffer)); // U/V for 2-plane interleaved formats. Pointer bufferV = *Pointer>(mipmapV + OFFSET(Mipmap, buffer)); // https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#textures-implict-reconstruction // but using normalized coordinates. Float4 chromaU = u; Float4 chromaV = v; if(state.chromaXOffset == VK_CHROMA_LOCATION_COSITED_EVEN) { chromaU += (Float4(0.25f) / Float4(*Pointer(mipmapU + OFFSET(Mipmap, width)))); } if(state.chromaYOffset == VK_CHROMA_LOCATION_COSITED_EVEN) { chromaV += (Float4(0.25f) / Float4(*Pointer(mipmapU + OFFSET(Mipmap, height)))); } Short4 chromaUUUU = address(chromaU, state.addressingModeU); Short4 chromaVVVV = address(chromaV, state.addressingModeV); if(state.chromaFilter == FILTER_POINT) { sampleChromaTexel(yuv, chromaUUUU, chromaVVVV, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); } else { Short4 chromaUUUU0 = offsetSample(chromaUUUU, mipmapU, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, -1, lod); Short4 chromaVVVV0 = offsetSample(chromaVVVV, mipmapU, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, -1, lod); Short4 chromaUUUU1 = offsetSample(chromaUUUU, mipmapU, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, +1, lod); Short4 chromaVVVV1 = offsetSample(chromaVVVV, mipmapU, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, +1, lod); sampleChromaTexel(yuv00, chromaUUUU0, chromaVVVV0, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); sampleChromaTexel(yuv01, chromaUUUU0, chromaVVVV1, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); sampleChromaTexel(yuv10, chromaUUUU1, chromaVVVV0, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); sampleChromaTexel(yuv11, chromaUUUU1, chromaVVVV1, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); bilinearInterpolateFloat(yuv, chromaUUUU0, chromaVVVV0, yuv00, yuv01, yuv10, yuv11, mipmapU, true, false, true, false); } if(state.swappedChroma) { std::swap(yuv.x, yuv.z); } if(state.ycbcrModel == VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) { // Scale to the output 15-bit. c.x = UShort4(yuv.x) << (15 - chromaBits); c.y = UShort4(yuv.y) << (15 - lumaBits); c.z = UShort4(yuv.z) << (15 - chromaBits); } else { const float twoPowLumaBits = static_cast(0x1u << lumaBits); const float twoPowLumaBitsMinus8 = static_cast(0x1u << (lumaBits - 8)); const float twoPowChromaBits = static_cast(0x1u << chromaBits); const float twoPowChromaBitsMinus1 = static_cast(0x1u << (chromaBits - 1)); const float twoPowChromaBitsMinus8 = static_cast(0x1u << (chromaBits - 8)); Float4 y = Float4(yuv.y); Float4 u = Float4(yuv.z); Float4 v = Float4(yuv.x); if(state.studioSwing) { // See https://www.khronos.org/registry/DataFormat/specs/1.3/dataformat.1.3.html#QUANTIZATION_NARROW y = ((y / Float4(twoPowLumaBitsMinus8)) - Float4(16.0f)) / Float4(219.0f); u = ((u / Float4(twoPowChromaBitsMinus8)) - Float4(128.0f)) / Float4(224.0f); v = ((v / Float4(twoPowChromaBitsMinus8)) - Float4(128.0f)) / Float4(224.0f); } else { // See https://www.khronos.org/registry/DataFormat/specs/1.3/dataformat.1.3.html#QUANTIZATION_FULL y = y / Float4(twoPowLumaBits - 1.0f); u = (u - Float4(twoPowChromaBitsMinus1)) / Float4(twoPowChromaBits - 1.0f); v = (v - Float4(twoPowChromaBitsMinus1)) / Float4(twoPowChromaBits - 1.0f); } // Now, `y` is in [0, 1] and `u` and `v` are in [-0.5, 0.5]. if(state.ycbcrModel == VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY) { c.x = Short4(v * static_cast(0x7FFF)); c.y = Short4(y * static_cast(0x7FFF)); c.z = Short4(u * static_cast(0x7FFF)); } else { // Generic YCbCr to RGB transformation: // R = Y + 2 * (1 - Kr) * Cr // G = Y - 2 * Kb * (1 - Kb) / Kg * Cb - 2 * Kr * (1 - Kr) / Kg * Cr // B = Y + 2 * (1 - Kb) * Cb float Kb = 0.114f; float Kr = 0.299f; switch(state.ycbcrModel) { case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709: Kb = 0.0722f; Kr = 0.2126f; break; case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601: Kb = 0.114f; Kr = 0.299f; break; case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020: Kb = 0.0593f; Kr = 0.2627f; break; default: UNSUPPORTED("ycbcrModel %d", int(state.ycbcrModel)); } const float Kg = 1.0f - Kr - Kb; const float Rr = 2 * (1 - Kr); const float Gb = -2 * Kb * (1 - Kb) / Kg; const float Gr = -2 * Kr * (1 - Kr) / Kg; const float Bb = 2 * (1 - Kb); Float4 r = y + Float4(Rr) * v; Float4 g = y + Float4(Gb) * u + Float4(Gr) * v; Float4 b = y + Float4(Bb) * u; c.x = Short4(r * static_cast(0x7FFF)); c.y = Short4(g * static_cast(0x7FFF)); c.z = Short4(b * static_cast(0x7FFF)); } } } else // !isYcbcrFormat() { if(state.textureFilter == FILTER_POINT) { c = sampleTexel(uuuu, vvvv, wwww, layerIndex, sample, mipmap, buffer); } else { Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, -1, lod); Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, -1, lod); Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, +1, lod); Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, +1, lod); Vector4s c00 = sampleTexel(uuuu0, vvvv0, wwww, layerIndex, sample, mipmap, buffer); Vector4s c10 = sampleTexel(uuuu1, vvvv0, wwww, layerIndex, sample, mipmap, buffer); Vector4s c01 = sampleTexel(uuuu0, vvvv1, wwww, layerIndex, sample, mipmap, buffer); Vector4s c11 = sampleTexel(uuuu1, vvvv1, wwww, layerIndex, sample, mipmap, buffer); if(!gather) // Blend { bilinearInterpolate(c, uuuu0, vvvv0, c00, c01, c10, c11, mipmap); } else { VkComponentSwizzle swizzle = gatherSwizzle(); switch(swizzle) { case VK_COMPONENT_SWIZZLE_ZERO: case VK_COMPONENT_SWIZZLE_ONE: // Handled at the final component swizzle. break; default: c.x = c01[swizzle - VK_COMPONENT_SWIZZLE_R]; c.y = c11[swizzle - VK_COMPONENT_SWIZZLE_R]; c.z = c10[swizzle - VK_COMPONENT_SWIZZLE_R]; c.w = c00[swizzle - VK_COMPONENT_SWIZZLE_R]; break; } } } } return c; } Vector4s SamplerCore::sample3D(Pointer &texture, Float4 &u_, Float4 &v_, Float4 &w_, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) { Vector4s c_; int componentCount = textureComponentCount(); Pointer mipmap = selectMipmap(texture, lod, secondLOD); Pointer buffer = *Pointer>(mipmap + OFFSET(Mipmap, buffer)); applyOffset(u_, v_, w_, offset, mipmap); Short4 uuuu = address(u_, state.addressingModeU); Short4 vvvv = address(v_, state.addressingModeV); Short4 wwww = address(w_, state.addressingModeW); if(state.textureFilter == FILTER_POINT) { c_ = sampleTexel(uuuu, vvvv, wwww, 0, sample, mipmap, buffer); } else { Vector4s c[2][2][2]; Short4 u[2][2][2]; Short4 v[2][2][2]; Short4 s[2][2][2]; for(int i = 0; i < 2; i++) { for(int j = 0; j < 2; j++) { for(int k = 0; k < 2; k++) { u[i][j][k] = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, i * 2 - 1, lod); v[i][j][k] = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, j * 2 - 1, lod); s[i][j][k] = offsetSample(wwww, mipmap, OFFSET(Mipmap, wHalf), state.addressingModeW == ADDRESSING_WRAP, k * 2 - 1, lod); } } } // Fractions UShort4 f0u = As(u[0][0][0]) * UShort4(*Pointer(mipmap + OFFSET(Mipmap, width))); UShort4 f0v = As(v[0][0][0]) * UShort4(*Pointer(mipmap + OFFSET(Mipmap, height))); UShort4 