// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "PixelRoutine.hpp" #include "Constants.hpp" #include "SamplerCore.hpp" #include "Device/Primitive.hpp" #include "Device/QuadRasterizer.hpp" #include "Device/Renderer.hpp" #include "System/Debug.hpp" #include "System/Math.hpp" #include "Vulkan/VkPipelineLayout.hpp" #include "Vulkan/VkStringify.hpp" namespace sw { namespace { bool shouldUsePerSampleShading(const PixelProcessor::State &state, const SpirvShader *spirvShader) { if(state.sampleShadingEnabled && (state.minSampleShading * state.multiSampleCount > 1.0f)) { return true; } if(spirvShader) { if(spirvShader->getUsedCapabilities().InterpolationFunction) // TODO(b/194714095) { return true; } if(spirvShader->getUsedCapabilities().SampleRateShading) { return true; } } return false; } } // namespace PixelRoutine::PixelRoutine( const PixelProcessor::State &state, const vk::PipelineLayout *pipelineLayout, const SpirvShader *spirvShader, const vk::Attachments &attachments, const vk::DescriptorSet::Bindings &descriptorSets) : QuadRasterizer(state, spirvShader) , routine(pipelineLayout) , attachments(attachments) , descriptorSets(descriptorSets) , shaderContainsInterpolation(spirvShader && spirvShader->getUsedCapabilities().InterpolationFunction) , perSampleShading(shouldUsePerSampleShading(state, spirvShader)) , invocationCount(perSampleShading ? state.multiSampleCount : 1) { if(spirvShader) { spirvShader->emitProlog(&routine); } } PixelRoutine::~PixelRoutine() { } PixelRoutine::SampleSet PixelRoutine::getSampleSet(int invocation) const { unsigned int sampleBegin = perSampleShading ? invocation : 0; unsigned int sampleEnd = perSampleShading ? (invocation + 1) : state.multiSampleCount; SampleSet samples; for(unsigned int q = sampleBegin; q < sampleEnd; q++) { if(state.multiSampleMask & (1 << q)) { samples.push_back(q); } } return samples; } void PixelRoutine::quad(Pointer cBuffer[MAX_COLOR_BUFFERS], Pointer &zBuffer, Pointer &sBuffer, Int cMask[4], Int &x, Int &y) { const bool earlyFragmentTests = !spirvShader || spirvShader->getExecutionModes().EarlyFragmentTests; Int zMask[4]; // Depth mask Int sMask[4]; // Stencil mask SIMD::Float unclampedZ[4]; for(int invocation = 0; invocation < invocationCount; invocation++) { SampleSet samples = getSampleSet(invocation); if(samples.empty()) { continue; } for(unsigned int q : samples) { zMask[q] = cMask[q]; sMask[q] = cMask[q]; } stencilTest(sBuffer, x, sMask, samples); SIMD::Float rhwCentroid; // Compute the x coordinate of each fragment in the SIMD group. const auto xMorton = SIMD::Float([](int i) { return float(compactEvenBits(i)); }); // 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3, ... xFragment = SIMD::Float(Float(x)) + xMorton - SIMD::Float(*Pointer(primitive + OFFSET(Primitive, x0))); if(interpolateZ()) { for(unsigned int q : samples) { SIMD::Float x = xFragment; if(state.enableMultiSampling) { x -= SIMD::Float(*Pointer(constants + OFFSET(Constants, SampleLocationsX) + q * sizeof(float))); } z[q] = interpolate(x, Dz[q], z[q], primitive + OFFSET(Primitive, z), false, false); if(state.depthBias) { z[q] += SIMD::Float(*Pointer(primitive + OFFSET(Primitive, zBias))); } unclampedZ[q] = z[q]; } } Bool depthPass = false; if(earlyFragmentTests) { for(unsigned int q : samples) { z[q] = clampDepth(z[q]); depthPass = depthPass || depthTest(zBuffer, q, x, z[q], sMask[q], zMask[q], cMask[q]); depthBoundsTest(zBuffer, q, x, zMask[q], cMask[q]); } writeStencil(sBuffer, x, sMask, zMask, cMask, samples); } If(depthPass || !earlyFragmentTests) { if(earlyFragmentTests) { writeDepth(zBuffer, x, zMask, samples); occlusionSampleCount(zMask, sMask, samples); } // TODO(b/236162233): Use SIMD::Float2 SIMD::Float xCentroid = 0.0f; SIMD::Float yCentroid = 0.0f; if(state.centroid || shaderContainsInterpolation) // TODO(b/194714095) { SIMD::Float weight = 1.0e-9f; for(unsigned int q : samples) { ASSERT(SIMD::Width == 4); xCentroid += SIMD::Float(*Pointer(constants + OFFSET(Constants, sampleX[q]) + 16 * cMask[q])); yCentroid += SIMD::Float(*Pointer(constants + OFFSET(Constants, sampleY[q]) + 16 * cMask[q])); weight += SIMD::Float(*Pointer(constants + OFFSET(Constants, weight) + 16 * cMask[q])); } weight = Rcp(weight, true /* relaxedPrecision */); xCentroid *= weight; yCentroid *= weight; xCentroid += xFragment; yCentroid += yFragment; } if(interpolateW()) { w = interpolate(xFragment, Dw, rhw, primitive + OFFSET(Primitive, w), false, false); rhw = reciprocal(w, false, true); if(state.centroid || shaderContainsInterpolation) // TODO(b/194714095) { rhwCentroid = reciprocal(SpirvRoutine::interpolateAtXY(xCentroid, yCentroid, rhwCentroid, primitive + OFFSET(Primitive, w), SpirvRoutine::Linear)); } } if(spirvShader) { if(shaderContainsInterpolation) // TODO(b/194714095) { routine.interpolationData.primitive = primitive; routine.interpolationData.x = xFragment; routine.interpolationData.y = yFragment; routine.interpolationData.rhw = rhw; routine.interpolationData.xCentroid = xCentroid; routine.interpolationData.yCentroid = yCentroid; routine.interpolationData.rhwCentroid = rhwCentroid; } SIMD::Float xSample = xFragment; SIMD::Float ySample = yFragment; if(perSampleShading && (state.multiSampleCount > 1)) { xSample += SampleLocationsX[samples[0]]; ySample += SampleLocationsY[samples[0]]; } int packedInterpolant = 0; for(int interfaceInterpolant = 0; interfaceInterpolant < MAX_INTERFACE_COMPONENTS; interfaceInterpolant++) { const auto &input = spirvShader->inputs[interfaceInterpolant]; if(input.Type != Spirv::ATTRIBTYPE_UNUSED) { routine.inputsInterpolation[packedInterpolant] = input.Flat ? SpirvRoutine::Flat : (input.NoPerspective ? SpirvRoutine::Linear : SpirvRoutine::Perspective); if(input.Centroid && state.enableMultiSampling) { routine.inputs[interfaceInterpolant] = SpirvRoutine::interpolateAtXY(xCentroid, yCentroid, rhwCentroid, primitive + OFFSET(Primitive, V[packedInterpolant]), routine.inputsInterpolation[packedInterpolant]); } else if(perSampleShading) { routine.inputs[interfaceInterpolant] = SpirvRoutine::interpolateAtXY(xSample, ySample, rhw, primitive + OFFSET(Primitive, V[packedInterpolant]), routine.inputsInterpolation[packedInterpolant]); } else { routine.inputs[interfaceInterpolant] = interpolate(xFragment, Dv[interfaceInterpolant], rhw, primitive + OFFSET(Primitive, V[packedInterpolant]), input.Flat, !input.NoPerspective); } packedInterpolant++; } } setBuiltins(x, y, unclampedZ, w, cMask, samples); for(uint32_t i = 0; i < state.numClipDistances; i++) { auto distance = interpolate(xFragment, DclipDistance[i], rhw, primitive + OFFSET(Primitive, clipDistance[i]), false, true); auto clipMask = SignMask(CmpGE(distance, SIMD::Float(0))); for(unsigned