f0s = As(s[0][0][0]) * UShort4(*Pointer(mipmap + OFFSET(Mipmap, depth))); UShort4 f1u = ~f0u; UShort4 f1v = ~f0v; UShort4 f1s = ~f0s; UShort4 f[2][2][2]; Short4 fs[2][2][2]; f[1][1][1] = MulHigh(f1u, f1v); f[0][1][1] = MulHigh(f0u, f1v); f[1][0][1] = MulHigh(f1u, f0v); f[0][0][1] = MulHigh(f0u, f0v); f[1][1][0] = MulHigh(f1u, f1v); f[0][1][0] = MulHigh(f0u, f1v); f[1][0][0] = MulHigh(f1u, f0v); f[0][0][0] = MulHigh(f0u, f0v); f[1][1][1] = MulHigh(f[1][1][1], f1s); f[0][1][1] = MulHigh(f[0][1][1], f1s); f[1][0][1] = MulHigh(f[1][0][1], f1s); f[0][0][1] = MulHigh(f[0][0][1], f1s); f[1][1][0] = MulHigh(f[1][1][0], f0s); f[0][1][0] = MulHigh(f[0][1][0], f0s); f[1][0][0] = MulHigh(f[1][0][0], f0s); f[0][0][0] = MulHigh(f[0][0][0], f0s); // Signed fractions if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3)) { fs[0][0][0] = f[0][0][0] >> 1; fs[0][0][1] = f[0][0][1] >> 1; fs[0][1][0] = f[0][1][0] >> 1; fs[0][1][1] = f[0][1][1] >> 1; fs[1][0][0] = f[1][0][0] >> 1; fs[1][0][1] = f[1][0][1] >> 1; fs[1][1][0] = f[1][1][0] >> 1; fs[1][1][1] = f[1][1][1] >> 1; } for(int i = 0; i < 2; i++) { for(int j = 0; j < 2; j++) { for(int k = 0; k < 2; k++) { c[i][j][k] = sampleTexel(u[i][j][k], v[i][j][k], s[i][j][k], 0, sample, mipmap, buffer); if(componentCount >= 1) { if(hasUnsignedTextureComponent(0)) c[i][j][k].x = MulHigh(As(c[i][j][k].x), f[1 - i][1 - j][1 - k]); else c[i][j][k].x = MulHigh(c[i][j][k].x, fs[1 - i][1 - j][1 - k]); } if(componentCount >= 2) { if(hasUnsignedTextureComponent(1)) c[i][j][k].y = MulHigh(As(c[i][j][k].y), f[1 - i][1 - j][1 - k]); else c[i][j][k].y = MulHigh(c[i][j][k].y, fs[1 - i][1 - j][1 - k]); } if(componentCount >= 3) { if(hasUnsignedTextureComponent(2)) c[i][j][k].z = MulHigh(As(c[i][j][k].z), f[1 - i][1 - j][1 - k]); else c[i][j][k].z = MulHigh(c[i][j][k].z, fs[1 - i][1 - j][1 - k]); } if(componentCount >= 4) { if(hasUnsignedTextureComponent(3)) c[i][j][k].w = MulHigh(As(c[i][j][k].w), f[1 - i][1 - j][1 - k]); else c[i][j][k].w = MulHigh(c[i][j][k].w, fs[1 - i][1 - j][1 - k]); } if(i != 0 || j != 0 || k != 0) { if(componentCount >= 1) c[0][0][0].x += c[i][j][k].x; if(componentCount >= 2) c[0][0][0].y += c[i][j][k].y; if(componentCount >= 3) c[0][0][0].z += c[i][j][k].z; if(componentCount >= 4) c[0][0][0].w += c[i][j][k].w; } } } } if(componentCount >= 1) c_.x = c[0][0][0].x; if(componentCount >= 2) c_.y = c[0][0][0].y; if(componentCount >= 3) c_.z = c[0][0][0].z; if(componentCount >= 4) c_.w = c[0][0][0].w; // Correct for signed fractions if(componentCount >= 1) if(!hasUnsignedTextureComponent(0)) c_.x = AddSat(c_.x, c_.x); if(componentCount >= 2) if(!hasUnsignedTextureComponent(1)) c_.y = AddSat(c_.y, c_.y); if(componentCount >= 3) if(!hasUnsignedTextureComponent(2)) c_.z = AddSat(c_.z, c_.z); if(componentCount >= 4) if(!hasUnsignedTextureComponent(3)) c_.w = AddSat(c_.w, c_.w); } return c_; } Vector4f SamplerCore::sampleFloatFilter(Pointer &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta) { Vector4f c = sampleFloatAniso(texture, u, v, w, a, dRef, offset, sample, lod, anisotropy, uDelta, vDelta, false); if(function == Fetch) { return c; } if(state.mipmapFilter == MIPMAP_LINEAR) { Vector4f cc = sampleFloatAniso(texture, u, v, w, a, dRef, offset, sample, lod, anisotropy, uDelta, vDelta, true); Float4 lod4 = Float4(Frac(lod)); c.x = (cc.x - c.x) * lod4 + c.x; c.y = (cc.y - c.y) * lod4 + c.y; c.z = (cc.z - c.z) * lod4 + c.z; c.w = (cc.w - c.w) * lod4 + c.w; } return c; } Vector4f SamplerCore::sampleFloatAniso(Pointer &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, bool secondLOD) { Vector4f c; if(state.textureFilter != FILTER_ANISOTROPIC) { c = sampleFloat(texture, u, v, w, a, dRef, offset, sample, lod, secondLOD); } else { Int N = RoundInt(anisotropy); Vector4f cSum; cSum.x = Float4(0.0f); cSum.y = Float4(0.0f); cSum.z = Float4(0.0f); cSum.w = Float4(0.0f); Float4 A = *Pointer(constants + OFFSET(Constants, uvWeight) + 16 * N); Float4 B = *Pointer(constants + OFFSET(Constants, uvStart) + 16 * N); Float4 du = uDelta; Float4 dv = vDelta; Float4 u0 = u + B * du; Float4 v0 = v + B * dv; du *= A; dv *= A; Int i = 0; Do { c = sampleFloat(texture, u0, v0, w, a, dRef, offset, sample, lod, secondLOD); u0 += du; v0 += dv; cSum.x += c.x * A; cSum.y += c.y * A; cSum.z += c.z * A; cSum.w += c.w * A; i++; } Until(i >= N); c.x = cSum.x; c.y = cSum.y; c.z = cSum.z; c.w = cSum.w; } return c; } Vector4f SamplerCore::sampleFloat(Pointer &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) { if(state.textureType != VK_IMAGE_VIEW_TYPE_3D) { return sampleFloat2D(texture, u, v, w, a, dRef, offset, sample, lod, secondLOD); } else { return sampleFloat3D(texture, u, v, w, dRef, offset, sample, lod, secondLOD); } } Vector4f SamplerCore::sampleFloat2D(Pointer &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) { Vector4f c; int componentCount = textureComponentCount(); bool gather = (state.textureFilter == FILTER_GATHER); Pointer mipmap = selectMipmap(texture, lod, secondLOD); Pointer buffer = *Pointer>(mipmap + OFFSET(Mipmap, buffer)); applyOffset(u, v, w, offset, mipmap); Int4 x0, x1, y0, y1; Float4 fu, fv; Int4 filter = computeFilterOffset(lod); address(u, x0, x1, fu, mipmap, filter, OFFSET(Mipmap, width), state.addressingModeU); address(v, y0, y1, fv, mipmap, filter, OFFSET(Mipmap, height), state.addressingModeV); Int4 pitchP = As(*Pointer(mipmap + OFFSET(Mipmap, pitchP), 16)); y0 *= pitchP; Int4 z; if(state.isCube() || state.isArrayed()) { Int4 face = As(w); Int4 layerIndex = computeLayerIndex(a, mipmap); // For cube maps, the layer argument is per cube, each of which has 6 layers if(state.textureType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) { layerIndex *= Int4(6); } z = state.isCube() ? face : layerIndex; if(state.textureType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) { z += layerIndex; } z *= *Pointer(mipmap + OFFSET(Mipmap, sliceP), 16); } if(state.textureFilter == FILTER_POINT || (function == Fetch)) { c = sampleTexel(x0, y0, z, dRef, sample, mipmap, buffer); } else { y1 *= pitchP; Vector4f c00 = sampleTexel(x0, y0, z, dRef, sample, mipmap, buffer); Vector4f c10 = sampleTexel(x1, y0, z, dRef, sample, mipmap, buffer); Vector4f c01 = sampleTexel(x0, y1, z, dRef, sample, mipmap, buffer); Vector4f c11 = sampleTexel(x1, y1, z, dRef, sample, mipmap, buffer); if(!gather) // Blend { if(componentCount >= 1) c00.x = c00.x + fu * (c10.x - c00.x); if(componentCount >= 2) c00.y = c00.y + fu * (c10.y - c00.y); if(componentCount >= 3) c00.z = c00.z + fu * (c10.z - c00.z); if(componentCount >= 4) c00.w = c00.w + fu * (c10.w - c00.w); if(componentCount >= 1) c01.x = c01.x + fu * (c11.x - c01.x); if(componentCount >= 2) c01.y = c01.y + fu * (c11.y - c01.y); if(componentCount >= 3) c01.z = c01.z + fu * (c11.z - c01.z); if(componentCount >= 4) c01.w = c01.w + fu * (c11.w - c01.w); if(componentCount >= 1) c.x = c00.x + fv * (c01.x - c00.x); if(componentCount >= 2) c.y = c00.y + fv * (c01.y - c00.y); if(componentCount >= 3) c.z = c00.z + fv * (c01.z - c00.z); if(componentCount >= 4) c.w = c00.w + fv * (c01.w - c00.w); } else // Gather { VkComponentSwizzle swizzle = gatherSwizzle(); switch(swizzle) { case VK_COMPONENT_SWIZZLE_ZERO: case VK_COMPONENT_SWIZZLE_ONE: // Handled at the final component swizzle. break; default: c.x = c01[swizzle - VK_COMPONENT_SWIZZLE_R]; c.y = c11[swizzle - VK_COMPONENT_SWIZZLE_R]; c.z = c10[swizzle - VK_COMPONENT_SWIZZLE_R]; c.w = c00[swizzle - VK_COMPONENT_SWIZZLE_R]; break; } } } return c; } Vector4f SamplerCore::sampleFloat3D(Pointer &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) { Vector4f c; int componentCount = textureComponentCount(); Pointer mipmap = selectMipmap(texture, lod, secondLOD); Pointer buffer = *Pointer>(mipmap + OFFSET(Mipmap, buffer)); applyOffset(u, v, w, offset, mipmap); Int4 x0, x1, y0, y1, z0, z1; Float4 fu, fv, fw; Int4 filter = computeFilterOffset(lod); address(u, x0, x1, fu, mipmap, filter, OFFSET(Mipmap, width), state.addressingModeU); address(v, y0, y1, fv, mipmap, filter, OFFSET(Mipmap, height), state.addressingModeV); address(w, z0, z1, fw, mipmap, filter, OFFSET(Mipmap, depth), state.addressingModeW); Int4 pitchP = As(*Pointer(mipmap + OFFSET(Mipmap, pitchP), 16)); Int4 sliceP = As(*Pointer(mipmap + OFFSET(Mipmap, sliceP), 16)); y0 *= pitchP; z0 *= sliceP; if(state.textureFilter == FILTER_POINT || (function == Fetch)) { c = sampleTexel(x0, y0, z0, dRef, sample, mipmap, buffer); } else { y1 *= pitchP; z1 *= sliceP; Vector4f c000 = sampleTexel(x0, y0, z0, dRef, sample, mipmap, buffer); Vector4f c100 = sampleTexel(x1, y0, z0, dRef, sample, mipmap, buffer); Vector4f c010 = sampleTexel(x0, y1, z0, dRef, sample, mipmap, buffer); Vector4f c110 = sampleTexel(x1, y1, z0, dRef, sample, mipmap, buffer); Vector4f c001 = sampleTexel(x0, y0, z1, dRef, sample, mipmap, buffer); Vector4f c101 = sampleTexel(x1, y0, z1, dRef, sample, mipmap, buffer); Vector4f c011 = sampleTexel(x0, y1, z1, dRef, sample, mipmap, buffer); Vector4f c111 = sampleTexel(x1, y1, z1, dRef, sample, mipmap, buffer); // Blend first slice if(componentCount >= 1) c000.x = c000.x + fu * (c100.x - c000.x); if(componentCount >= 2) c000.y = c000.y + fu * (c100.y - c000.y); if(componentCount >= 3) c000.z = c000.z + fu * (c100.z - c000.z); if(componentCount >= 4) c000.w = c000.w + fu * (c100.w - c000.w); if(componentCount >= 1) c010.x = c010.x + fu * (c110.x - c010.x); if(componentCount >= 2) c010.y = c010.y + fu * (c110.y - c010.y); if(componentCount >= 3) c010.z = c010.z + fu * (c110.z - c010.z); if(componentCount >= 4) c010.w = c010.w + fu * (c110.w - c010.w); if(componentCount >= 1) c000.x = c000.x + fv * (c010.x - c000.x); if(componentCount >= 2) c000.y = c000.y + fv * (c010.y - c000.y); if(componentCount >= 3) c000.z = c000.z + fv * (c010.z - c000.z); if(componentCount >= 4) c000.w = c000.w + fv * (c010.w - c000.w); // Blend second slice if(componentCount >= 1) c001.x = c001.x + fu * (c101.x - c001.x); if(componentCount >= 2) c001.y = c001.y + fu * (c101.y - c001.y); if(componentCount >= 3) c001.z = c001.z + fu * (c101.z - c001.z); if(componentCount >= 4) c001.w = c001.w + fu * (c101.w - c001.w); if(componentCount >= 1) c011.x = c011.x + fu * (c111.x - c011.x); if(componentCount >= 2) c011.y = c011.y + fu * (c111.y - c011.y); if(componentCount >= 3) c011.z = c011.z + fu * (c111.z - c011.z); if(componentCount >= 4) c011.w = c011.w + fu * (c111.w - c011.w); if(componentCount >= 1) c001.x = c001.x + fv * (c011.x - c001.x); if(componentCount >= 2) c001.y = c001.y + fv * (c011.y - c001.y); if(componentCount >= 3) c001.z = c001.z + fv * (c011.z - c001.z); if(componentCount >= 4) c001.w = c001.w + fv * (c011.w - c001.w); // Blend slices if(componentCount >= 1) c.x = c000.x + fw * (c001.x - c000.x); if(componentCount >= 2) c.y = c000.y + fw * (c001.y - c000.y); if(componentCount >= 3) c.z = c000.z + fw * (c001.z - c000.z); if(componentCount >= 4) c.w = c000.w + fw * (c001.w - c000.w); } return c; } static Float log2sqrt(Float lod) { // log2(sqrt(lod)) // Equals 0.25 * log2(lod^2). lod *= lod; // Squaring doubles the exponent and produces an extra bit of precision. lod = Float(As(lod)) - Float(0x3F800000); // Interpret as integer and subtract the exponent bias. lod *= As(Int(0x33000000)); // Scale by 0.25 * 2^-23 (mantissa length). return lod; } static Float log2(Float lod) { lod *= lod; // Squaring doubles the exponent and produces an extra bit of precision. lod = Float(As(lod)) - Float(0x3F800000); // Interpret as integer and subtract the exponent bias. lod *= As(Int(0x33800000)); // Scale by 0.5 * 2^-23 (mantissa length). return lod; } void SamplerCore::computeLod1D(Pointer &texture, Float &lod, Float4 &uuuu, const Float4 &dsx, const Float4 &dsy) { Float4 dudxy; if(function != Grad) // Implicit { dudxy = uuuu.yz - uuuu.xx; } else { dudxy = UnpackLow(dsx, dsy); } // Scale by texture dimensions. Float4 dUdxy = dudxy * *Pointer(texture + OFFSET(Texture, widthWidthHeightHeight)); // Note we could take the absolute value here and omit the square root below, // but this is more consistent with the 2D calculation and still cheap. Float4 dU2dxy = dUdxy * dUdxy; lod = Max(Float(dU2dxy.x), Float(dU2dxy.y)); lod = log2sqrt(lod); } void SamplerCore::computeLod2D(Pointer &texture, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Float4 &uuuu, Float4 &vvvv, const Float4 &dsx, const Float4 &dsy) { Float4 duvdxy; if(function != Grad) // Implicit { duvdxy = Float4(uuuu.yz, vvvv.yz) - Float4(uuuu.xx, vvvv.xx); } else { Float4 dudxy = Float4(dsx.xx, dsy.xx); Float4 dvdxy = Float4(dsx.yy, dsy.yy); duvdxy = Float4(dudxy.xz, dvdxy.xz); } // Scale by texture dimensions. Float4 dUVdxy = duvdxy * *Pointer(texture + OFFSET(Texture, widthWidthHeightHeight)); Float4 dUV2dxy = dUVdxy * dUVdxy; Float4 dUV2 = dUV2dxy.xy + dUV2dxy.zw; lod = Max(Float(dUV2.x), Float(dUV2.y)); // Square length of major axis if(state.textureFilter == FILTER_ANISOTROPIC) { Float det = Abs(Float(dUVdxy.x) * Float(dUVdxy.w) - Float(dUVdxy.y) * Float(dUVdxy.z)); Float4 dudx = duvdxy.xxxx; Float4 dudy = duvdxy.yyyy; Float4 dvdx = duvdxy.zzzz; Float4 dvdy = duvdxy.wwww; Int4 mask = As(CmpNLT(dUV2.x, dUV2.y)); uDelta = As((As(dudx) & mask) | ((As(dudy) & ~mask))); vDelta = As((As(dvdx) & mask) | ((As(dvdy) & ~mask))); anisotropy = lod * Rcp(det, true /* relaxedPrecision */); anisotropy = Min(anisotropy, state.maxAnisotropy); // TODO(b/151263485): While we always need `lod` above, when there's only // a single mipmap level the following calculations could be skipped. lod *= Rcp(anisotropy * anisotropy, true /* relaxedPrecision */); } lod = log2sqrt(lod); // log2(sqrt(lod)) } void SamplerCore::computeLodCube(Pointer &texture, Float &lod, Float4 &u, Float4 &v, Float4 &w, const Float4 &dsx, const Float4 &dsy, Float4 &M) { Float4 dudxy, dvdxy, dsdxy; if(function != Grad) // Implicit { Float4 U = u * M; Float4 V = v * M; Float4 W = w * M; dudxy = Abs(U - U.xxxx); dvdxy = Abs(V - V.xxxx); dsdxy = Abs(W - W.xxxx); } else { dudxy = Float4(dsx.xx, dsy.xx); dvdxy = Float4(dsx.yy, dsy.yy); dsdxy = Float4(dsx.zz, dsy.zz); dudxy = Abs(dudxy * Float4(M.x)); dvdxy = Abs(dvdxy * Float4(M.x)); dsdxy = Abs(dsdxy * Float4(M.x)); } // Compute the largest Manhattan distance in two dimensions. // This takes the footprint across adjacent faces into account. Float4 duvdxy = dudxy + dvdxy; Float4 dusdxy = dudxy + dsdxy; Float4 dvsdxy = dvdxy + dsdxy; dudxy = Max(Max(duvdxy, dusdxy), dvsdxy); lod = Max(Float(dudxy.y), Float(dudxy.z)); // TODO: Max(dudxy.y, dudxy.z); // Scale by texture dimension. lod *= *Pointer(texture + OFFSET(Texture, width)); lod = log2(lod); } void SamplerCore::computeLod3D(Pointer &texture, Float &lod, Float4 &uuuu, Float4 &vvvv, Float4 &wwww, const Float4 &dsx, const Float4 &dsy) { Float4 dudxy, dvdxy, dsdxy; if(function != Grad) // Implicit { dudxy = uuuu - uuuu.xxxx; dvdxy = vvvv - vvvv.xxxx; dsdxy = wwww - wwww.xxxx; } else { dudxy = Float4(dsx.xx, dsy.xx); dvdxy = Float4(dsx.yy, dsy.yy); dsdxy = Float4(dsx.zz, dsy.zz); } // Scale by texture dimensions. dudxy *= *Pointer(texture + OFFSET(Texture, width)); dvdxy *= *Pointer(texture + OFFSET(Texture, height)); dsdxy *= *Pointer(texture + OFFSET(Texture, depth)); dudxy *= dudxy; dvdxy *= dvdxy; dsdxy *= dsdxy; dudxy += dvdxy; dudxy += dsdxy; lod = Max(Float(dudxy.y), Float(dudxy.z)); // TODO: Max(dudxy.y, dudxy.z); lod = log2sqrt(lod); // log2(sqrt(lod)) } Int4 SamplerCore::cubeFace(Float4 &U, Float4 &V, Float4 &x, Float4 &y, Float4 &z, Float4 &M) { // TODO: Comply with Vulkan recommendation: // Vulkan 1.1: "The rules should have as the first rule that rz wins over ry and rx, and the second rule that ry wins over rx." Int4 xn = CmpLT(x, 0.0f); // x < 0 Int4 yn = CmpLT(y, 0.0f); // y < 0 Int4 zn = CmpLT(z, 0.0f); // z < 0 Float4 absX = Abs(x); Float4 absY = Abs(y); Float4 absZ = Abs(z); Int4 xy = CmpNLE(absX, absY); // abs(x) > abs(y) Int4 yz = CmpNLE(absY, absZ); // abs(y) > abs(z) Int4 zx = CmpNLE(absZ, absX); // abs(z) > abs(x) Int4 xMajor = xy & ~zx; // abs(x) > abs(y) && abs(x) > abs(z) Int4 yMajor = yz & ~xy; // abs(y) > abs(z) && abs(y) > abs(x) Int4 zMajor = zx & ~yz; // abs(z) > abs(x) && abs(z) > abs(y) // FACE_POSITIVE_X = 000b // FACE_NEGATIVE_X = 001b // FACE_POSITIVE_Y = 010b // FACE_NEGATIVE_Y = 011b // FACE_POSITIVE_Z = 100b // FACE_NEGATIVE_Z = 101b Int yAxis = SignMask(yMajor); Int zAxis = SignMask(zMajor); Int4 n = ((xn & xMajor) | (yn & yMajor) | (zn & zMajor)) & Int4(0x80000000); Int negative = SignMask(n); Int faces = *Pointer(constants + OFFSET(Constants, transposeBit0) + negative * 4); faces |= *Pointer(constants + OFFSET(Constants, transposeBit1) + yAxis * 4); faces |= *Pointer(constants + OFFSET(Constants, transposeBit2) + zAxis * 4); Int4 face; face.x = faces & 0x7; face.y = (faces >> 4) & 0x7; face.z = (faces >> 8) & 0x7; face.w = (faces >> 12) & 0x7; M = Max(Max(absX, absY), absZ); // U = xMajor ? (neg ^ -z) : ((zMajor & neg) ^ x) U = As((xMajor & (n ^ As(-z))) | (~xMajor & ((zMajor & n) ^ As(x)))); // V = !yMajor ? -y : (n ^ z) V = As((~yMajor & As(-y)) | (yMajor & (n ^ As(z)))); M = reciprocal(M) * 0.5f; U = U * M + 0.5f; V = V * M + 0.5f; return face; } void SamplerCore::applyOffset(Float4 &u, Float4 &v, Float4 &w, Vector4i &offset, Pointer mipmap) { if(function.offset) { if(function == Fetch) { // Unnormalized coordinates u = As(As(u) + offset.x); if(state.is2D() || state.is3D() || state.isCube()) { v = As(As(v) + offset.y); if(state.is3D()) { w = As(As(w) + offset.z); } } } else { // Normalized coordinates UInt4 width = *Pointer(mipmap + OFFSET(Mipmap, width)); u += Float4(offset.x) / Float4(width); if(state.is2D() || state.is3D() || state.isCube()) { UInt4 height = *Pointer(mipmap + OFFSET(Mipmap, height)); v += Float4(offset.y) / Float4(height); if(state.is3D()) { UInt4 depth = *Pointer(mipmap + OFFSET(Mipmap, depth)); w += Float4(offset.z) / Float4(depth); } } } } } void SamplerCore::computeIndices(UInt index[4], Short4 uuuu, Short4 vvvv, Short4 wwww, const Short4 &layerIndex, const Int4 &sample, const Pointer &mipmap) { uuuu = MulHigh(As(uuuu), UShort4(*Pointer(mipmap + OFFSET(Mipmap, width)))); UInt4 indices = Int4(uuuu); if(state.is2D() || state.is3D() || state.isCube()) { vvvv = MulHigh(As(vvvv), UShort4(*Pointer(mipmap + OFFSET(Mipmap, height)))); Short4 uv0uv1 = As(UnpackLow(uuuu, vvvv)); Short4 uv2uv3 = As(UnpackHigh(uuuu, vvvv)); Int2 i01 = MulAdd(uv0uv1, *Pointer(mipmap + OFFSET(Mipmap, onePitchP))); Int2 i23 = MulAdd(uv2uv3, *Pointer(mipmap + OFFSET(Mipmap, onePitchP))); indices = UInt4(As(i01), As(i23)); } if(state.is3D()) { wwww = MulHigh(As(wwww), UShort4(*Pointer(mipmap + OFFSET(Mipmap, depth)))); indices += As(Int4(As(wwww))) * *Pointer(mipmap + OFFSET(Mipmap, sliceP)); } if(state.isArrayed()) { Int4 layer = Int4(As(layerIndex)); if(state.textureType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) { layer *= Int4(6); } UInt4 layerOffset = As(layer) * *Pointer(mipmap + OFFSET(Mipmap, sliceP)); indices += layerOffset; } if(function.sample) { UInt4 sampleOffset = Min(As(sample), *Pointer(mipmap + OFFSET(Mipmap, sampleMax), 16)) * *Pointer(mipmap + OFFSET(Mipmap, samplePitchP), 16); indices += sampleOffset; } index[0] = Extract(indices, 0); index[1] = Extract(indices, 1); index[2] = Extract(indices, 2); index[3] = Extract(indices, 3); } void SamplerCore::computeIndices(UInt index[4], Int4 uuuu, Int4 vvvv, Int4 wwww, const Int4 &sample, Int4 valid, const Pointer &mipmap) { UInt4 indices = uuuu; if(state.is2D() || state.is3D() || state.isCube()) { indices += As(vvvv); } if(state.is3D() || state.isCube() || state.isArrayed()) { indices += As(wwww); } if(function.sample) { indices += Min(As(sample), *Pointer(mipmap + OFFSET(Mipmap, sampleMax), 16)) * *Pointer(mipmap + OFFSET(Mipmap, samplePitchP), 16); } if(borderModeActive()) { // Texels out of range are still sampled before being replaced // with the border color, so sample them at linear index 0. indices &= As(valid); } for(int i = 0; i < 4; i++) { index[i] = Extract(As(indices), i); } } Vector4s SamplerCore::sampleTexel(UInt index[4], Pointer buffer) { Vector4s c; if(has16bitPackedTextureFormat()) { c.x = Insert(c.x, Pointer(buffer)[index[0]], 0); c.x = Insert(c.x, Pointer(buffer)[index[1]], 1); c.x = Insert(c.x, Pointer(buffer)[index[2]], 2); c.x = Insert(c.x, Pointer(buffer)[index[3]], 3); switch(state.textureFormat) { case VK_FORMAT_R5G6B5_UNORM_PACK16: c.z = (c.x & Short4(0x001Fu)) << 11; c.y = (c.x & Short4(0x07E0u)) << 5; c.x = (c.x & Short4(0xF800u)); break; case VK_FORMAT_B5G6R5_UNORM_PACK16: c.z = (c.x & Short4(0xF800u)); c.y = (c.x & Short4(0x07E0u)) << 5; c.x = (c.x & Short4(0x001Fu)) << 11; break; case VK_FORMAT_R4G4B4A4_UNORM_PACK16: c.w = (c.x << 12) & Short4(0xF000u); c.z = (c.x << 8) & Short4(0xF000u); c.y = (c.x << 4) & Short4(0xF000u); c.x = (c.x) & Short4(0xF000u); break; case VK_FORMAT_B4G4R4A4_UNORM_PACK16: c.w = (c.x << 12) & Short4(0xF000u); c.z = (c.x) & Short4(0xF000u); c.y = (c.x << 4) & Short4(0xF000u); c.x = (c.x << 8) & Short4(0xF000u); break; case VK_FORMAT_A4R4G4B4_UNORM_PACK16: c.w = (c.x) & Short4(0xF000u); c.z = (c.x << 12) & Short4(0xF000u); c.y = (c.x << 8) & Short4(0xF000u); c.x = (c.x << 4) & Short4(0xF000u); break; case VK_FORMAT_A4B4G4R4_UNORM_PACK16: c.w = (c.x) & Short4(0xF000u); c.z = (c.x << 4) & Short4(0xF000u); c.y = (c.x << 8) & Short4(0xF000u); c.x = (c.x << 12) & Short4(0xF000u); break; case VK_FORMAT_R5G5B5A1_UNORM_PACK16: c.w = (c.x << 15) & Short4(0x8000u); c.z = (c.x << 10) & Short4(0xF800u); c.y = (c.x << 5) & Short4(0xF800u); c.x = (c.x) & Short4(0xF800u); break; case VK_FORMAT_B5G5R5A1_UNORM_PACK16: c.w = (c.x << 15) & Short4(0x8000u); c.z = (c.x) & Short4(0xF800u); c.y = (c.x << 5) & Short4(0xF800u); c.x = (c.x << 10) & Short4(0xF800u); break; case VK_FORMAT_A1R5G5B5_UNORM_PACK16: c.w = (c.x) & Short4(0x8000u); c.z = (c.x << 11) & Short4(0xF800u); c.y = (c.x << 6) & Short4(0xF800u); c.x = (c.x << 1) & Short4(0xF800u); break; default: ASSERT(false); } } else if(has8bitTextureComponents()) { switch(textureComponentCount()) { case 4: { Byte4 c0 = Pointer(buffer)[index[0]]; Byte4 c1 = Pointer(buffer)[index[1]]; Byte4 c2 = Pointer(buffer)[index[2]]; Byte4 c3 = Pointer(buffer)[index[3]]; c.x = Unpack(c0, c1); c.y = Unpack(c2, c3); switch(state.textureFormat) { case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_B8G8R8A8_SRGB: c.z = As(UnpackLow(c.x, c.y)); c.x = As(UnpackHigh(c.x, c.y)); c.y = c.z; c.w = c.x; c.z = UnpackLow(As(Short4(0)), As(c.z)); c.y = UnpackHigh(As(Short4(0)), As(c.y)); c.x = UnpackLow(As(Short4(0)), As(c.x)); c.w = UnpackHigh(As(Short4(0)), As(c.w)); break; case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_SNORM: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_A8B8G8R8_SNORM_PACK32: case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: c.z = As(UnpackHigh(c.x, c.y)); c.x = As(UnpackLow(c.x, c.y)); c.y = c.x; c.w = c.z; c.x = UnpackLow(As(Short4(0)), As(c.x)); c.y = UnpackHigh(As(Short4(0)), As(c.y)); c.z = UnpackLow(As(Short4(0)), As(c.z)); c.w = UnpackHigh(As(Short4(0)), As(c.w)); // Propagate sign bit if(state.textureFormat == VK_FORMAT_R8G8B8A8_SINT || state.textureFormat == VK_FORMAT_A8B8G8R8_SINT_PACK32) { c.x >>= 8; c.y >>= 8; c.z >>= 8; c.w >>= 8; } break; case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_A8B8G8R8_UINT_PACK32: c.z = As(UnpackHigh(c.x, c.y)); c.x = As(UnpackLow(c.x, c.y)); c.y = c.x; c.w = c.z; c.x = UnpackLow(As(c.x), As(Short4(0))); c.y = UnpackHigh(As(c.y), As(Short4(0))); c.z = UnpackLow(As(c.z), As(Short4(0))); c.w = UnpackHigh(As(c.w), As(Short4(0))); break; default: ASSERT(false); } } break; case 2: c.x = Insert(c.x, Pointer(buffer)[index[0]], 0); c.x = Insert(c.x, Pointer(buffer)[index[1]], 1); c.x = Insert(c.x, Pointer(buffer)[index[2]], 2); c.x = Insert(c.x, Pointer(buffer)[index[3]], 3); switch(state.textureFormat) { case VK_FORMAT_R8G8_UNORM: case VK_FORMAT_R8G8_SNORM: case VK_FORMAT_R8G8_SRGB: c.y = (c.x & Short4(0xFF00u)); c.x = (c.x << 8); break; case VK_FORMAT_R8G8_SINT: c.y = c.x >> 8; c.x = (c.x << 8) >> 8; // Propagate sign bit break; case VK_FORMAT_R8G8_UINT: c.y = As(As(c.x) >> 8); c.x &= Short4(0x00FFu); break; default: ASSERT(false); } break; case 1: { Int c0 = Int(*Pointer(buffer + index[0])); Int c1 = Int(*Pointer(buffer + index[1])); Int c2 = Int(*Pointer(buffer + index[2])); Int c3 = Int(*Pointer(buffer + index[3])); c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); switch(state.textureFormat) { case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_UINT: case VK_FORMAT_S8_UINT: { Int zero(0); c.x = Unpack(As(c0), As(zero)); // Propagate sign bit if(state.textureFormat == VK_FORMAT_R8_SINT) { c.x = (c.x << 8) >> 8; } } break; case VK_FORMAT_R8_SNORM: case VK_FORMAT_R8_UNORM: case VK_FORMAT_R8_SRGB: // TODO: avoid populating the low bits at all. c.x = Unpack(As(c0)); c.x &= Short4(0xFF00u); break; default: c.x = Unpack(As(c0)); break; } } break; default: ASSERT(false); } } else if(has16bitTextureComponents()) { switch(textureComponentCount()) { case 4: c.x = Pointer(buffer)[index[0]]; c.y = Pointer(buffer)[index[1]]; c.z = Pointer(buffer)[index[2]]; c.w = Pointer(buffer)[index[3]]; transpose4x4(c.x, c.y, c.z, c.w); break; case 2: c.x = *Pointer(buffer + 4 * index[0]); c.x = As(UnpackLow(c.x, *Pointer(buffer + 4 * index[1]))); c.z = *Pointer(buffer + 4 * index[2]); c.z = As(UnpackLow(c.z, *Pointer(buffer + 4 * index[3]))); c.y = c.x; c.x = UnpackLow(As(c.x), As(c.z)); c.y = UnpackHigh(As(c.y), As(c.z)); break; case 1: c.x = Insert(c.x, Pointer(buffer)[index[0]], 0); c.x = Insert(c.x, Pointer(buffer)[index[1]], 1); c.x = Insert(c.x, Pointer(buffer)[index[2]], 2); c.x = Insert(c.x, Pointer(buffer)[index[3]], 3); break; default: ASSERT(false); } } else if(state.textureFormat == VK_FORMAT_A2B10G10R10_UNORM_PACK32) { Int4 cc; cc = Insert(cc, Pointer(buffer)[index[0]], 0); cc = Insert(cc, Pointer(buffer)[index[1]], 1); cc = Insert(cc, Pointer(buffer)[index[2]], 2); cc = Insert(cc, Pointer(buffer)[index[3]], 3); c.x = Short4(cc << 6) & Short4(0xFFC0u); c.y = Short4(cc >> 4) & Short4(0xFFC0u); c.z = Short4(cc >> 14) & Short4(0xFFC0u); c.w = Short4(cc >> 16) & Short4(0xC000u); } else if(state.textureFormat == VK_FORMAT_A2R10G10B10_UNORM_PACK32) { Int4 cc; cc = Insert(cc, Pointer(buffer)[index[0]], 0); cc = Insert(cc, Pointer(buffer)[index[1]], 1); cc = Insert(cc, Pointer(buffer)[index[2]], 2); cc = Insert(cc, Pointer(buffer)[index[3]], 3); c.x = Short4(cc >> 14) & Short4(0xFFC0u); c.y = Short4(cc >> 4) & Short4(0xFFC0u); c.z = Short4(cc << 6) & Short4(0xFFC0u); c.w = Short4(cc >> 16) & Short4(0xC000u); } else if(state.textureFormat == VK_FORMAT_A2B10G10R10_UINT_PACK32) { Int4 cc; cc = Insert(cc, Pointer(buffer)[index[0]], 0); cc = Insert(cc, Pointer(buffer)[index[1]], 1); cc = Insert(cc, Pointer(buffer)[index[2]], 2); cc = Insert(cc, Pointer(buffer)[index[3]], 3); c.x = Short4(cc & Int4(0x3FF)); c.y = Short4((cc >> 10) & Int4(0x3FF)); c.z = Short4((cc >> 20) & Int4(0x3FF)); c.w = Short4((cc >> 30) & Int4(0x3)); } else if(state.textureFormat == VK_FORMAT_A2R10G10B10_UINT_PACK32) { Int4 cc; cc = Insert(cc, Pointer(buffer)[index[0]], 0); cc = Insert(cc, Pointer(buffer)[index[1]], 1); cc = Insert(cc, Pointer(buffer)[index[2]], 2); cc = Insert(cc, Pointer(buffer)[index[3]], 3); c.z = Short4((cc & Int4(0x3FF))); c.y = Short4(((cc >> 10) & Int4(0x3FF))); c.x = Short4(((cc >> 20) & Int4(0x3FF))); c.w = Short4(((cc >> 30) & Int4(0x3))); } else ASSERT(false); if(state.textureFormat.isSRGBformat()) { for(int i = 0; i < textureComponentCount(); i++) { if(isRGBComponent(i)) { // The current table-based sRGB conversion requires 0xFF00 to represent 1.0. ASSERT(state.textureFormat.has8bitTextureComponents()); sRGBtoLinearFF00(c[i]); } } } return c; } void SamplerCore::sampleLumaTexel(Vector4f &output, Short4 &uuuu, Short4 &vvvv, Short4 &wwww, const Short4 &layerIndex, const Int4 &sample, Pointer &lumaMipmap, Pointer lumaBuffer) { ASSERT(isYcbcrFormat()); UInt