int q : samples) { // FIXME(b/148105887): Fragments discarded by clipping do not exist at // all -- they should not be counted in queries or have their Z/S effects // performed when early fragment tests are enabled. cMask[q] &= clipMask; } if(spirvShader->getUsedCapabilities().ClipDistance) { auto it = spirvShader->inputBuiltins.find(spv::BuiltInClipDistance); if(it != spirvShader->inputBuiltins.end()) { if(i < it->second.SizeInComponents) { routine.getVariable(it->second.Id)[it->second.FirstComponent + i] = distance; } } } } if(spirvShader->getUsedCapabilities().CullDistance) { auto it = spirvShader->inputBuiltins.find(spv::BuiltInCullDistance); if(it != spirvShader->inputBuiltins.end()) { for(uint32_t i = 0; i < state.numCullDistances; i++) { if(i < it->second.SizeInComponents) { routine.getVariable(it->second.Id)[it->second.FirstComponent + i] = interpolate(xFragment, DcullDistance[i], rhw, primitive + OFFSET(Primitive, cullDistance[i]), false, true); } } } } } if(spirvShader) { executeShader(cMask, earlyFragmentTests ? sMask : cMask, earlyFragmentTests ? zMask : cMask, samples); } Bool alphaPass = alphaTest(cMask, samples); if((spirvShader && spirvShader->coverageModified()) || state.alphaToCoverage) { for(unsigned int q : samples) { zMask[q] &= cMask[q]; sMask[q] &= cMask[q]; } } If(alphaPass) { if(!earlyFragmentTests) { for(unsigned int q : samples) { z[q] = clampDepth(z[q]); depthPass = depthPass || depthTest(zBuffer, q, x, z[q], sMask[q], zMask[q], cMask[q]); depthBoundsTest(zBuffer, q, x, zMask[q], cMask[q]); } } If(depthPass) { if(!earlyFragmentTests) { writeDepth(zBuffer, x, zMask, samples); occlusionSampleCount(zMask, sMask, samples); } blendColor(cBuffer, x, sMask, zMask, cMask, samples); } } } if(!earlyFragmentTests) { writeStencil(sBuffer, x, sMask, zMask, cMask, samples); } } } void PixelRoutine::stencilTest(const Pointer &sBuffer, const Int &x, Int sMask[4], const SampleSet &samples) { if(!state.stencilActive) { return; } for(unsigned int q : samples) { // (StencilRef & StencilMask) CompFunc (StencilBufferValue & StencilMask) Pointer buffer = sBuffer + x; if(q > 0) { buffer += q * *Pointer(data + OFFSET(DrawData, stencilSliceB)); } Int pitch = *Pointer(data + OFFSET(DrawData, stencilPitchB)); Byte8 value = *Pointer(buffer) & Byte8(-1, -1, 0, 0, 0, 0, 0, 0); value = value | (*Pointer(buffer + pitch - 2) & Byte8(0, 0, -1, -1, 0, 0, 0, 0)); Byte8 valueBack = value; if(state.frontStencil.useCompareMask) { value &= *Pointer(data + OFFSET(DrawData, stencil[0].testMaskQ)); } stencilTest(value, state.frontStencil.compareOp, false); if(state.backStencil.useCompareMask) { valueBack &= *Pointer(data + OFFSET(DrawData, stencil[1].testMaskQ)); } stencilTest(valueBack, state.backStencil.compareOp, true); value &= *Pointer(primitive + OFFSET(Primitive, clockwiseMask)); valueBack &= *Pointer(primitive + OFFSET(Primitive, invClockwiseMask)); value |= valueBack; sMask[q] &= SignMask(value); } } void PixelRoutine::stencilTest(Byte8 &value, VkCompareOp stencilCompareMode, bool isBack) { Byte8 equal; switch(stencilCompareMode) { case VK_COMPARE_OP_ALWAYS: value = Byte8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF); break; case VK_COMPARE_OP_NEVER: value = Byte8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00); break; case VK_COMPARE_OP_LESS: // a < b ~ b > a value += Byte8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80); value = CmpGT(As(value), *Pointer(data + OFFSET(DrawData, stencil[isBack].referenceMaskedSignedQ))); break; case VK_COMPARE_OP_EQUAL: value = CmpEQ(value, *Pointer(data + OFFSET(DrawData, stencil[isBack].referenceMaskedQ))); break; case VK_COMPARE_OP_NOT_EQUAL: // a != b ~ !(a == b) value = CmpEQ(value, *Pointer(data + OFFSET(DrawData, stencil[isBack].referenceMaskedQ))); value ^= Byte8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF); break; case VK_COMPARE_OP_LESS_OR_EQUAL: // a <= b ~ (b > a) || (a == b) equal = value; equal = CmpEQ(equal, *Pointer(data + OFFSET(DrawData, stencil[isBack].referenceMaskedQ))); value += Byte8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80); value = CmpGT(As(value), *Pointer(data + OFFSET(DrawData, stencil[isBack].referenceMaskedSignedQ))); value |= equal; break; case VK_COMPARE_OP_GREATER: // a > b equal = *Pointer(data + OFFSET(DrawData, stencil[isBack].referenceMaskedSignedQ)); value += Byte8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80); equal = CmpGT(As(equal), As(value)); value = equal; break; case VK_COMPARE_OP_GREATER_OR_EQUAL: // a >= b ~ !(a < b) ~ !(b > a) value += Byte8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80); value = CmpGT(As(value), *Pointer(data + OFFSET(DrawData, stencil[isBack].referenceMaskedSignedQ))); value ^= Byte8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF); break; default: UNSUPPORTED("VkCompareOp: %d", int(stencilCompareMode)); } } SIMD::Float PixelRoutine::readDepth32F(const Pointer &zBuffer, int q, const Int &x) const { ASSERT(SIMD::Width == 4); Pointer buffer = zBuffer + 4 * x; Int pitch = *Pointer(data + OFFSET(DrawData, depthPitchB)); if(q > 0) { buffer += q * *Pointer(data + OFFSET(DrawData, depthSliceB)); } Float4 zValue = Float4(*Pointer(buffer), *Pointer(buffer + pitch)); return SIMD::Float(zValue); } SIMD::Float PixelRoutine::readDepth16(const Pointer &zBuffer, int q, const Int &x) const { ASSERT(SIMD::Width == 4); Pointer buffer = zBuffer + 2 * x; Int pitch = *Pointer(data + OFFSET(DrawData, depthPitchB)); if(q > 0) { buffer += q * *Pointer(data + OFFSET(DrawData, depthSliceB)); } UShort4 zValue16; zValue16 = As(Insert(As(zValue16), *Pointer(buffer), 0)); zValue16 = As(Insert(As(zValue16), *Pointer(buffer + pitch), 1)); Float4 zValue = Float4(zValue16); return SIMD::Float(zValue); } SIMD::Float PixelRoutine::clampDepth(const SIMD::Float &z) { if(!state.depthClamp) { return z; } return Min(Max(z, state.minDepthClamp), state.maxDepthClamp); } Bool PixelRoutine::depthTest(const Pointer &zBuffer, int q, const Int &x, const SIMD::Float &z, const Int &sMask, Int &zMask, const Int &cMask) { if(!state.depthTestActive) { return true; } SIMD::Float Z; SIMD::Float zValue; if(state.depthCompareMode != VK_COMPARE_OP_NEVER || (state.depthCompareMode != VK_COMPARE_OP_ALWAYS && !state.depthWriteEnable)) { switch(state.depthFormat) { case VK_FORMAT_D16_UNORM: Z = Min(Max(Round(z * 0xFFFF), 0.0f), 0xFFFF); zValue = readDepth16(zBuffer, q, x); break; case VK_FORMAT_D32_SFLOAT: case VK_FORMAT_D32_SFLOAT_S8_UINT: Z = z; zValue = readDepth32F(zBuffer, q, x); break; default: UNSUPPORTED("Depth format: %d", int(state.depthFormat)); return false; } } SIMD::Int zTest; switch(state.depthCompareMode) { case VK_COMPARE_OP_ALWAYS: // Optimized break; case