index[4]; computeIndices(index, uuuu, vvvv, wwww, layerIndex, sample, lumaMipmap); // Luminance (either 8-bit or 10-bit in bottom bits). UShort4 Y; switch(state.textureFormat) { case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: { Y = Insert(Y, UShort(lumaBuffer[index[0]]), 0); Y = Insert(Y, UShort(lumaBuffer[index[1]]), 1); Y = Insert(Y, UShort(lumaBuffer[index[2]]), 2); Y = Insert(Y, UShort(lumaBuffer[index[3]]), 3); } break; case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: { Y = Insert(Y, Pointer(lumaBuffer)[index[0]], 0); Y = Insert(Y, Pointer(lumaBuffer)[index[1]], 1); Y = Insert(Y, Pointer(lumaBuffer)[index[2]], 2); Y = Insert(Y, Pointer(lumaBuffer)[index[3]], 3); // Top 10 bits of each 16 bits: Y = (Y & UShort4(0xFFC0u)) >> 6; } break; default: UNSUPPORTED("state.textureFormat %d", (int)state.textureFormat); break; } output.y = Float4(Y); } void SamplerCore::sampleChromaTexel(Vector4f &output, Short4 &uuuu, Short4 &vvvv, Short4 &wwww, const Short4 &layerIndex, const Int4 &sample, Pointer &mipmapU, Pointer bufferU, Pointer &mipmapV, Pointer bufferV) { ASSERT(isYcbcrFormat()); UInt index[4]; // Chroma (either 8-bit or 10-bit in bottom bits). UShort4 U, V; computeIndices(index, uuuu, vvvv, wwww, layerIndex, sample, mipmapU); switch(state.textureFormat) { case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: { U = Insert(U, UShort(bufferU[index[0]]), 0); U = Insert(U, UShort(bufferU[index[1]]), 1); U = Insert(U, UShort(bufferU[index[2]]), 2); U = Insert(U, UShort(bufferU[index[3]]), 3); V = Insert(V, UShort(bufferV[index[0]]), 0); V = Insert(V, UShort(bufferV[index[1]]), 1); V = Insert(V, UShort(bufferV[index[2]]), 2); V = Insert(V, UShort(bufferV[index[3]]), 3); } break; case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: { UShort4 UV; UV = Insert(UV, Pointer(bufferU)[index[0]], 0); UV = Insert(UV, Pointer(bufferU)[index[1]], 1); UV = Insert(UV, Pointer(bufferU)[index[2]], 2); UV = Insert(UV, Pointer(bufferU)[index[3]], 3); U = (UV & UShort4(0x00FFu)); V = (UV & UShort4(0xFF00u)) >> 8; } break; case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: { UInt4 UV; UV = Insert(UV, Pointer(bufferU)[index[0]], 0); UV = Insert(UV, Pointer(bufferU)[index[1]], 1); UV = Insert(UV, Pointer(bufferU)[index[2]], 2); UV = Insert(UV, Pointer(bufferU)[index[3]], 3); // Top 10 bits of first 16-bits: U = UShort4((UV & UInt4(0x0000FFC0u)) >> 6); // Top 10 bits of second 16-bits: V = UShort4((UV & UInt4(0xFFC00000u)) >> 22); } break; default: UNSUPPORTED("state.textureFormat %d", (int)state.textureFormat); break; } output.x = Float4(V); output.z = Float4(U); } Vector4s SamplerCore::sampleTexel(Short4 &uuuu, Short4 &vvvv, Short4 &wwww, const Short4 &layerIndex, const Int4 &sample, Pointer &mipmap, Pointer buffer) { ASSERT(!isYcbcrFormat()); UInt index[4]; computeIndices(index, uuuu, vvvv, wwww, layerIndex, sample, mipmap); return sampleTexel(index, buffer); } Vector4f SamplerCore::sampleTexel(Int4 &uuuu, Int4 &vvvv, Int4 &wwww, const Float4 &dRef, const Int4 &sample, Pointer &mipmap, Pointer buffer) { Int4 valid; if(borderModeActive()) { // Valid texels have positive coordinates. Int4 negative = uuuu; if(state.is2D() || state.is3D() || state.isCube()) negative |= vvvv; if(state.is3D() || state.isCube() || state.isArrayed()) negative |= wwww; valid = CmpNLT(negative, Int4(0)); } UInt index[4]; computeIndices(index, uuuu, vvvv, wwww, sample, valid, mipmap); Vector4f c; if(hasFloatTexture() || has32bitIntegerTextureComponents()) { UInt4 t0, t1, t2, t3; switch(state.textureFormat) { case VK_FORMAT_R16_SFLOAT: t0 = Int4(*Pointer(buffer + index[0] * 2)); t1 = Int4(*Pointer(buffer + index[1] * 2)); t2 = Int4(*Pointer(buffer + index[2] * 2)); t3 = Int4(*Pointer(buffer + index[3] * 2)); c.x.x = Extract(As(halfToFloatBits(t0)), 0); c.x.y = Extract(As(halfToFloatBits(t1)), 0); c.x.z = Extract(As(halfToFloatBits(t2)), 0); c.x.w = Extract(As(halfToFloatBits(t3)), 0); break; case VK_FORMAT_R16G16_SFLOAT: t0 = Int4(*Pointer(buffer + index[0] * 4)); t1 = Int4(*Pointer(buffer + index[1] * 4)); t2 = Int4(*Pointer(buffer + index[2] * 4)); t3 = Int4(*Pointer(buffer + index[3] * 4)); // TODO: shuffles c.x = As(halfToFloatBits(t0)); c.y = As(halfToFloatBits(t1)); c.z = As(halfToFloatBits(t2)); c.w = As(halfToFloatBits(t3)); transpose4x4(c.x, c.y, c.z, c.w); break; case VK_FORMAT_R16G16B16A16_SFLOAT: t0 = Int4(*Pointer(buffer + index[0] * 8)); t1 = Int4(*Pointer(buffer + index[1] * 8)); t2 = Int4(*Pointer(buffer + index[2] * 8)); t3 = Int4(*Pointer(buffer + index[3] * 8)); c.x = As(halfToFloatBits(t0)); c.y = As(halfToFloatBits(t1)); c.z = As(halfToFloatBits(t2)); c.w = As(halfToFloatBits(t3)); transpose4x4(c.x, c.y, c.z, c.w); break; case VK_FORMAT_R32_SFLOAT: case VK_FORMAT_R32_SINT: case VK_FORMAT_R32_UINT: case VK_FORMAT_D32_SFLOAT: // TODO: Optimal shuffling? c.x.x = *Pointer(buffer + index[0] * 4); c.x.y = *Pointer(buffer + index[1] * 4); c.x.z = *Pointer(buffer + index[2] * 4); c.x.w = *Pointer(buffer + index[3] * 4); break; case VK_FORMAT_R32G32_SFLOAT: case VK_FORMAT_R32G32_SINT: case VK_FORMAT_R32G32_UINT: // TODO: Optimal shuffling? c.x.xy = *Pointer(buffer + index[0] * 8); c.x.zw = *Pointer(buffer + index[1] * 8 - 8); c.z.xy = *Pointer(buffer + index[2] * 8); c.z.zw = *Pointer(buffer + index[3] * 8 - 8); c.y = c.x; c.x = Float4(c.x.xz, c.z.xz); c.y = Float4(c.y.yw, c.z.yw); break; case VK_FORMAT_R32G32B32A32_SFLOAT: case VK_FORMAT_R32G32B32A32_SINT: case VK_FORMAT_R32G32B32A32_UINT: c.x = *Pointer(buffer + index[0] * 16, 16); c.y = *Pointer(buffer + index[1] * 16, 16); c.z = *Pointer(buffer + index[2] * 16, 16); c.w = *Pointer(buffer + index[3] * 16, 16); transpose4x4(c.x, c.y, c.z, c.w); break; case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: { Float4 t; // TODO: add Insert(UInt4, RValue) t.x = *Pointer(buffer + index[0] * 4); t.y = *Pointer(buffer + index[1] * 4); t.z = *Pointer(buffer + index[2] * 4); t.w = *Pointer(buffer + index[3] * 4); t0 = As(t); c.w = Float4(UInt4(1) << ((t0 >> 27) & UInt4(0x1F))) * Float4(1.0f / (1 << 24)); c.x = Float4(t0 & UInt4(0x1FF)) * c.w; c.y = Float4((t0 >> 9) & UInt4(0x1FF)) * c.w; c.z = Float4((t0 >> 18) & UInt4(0x1FF)) * c.w; } break; case VK_FORMAT_B10G11R11_UFLOAT_PACK32: { Float4 t; // TODO: add Insert(UInt4, RValue) t.x = *Pointer(buffer + index[0] * 4); t.y = *Pointer(buffer + index[1] * 4); t.z = *Pointer(buffer + index[2] * 4); t.w = *Pointer(buffer + index[3] * 4); t0 = As(t); c.x = As(halfToFloatBits((t0 << 4) & UInt4(0x7FF0))); c.y = As(halfToFloatBits((t0 >> 7) & UInt4(0x7FF0))); c.z = As(halfToFloatBits((t0 >> 17) & UInt4(0x7FE0))); } break; default: UNSUPPORTED("Format %d", VkFormat(state.textureFormat)); } } else { ASSERT(!isYcbcrFormat()); Vector4s cs = sampleTexel(index, buffer); bool isInteger = state.textureFormat.isUnnormalizedInteger(); int componentCount = textureComponentCount(); for(int n = 0; n < componentCount; n++) { if(hasUnsignedTextureComponent(n)) { if(isInteger) { c[n] = As(Int4(As(cs[n]))); } else { c[n] = Float4(As(cs[n])); } } else { if(isInteger) { c[n] = As(Int4(cs[n])); } else { c[n] = Float4(cs[n]); } } } } if(borderModeActive()) { c = replaceBorderTexel(c, valid); } if(state.compareEnable) { Float4 ref = dRef; if(!hasFloatTexture()) { // D16_UNORM: clamp reference, normalize texel value ref = Min(Max(ref, Float4(0.0f)), Float4(1.0f)); c.x = c.x * Float4(1.0f / 0xFFFF); } Int4 boolean; switch(state.compareOp) { case VK_COMPARE_OP_LESS_OR_EQUAL: boolean = CmpLE(ref, c.x); break; case VK_COMPARE_OP_GREATER_OR_EQUAL: boolean = CmpNLT(ref, c.x); break; case VK_COMPARE_OP_LESS: boolean = CmpLT(ref, c.x); break; case VK_COMPARE_OP_GREATER: boolean = CmpNLE(ref, c.x); break; case VK_COMPARE_OP_EQUAL: boolean = CmpEQ(ref, c.x); break; case VK_COMPARE_OP_NOT_EQUAL: boolean = CmpNEQ(ref, c.x); break; case VK_COMPARE_OP_ALWAYS: boolean = Int4(-1); break; case VK_COMPARE_OP_NEVER: boolean = Int4(0); break; default: ASSERT(false); } c.x = As(boolean & As(Float4(1.0f))); c.y = Float4(0.0f); c.z = Float4(0.0f); c.w = Float4(1.0f); } return c; } Vector4f SamplerCore::replaceBorderTexel(const Vector4f &c, Int4 valid) { Vector4i border; const bool scaled = hasNormalizedFormat(); const sw::float4 scaleComp = scaled ? getComponentScale() : sw::float4(1.0f, 1.0f, 1.0f, 1.0f); switch(state.border) { case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK: case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK: border.x = Int4(0); border.y = Int4(0); border.z = Int4(0); border.w = Int4(0); break; case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK: border.x = Int4(0); border.y = Int4(0); border.z = Int4(0); border.w = Int4(bit_cast(scaleComp.w)); break; case VK_BORDER_COLOR_INT_OPAQUE_BLACK: border.x = Int4(0); border.y = Int4(0); border.z = Int4(0); border.w = Int4(1); break; case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE: border.x = Int4(bit_cast(scaleComp.x)); border.y = Int4(bit_cast(scaleComp.y)); border.z = Int4(bit_cast(scaleComp.z)); border.w = Int4(bit_cast(scaleComp.w)); break; case VK_BORDER_COLOR_INT_OPAQUE_WHITE: border.x = Int4(1); border.y = Int4(1); border.z = Int4(1); border.w = Int4(1); break; case VK_BORDER_COLOR_FLOAT_CUSTOM_EXT: // This bit-casts from float to int in C++ code instead of Reactor code // because Reactor does not guarantee preserving infinity (b/140302841). border.x = Int4(bit_cast(scaleComp.x * state.customBorder.float32[0])); border.y = Int4(bit_cast(scaleComp.y * state.customBorder.float32[1])); border.z = Int4(bit_cast(scaleComp.z * state.customBorder.float32[2])); border.w = Int4(bit_cast(scaleComp.w * state.customBorder.float32[3])); break; case VK_BORDER_COLOR_INT_CUSTOM_EXT: border.x = Int4(state.customBorder.int32[0]); border.y = Int4(state.customBorder.int32[1]); border.z = Int4(state.customBorder.int32[2]); border.w = Int4(state.customBorder.int32[3]); break; default: UNSUPPORTED("sint/uint/sfloat border: %u", state.border); } Vector4f out; out.x = As((valid & As(c.x)) | (~valid & border.x)); // TODO: IfThenElse() out.y = As((valid & As(c.y)) | (~valid & border.y)); out.z = As((valid & As(c.z)) | (~valid & border.z)); out.w = As((valid & As(c.w)) | (~valid & border.w)); return out; } Pointer SamplerCore::selectMipmap(const Pointer &texture, const Float &lod, bool secondLOD) { Pointer mipmap0 = texture + OFFSET(Texture, mipmap[0]); if(state.mipmapFilter == MIPMAP_NONE) { return mipmap0; } Int ilod; if(state.mipmapFilter == MIPMAP_POINT) { // TODO: Preferred formula is ceil(lod + 0.5) - 1 ilod = RoundInt(lod); } else // MIPMAP_LINEAR { ilod = Int(lod); } return mipmap0 + ilod * sizeof(Mipmap) + secondLOD * sizeof(Mipmap); } Int4 SamplerCore::computeFilterOffset(Float &lod) { if(state.textureFilter == FILTER_POINT) { return Int4(0); } else if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT) { return CmpNLE(Float4(lod), Float4(0.0f)); } else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR) { return CmpLE(Float4(lod), Float4(0.0f)); } return Int4(~0); } Short4 SamplerCore::address(const Float4 &uw, AddressingMode addressingMode) { if(addressingMode == ADDRESSING_UNUSED) { return Short4(0); // TODO(b/134669567): Optimize for 1D filtering } else if(addressingMode == ADDRESSING_CLAMP || addressingMode == ADDRESSING_BORDER) { Float4 clamp = Min(Max(uw, Float4(0.0f)), Float4(65535.0f / 65536.0f)); return Short4(Int4(clamp * Float4(1 << 16))); } else if(addressingMode == ADDRESSING_MIRROR) { Int4 convert = Int4(uw * Float4(1 << 16)); Int4 mirror = (convert << 15) >> 31; convert ^= mirror; return Short4(convert); } else if(addressingMode == ADDRESSING_MIRRORONCE) { // Absolute value Int4 convert = Int4(Abs(uw * Float4(1 << 16))); // Clamp convert -= Int4(0x00008000, 0x00008000, 0x00008000, 0x00008000); convert = As(PackSigned(convert, convert)); return As(Int2(convert)) + Short4(0x8000u); } else // Wrap { return Short4(Int4(uw * Float4(1 << 16))); } } Short4 SamplerCore::computeLayerIndex16(const Float4 &a, Pointer &mipmap) { if(!state.isArrayed()) { return {}; } Int4 layers = *Pointer(mipmap + OFFSET(Mipmap, depth)); return Short4(Min(Max(RoundInt(a), Int4(0)), layers - Int4(1))); } // TODO: Eliminate when the gather + mirror addressing case is handled by mirroring the footprint. static Int4 mirror(Int4 n) { auto positive = CmpNLT(n, Int4(0)); return (positive & n) | (~positive & (-(Int4(1) + n))); } static Int4 mod(Int4 n, Int4 d) { auto x = n % d; auto positive = CmpNLT(x, Int4(0)); return (positive & x) | (~positive & (x + d)); } void SamplerCore::address(const Float4 &uvw, Int4 &xyz0, Int4 &xyz1, Float4 &f, Pointer &mipmap, Int4 &filter, int whd, AddressingMode addressingMode) { if(addressingMode == ADDRESSING_UNUSED) { f = Float4(0.0f); // TODO(b/134669567): Optimize for 1D filtering return; } Int4 dim = As(*Pointer(mipmap + whd, 16)); Int4 maxXYZ = dim - Int4(1); if(function == Fetch) // Unnormalized coordinates { Int4 xyz = As(uvw); xyz0 = Min(Max(xyz, Int4(0)), maxXYZ); // VK_EXT_image_robustness requires checking for out-of-bounds accesses. // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. // If the above clamping altered the result, the access is out-of-bounds. // In that case set the coordinate to -1 to perform texel replacement later. Int4 outOfBounds = CmpNEQ(xyz, xyz0); xyz0 |= outOfBounds; } else if(addressingMode == ADDRESSING_CUBEFACE) { xyz0 = As(uvw); } else { const int oneBits = 0x3F7FFFFF; // Value just under 1.0f Float4 coord = uvw; if(state.unnormalizedCoordinates) { switch(addressingMode) { case ADDRESSING_CLAMP: coord = Min(Max(coord, Float4(0.0f)), Float4(dim) * As(Int4(oneBits))); break; case ADDRESSING_BORDER: // Don't map to a valid range here. break; default: // "If unnormalizedCoordinates is VK_TRUE, addressModeU and addressModeV must each be // either VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER" UNREACHABLE("addressingMode %d", int(addressingMode)); break; } } else if(state.textureFilter == FILTER_GATHER && addressingMode == ADDRESSING_MIRROR) { // Gather requires the 'footprint' of the texels from which a component is taken, to also mirror around. // Therefore we can't just compute one texel's location and find the other ones at +1 offsets from it. // Here we handle that case separately by doing the mirroring per texel coordinate. // TODO: Mirror the footprint by adjusting the sign of the 0.5f and 1 offsets. coord = coord * Float4(dim); coord -= Float4(0.5f); Float4 floor = Floor(coord); xyz0 = Int4(floor); xyz1 = xyz0 + Int4(1); xyz0 = (maxXYZ)-mirror(mod(xyz0, Int4(2) * dim) - dim); xyz1 = (maxXYZ)-mirror(mod(xyz1, Int4(2) * dim) - dim); return; } else { switch(addressingMode) { case ADDRESSING_CLAMP: case ADDRESSING_SEAMLESS: // While cube face coordinates are nominally already in the [0.0, 1.0] range // due to the projection, and numerical imprecision is tolerated due to the // border of pixels for seamless filtering, the projection doesn't cause // range normalization for Inf and NaN values. So we always clamp. { Float4 one = As(Int4(oneBits)); coord = Min(Max(coord, Float4(0.0f)), one); } break; case ADDRESSING_MIRROR: { Float4 one = As(Int4(oneBits)); coord = coord * Float4(0.5f); coord = Float4(2.0f) * Abs(coord - Round(coord)); coord = Min(coord, one); } break; case ADDRESSING_MIRRORONCE: { Float4 one = As(Int4(oneBits)); coord = Min(Abs(coord), one); } break; case ADDRESSING_BORDER: // Don't map to a valid range here. break; default: // Wrap coord = Frac(coord); break; } coord = coord * Float4(dim); } if(state.textureFilter == FILTER_POINT) { if(addressingMode == ADDRESSING_BORDER) { xyz0 = Int4(Floor(coord)); } else // Can't have negative coordinates, so floor() is redundant when casting to int. { xyz0 = Int4(coord); } } else { if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR || state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT) { coord -= As(As(Float4(0.5f)) & filter); } else { coord -= Float4(0.5f); } Float4 floor = Floor(coord); xyz0 = Int4(floor); f = coord - floor; } if(addressingMode == ADDRESSING_SEAMLESS) // Adjust for border. { xyz0 += Int4(1); } xyz1 = xyz0 - filter; // Increment if(addressingMode == ADDRESSING_BORDER) { // Replace the coordinates with -1 if they're out of range. Int4 border0 = CmpLT(xyz0, Int4(0)) | CmpNLT(xyz0, dim); Int4 border1 = CmpLT(xyz1, Int4(0)) | CmpNLT(xyz1, dim); xyz0 |= border0; xyz1 |= border1; } else if(state.textureFilter != FILTER_POINT) { switch(addressingMode) { case ADDRESSING_SEAMLESS: break; case ADDRESSING_MIRROR: case ADDRESSING_MIRRORONCE: case ADDRESSING_CLAMP: xyz0 = Max(xyz0, Int4(0)); xyz1 = Min(xyz1, maxXYZ); break; default: // Wrap { Int4 under = CmpLT(xyz0, Int4(0)); xyz0 = (under & maxXYZ) | (~under & xyz0); // xyz < 0 ? dim - 1 : xyz // TODO: IfThenElse() Int4 nover = CmpLT(xyz1, dim); xyz1 = nover & xyz1; // xyz >= dim ? 0 : xyz } break; } } } } Int4 SamplerCore::computeLayerIndex(const Float4 &a, Pointer &mipmap) { if(!state.isArrayed()) { return {}; } Int4 layers = *Pointer(mipmap + OFFSET(Mipmap, depth), 16); Int4 maxLayer = layers - Int4(1); if(function == Fetch) // Unnormalized coordinates { Int4 xyz = As(a); Int4 xyz0 = Min(Max(xyz, Int4(0)), maxLayer); // VK_EXT_image_robustness requires checking for out-of-bounds accesses. // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. // If the above clamping altered the result, the access is out-of-bounds. // In that case set the coordinate to -1 to perform texel replacement later. Int4 outOfBounds = CmpNEQ(xyz, xyz0); xyz0 |= outOfBounds; return xyz0; } else { return Min(Max(RoundInt(a), Int4(0)), maxLayer); } } void SamplerCore::sRGBtoLinearFF00(Short4 &c) { c = As(c) >> 8; Pointer LUT = Pointer(constants + OFFSET(Constants, sRGBtoLinearFF_FF00)); c = Insert(c, *Pointer(LUT + 2 * Int(Extract(c, 0))), 0); c = Insert(c, *Pointer(LUT + 2 * Int(Extract(c, 1))), 1); c = Insert(c, *Pointer(LUT + 2 * Int(Extract(c, 2))), 2); c = Insert(c, *Pointer(LUT + 2 * Int(Extract(c, 3))), 3); } bool SamplerCore::hasNormalizedFormat() const { return state.textureFormat.isSignedNormalized() || state.textureFormat.isUnsignedNormalized(); } bool SamplerCore::hasFloatTexture() const { return state.textureFormat.isFloatFormat(); } bool SamplerCore::hasUnnormalizedIntegerTexture() const { return state.textureFormat.isUnnormalizedInteger(); } bool SamplerCore::hasUnsignedTextureComponent(int component) const { return state.textureFormat.isUnsignedComponent(component); } int SamplerCore::textureComponentCount() const { return state.textureFormat.componentCount(); } bool SamplerCore::has16bitPackedTextureFormat() const { return state.textureFormat.has16bitPackedTextureFormat(); } bool SamplerCore::has8bitTextureComponents() const { return state.textureFormat.has8bitTextureComponents(); } bool SamplerCore::has16bitTextureComponents() const { return state.textureFormat.has16bitTextureComponents(); } bool SamplerCore::has32bitIntegerTextureComponents() const { return state.textureFormat.has32bitIntegerTextureComponents(); } bool SamplerCore::isYcbcrFormat() const { return state.textureFormat.isYcbcrFormat(); } bool SamplerCore::isRGBComponent(int component) const { return state.textureFormat.isRGBComponent(component); } bool SamplerCore::borderModeActive() const { return state.addressingModeU == ADDRESSING_BORDER || state.addressingModeV == ADDRESSING_BORDER || state.addressingModeW == ADDRESSING_BORDER; } VkComponentSwizzle SamplerCore::gatherSwizzle() const { switch(state.gatherComponent) { case 0: return state.swizzle.r; case 1: return state.swizzle.g; case 2: return state.swizzle.b; case 3: return state.swizzle.a; default: UNREACHABLE("Invalid component"); return VK_COMPONENT_SWIZZLE_R; } } sw::float4 SamplerCore::getComponentScale() const { // TODO(b/204709464): Unlike other formats, the fixed-point representation of the formats below are handled with bit extension. // This special handling of such formats should be removed later. switch(state.textureFormat) { case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: return sw::float4(0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF); default: break; }; const sw::int4 bits = state.textureFormat.bitsPerComponent(); const sw::int4 shift = sw::int4(16 - bits.x, 16 - bits.y, 16 - bits.z, 16 - bits.w); const uint16_t sign = state.textureFormat.isUnsigned() ? 0xFFFF : 0x7FFF; return sw::float4(static_cast(0xFFFF << shift.x) & sign, static_cast(0xFFFF << shift.y) & sign, static_cast(0xFFFF << shift.z) & sign, static_cast(0xFFFF << shift.w) & sign); } int SamplerCore::getGatherComponent() const { VkComponentSwizzle swizzle = gatherSwizzle(); switch(swizzle) { default: UNSUPPORTED("VkComponentSwizzle %d", (int)swizzle); return 0; case VK_COMPONENT_SWIZZLE_R: case VK_COMPONENT_SWIZZLE_G: case VK_COMPONENT_SWIZZLE_B: case VK_COMPONENT_SWIZZLE_A: // Normalize all components using the gather component scale. return swizzle - VK_COMPONENT_SWIZZLE_R; case VK_COMPONENT_SWIZZLE_ZERO: case VK_COMPONENT_SWIZZLE_ONE: // These cases are handled later. return 0; } return 0; } } // namespace sw