VK_COMPARE_OP_NEVER: // Optimized break; case VK_COMPARE_OP_EQUAL: zTest = CmpEQ(zValue, Z); break; case VK_COMPARE_OP_NOT_EQUAL: zTest = CmpNEQ(zValue, Z); break; case VK_COMPARE_OP_LESS: zTest = CmpNLE(zValue, Z); break; case VK_COMPARE_OP_GREATER_OR_EQUAL: zTest = CmpLE(zValue, Z); break; case VK_COMPARE_OP_LESS_OR_EQUAL: zTest = CmpNLT(zValue, Z); break; case VK_COMPARE_OP_GREATER: zTest = CmpLT(zValue, Z); break; default: UNSUPPORTED("VkCompareOp: %d", int(state.depthCompareMode)); } switch(state.depthCompareMode) { case VK_COMPARE_OP_ALWAYS: zMask = cMask; break; case VK_COMPARE_OP_NEVER: zMask = 0x0; break; default: zMask = SignMask(zTest) & cMask; break; } if(state.stencilActive) { zMask &= sMask; } return zMask != 0; } Int4 PixelRoutine::depthBoundsTest16(const Pointer &zBuffer, int q, const Int &x) { Pointer buffer = zBuffer + 2 * x; Int pitch = *Pointer(data + OFFSET(DrawData, depthPitchB)); if(q > 0) { buffer += q * *Pointer(data + OFFSET(DrawData, depthSliceB)); } Float4 minDepthBound(state.minDepthBounds); Float4 maxDepthBound(state.maxDepthBounds); Int2 z; z = Insert(z, *Pointer(buffer), 0); z = Insert(z, *Pointer(buffer + pitch), 1); Float4 zValue = Float4(As(z)) * (1.0f / 0xFFFF); return Int4(CmpLE(minDepthBound, zValue) & CmpLE(zValue, maxDepthBound)); } Int4 PixelRoutine::depthBoundsTest32F(const Pointer &zBuffer, int q, const Int &x) { Pointer buffer = zBuffer + 4 * x; Int pitch = *Pointer(data + OFFSET(DrawData, depthPitchB)); if(q > 0) { buffer += q * *Pointer(data + OFFSET(DrawData, depthSliceB)); } Float4 zValue = Float4(*Pointer(buffer), *Pointer(buffer + pitch)); return Int4(CmpLE(state.minDepthBounds, zValue) & CmpLE(zValue, state.maxDepthBounds)); } void PixelRoutine::depthBoundsTest(const Pointer &zBuffer, int q, const Int &x, Int &zMask, Int &cMask) { if(!state.depthBoundsTestActive) { return; } Int4 zTest; switch(state.depthFormat) { case VK_FORMAT_D16_UNORM: zTest = depthBoundsTest16(zBuffer, q, x); break; case VK_FORMAT_D32_SFLOAT: case VK_FORMAT_D32_SFLOAT_S8_UINT: zTest = depthBoundsTest32F(zBuffer, q, x); break; default: UNSUPPORTED("Depth format: %d", int(state.depthFormat)); break; } if(!state.depthTestActive) { cMask &= zMask & SignMask(zTest); } else { zMask &= cMask & SignMask(zTest); } } void PixelRoutine::alphaToCoverage(Int cMask[4], const SIMD::Float &alpha, const SampleSet &samples) { static const int a2c[4] = { OFFSET(DrawData, a2c0), OFFSET(DrawData, a2c1), OFFSET(DrawData, a2c2), OFFSET(DrawData, a2c3), }; for(unsigned int q : samples) { SIMD::Int coverage = CmpNLT(alpha, SIMD::Float(*Pointer(data + a2c[q]))); Int aMask = SignMask(coverage); cMask[q] &= aMask; } } void PixelRoutine::writeDepth32F(Pointer &zBuffer, int q, const Int &x, const Float4 &z, const Int &zMask) { Float4 Z = z; Pointer buffer = zBuffer + 4 * x; Int pitch = *Pointer(data + OFFSET(DrawData, depthPitchB)); if(q > 0) { buffer += q * *Pointer(data + OFFSET(DrawData, depthSliceB)); } Float4 zValue; if(state.depthCompareMode != VK_COMPARE_OP_NEVER || (state.depthCompareMode != VK_COMPARE_OP_ALWAYS && !state.depthWriteEnable)) { zValue = Float4(*Pointer(buffer), *Pointer(buffer + pitch)); } Z = As(As(Z) & *Pointer(constants + OFFSET(Constants, maskD4X) + zMask * 16, 16)); zValue = As(As(zValue) & *Pointer(constants + OFFSET(Constants, invMaskD4X) + zMask * 16, 16)); Z = As(As(Z) | As(zValue)); *Pointer(buffer) = Float2(Z.xy); *Pointer(buffer + pitch) = Float2(Z.zw); } void PixelRoutine::writeDepth16(Pointer &zBuffer, int q, const Int &x, const Float4 &z, const Int &zMask) { Short4 Z = UShort4(Round(z * 0xFFFF), true); Pointer buffer = zBuffer + 2 * x; Int pitch = *Pointer(data + OFFSET(DrawData, depthPitchB)); if(q > 0) { buffer += q * *Pointer(data + OFFSET(DrawData, depthSliceB)); } Short4 zValue; if(state.depthCompareMode != VK_COMPARE_OP_NEVER || (state.depthCompareMode != VK_COMPARE_OP_ALWAYS && !state.depthWriteEnable)) { zValue = As(Insert(As(zValue), *Pointer(buffer), 0)); zValue = As(Insert(As(zValue), *Pointer(buffer + pitch), 1)); } Z = Z & *Pointer(constants + OFFSET(Constants, maskW4Q) + zMask * 8, 8); zValue = zValue & *Pointer(constants + OFFSET(Constants, invMaskW4Q) + zMask * 8, 8); Z = Z | zValue; *Pointer(buffer) = Extract(As(Z), 0); *Pointer(buffer + pitch) = Extract(As(Z), 1); } void PixelRoutine::writeDepth(Pointer &zBuffer, const Int &x, const Int zMask[4], const SampleSet &samples) { if(!state.depthWriteEnable) { return; } for(unsigned int q : samples) { ASSERT(SIMD::Width == 4); switch(state.depthFormat) { case VK_FORMAT_D16_UNORM: writeDepth16(zBuffer, q, x, Extract128(z[q], 0), zMask[q]); break; case VK_FORMAT_D32_SFLOAT: case VK_FORMAT_D32_SFLOAT_S8_UINT: writeDepth32F(zBuffer, q, x, Extract128(z[q], 0), zMask[q]); break; default: UNSUPPORTED("Depth format: %d", int(state.depthFormat)); break; } } } void PixelRoutine::occlusionSampleCount(const Int zMask[4], const Int sMask[4], const SampleSet &samples) { if(!state.occlusionEnabled) { return; } for(unsigned int q : samples) { occlusion += *Pointer(constants + OFFSET(Constants, occlusionCount) + 4 * (zMask[q] & sMask[q])); } } void PixelRoutine::writeStencil(Pointer &sBuffer, const Int &x, const Int sMask[4], const Int zMask[4], const Int cMask[4], const SampleSet &samples) { if(!state.stencilActive) { return; } if(state.frontStencil.passOp == VK_STENCIL_OP_KEEP && state.frontStencil.depthFailOp == VK_STENCIL_OP_KEEP && state.frontStencil.failOp == VK_STENCIL_OP_KEEP) { if(state.backStencil.passOp == VK_STENCIL_OP_KEEP && state.backStencil.depthFailOp == VK_STENCIL_OP_KEEP && state.backStencil.failOp == VK_STENCIL_OP_KEEP) { return; } } if(!state.frontStencil.writeEnabled && !state.backStencil.writeEnabled) { return; } for(unsigned int q : samples) { Pointer buffer = sBuffer + x; if(q > 0) { buffer += q * *Pointer(data + OFFSET(DrawData, stencilSliceB)); } Int pitch = *Pointer(data + OFFSET(DrawData, stencilPitchB)); Byte8 bufferValue = *Pointer(buffer) & Byte8(-1, -1, 0, 0, 0, 0, 0, 0); bufferValue = bufferValue | (*Pointer(buffer + pitch - 2) & Byte8(0, 0, -1, -1, 0, 0, 0, 0)); Byte8 newValue = stencilOperation(bufferValue, state.frontStencil, false, zMask[q], sMask[q]); if(state.frontStencil.useWriteMask) // Assume 8-bit stencil buffer { Byte8 maskedValue = bufferValue; newValue &= *Pointer(data + OFFSET(DrawData, stencil[0].writeMaskQ)); maskedValue &= *Pointer(data + OFFSET(DrawData, stencil[0].invWriteMaskQ)); newValue |= maskedValue; } Byte8 newValueBack = stencilOperation(bufferValue, state.backStencil, true, zMask[q], sMask[q]); if(state.backStencil.useWriteMask) // Assume 8-bit stencil buffer { Byte8 maskedValue = bufferValue; newValueBack &= *Pointer(data + OFFSET(DrawData, stencil[1].writeMaskQ)); maskedValue &= *Pointer(data + OFFSET(DrawData, stencil[1].invWriteMaskQ)); newValueBack |= maskedValue; } newValue &= *Pointer(primitive + OFFSET(Primitive, clockwiseMask)); newValueBack &= *Pointer(primitive + OFFSET(Primitive, invClockwiseMask)); newValue |= newValueBack; newValue &= *Pointer(constants + OFFSET(Constants, maskB4Q) + 8 * cMask[q]); bufferValue &= *Pointer(constants + OFFSET(Constants, invMaskB4Q) + 8 * cMask[q]); newValue |= bufferValue; *Pointer(buffer) = Extract(As(newValue), 0); *Pointer(buffer + pitch) = Extract(As(newValue), 1); } } Byte8 PixelRoutine::stencilOperation(const Byte8 &bufferValue, const PixelProcessor::States::StencilOpState &ops, bool isBack, const Int &zMask, const Int &sMask) { Byte8 pass = stencilOperation(bufferValue, ops.passOp, isBack); if(state.depthTestActive && ops.depthFailOp != ops.passOp) // zMask valid and values not the same { Byte8 zFail = stencilOperation(bufferValue, ops.depthFailOp, isBack); pass &= *Pointer(constants + OFFSET(Constants, maskB4Q) + 8 * zMask); zFail &= *Pointer(constants + OFFSET(Constants, invMaskB4Q) + 8 * zMask); pass |= zFail; } if(ops.failOp != ops.passOp || (state.depthTestActive && ops.failOp != ops.depthFailOp)) { Byte8 fail = stencilOperation(bufferValue, ops.failOp, isBack); pass &= *Pointer(constants + OFFSET(Constants, maskB4Q) + 8 * sMask); fail &= *Pointer(constants + OFFSET(Constants, invMaskB4Q) + 8 * sMask); pass |= fail; } return pass; } bool PixelRoutine::hasStencilReplaceRef() const { return spirvShader && (spirvShader->outputBuiltins.find(spv::BuiltInFragStencilRefEXT) != spirvShader->outputBuiltins.end()); } Byte8 PixelRoutine::stencilReplaceRef() { ASSERT(spirvShader); auto it = spirvShader->outputBuiltins.find(spv::BuiltInFragStencilRefEXT); ASSERT(it != spirvShader->outputBuiltins.end()); UInt4 sRef = As(routine.getVariable(it->second.Id)[it->second.FirstComponent]) & UInt4(0xff); // TODO (b/148295813): Could be done with a single pshufb instruction. Optimize the // following line by either adding a rr::Shuffle() variant to do // it explicitly or adding a Byte4(Int4) constructor would work. sRef.x = rr::UInt(sRef.x) | (rr::UInt(sRef.y) << 8) | (rr::UInt(sRef.z) << 16) | (rr::UInt(sRef.w) << 24); UInt2 sRefDuplicated; sRefDuplicated = Insert(sRefDuplicated, sRef.x, 0); sRefDuplicated = Insert(sRefDuplicated, sRef.x, 1); return As(sRefDuplicated); } Byte8 PixelRoutine::stencilOperation(const Byte8 &bufferValue, VkStencilOp operation, bool isBack) { if(hasStencilReplaceRef()) { return stencilReplaceRef(); } else { switch(operation) { case VK_STENCIL_OP_KEEP: return bufferValue; case VK_STENCIL_OP_ZERO: return Byte8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00); case VK_STENCIL_OP_REPLACE: return *Pointer(data + OFFSET(DrawData, stencil[isBack].referenceQ)); case VK_STENCIL_OP_INCREMENT_AND_CLAMP: return AddSat(bufferValue, Byte8(1, 1, 1, 1, 1, 1, 1, 1)); case VK_STENCIL_OP_DECREMENT_AND_CLAMP: return SubSat(bufferValue, Byte8(1, 1, 1, 1, 1, 1, 1, 1)); case VK_STENCIL_OP_INVERT: return bufferValue ^ Byte8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF); case VK_STENCIL_OP_INCREMENT_AND_WRAP: return bufferValue + Byte8(1, 1, 1, 1, 1, 1, 1, 1); case VK_STENCIL_OP_DECREMENT_AND_WRAP: return bufferValue - Byte8(1, 1, 1, 1, 1, 1, 1, 1); default: UNSUPPORTED("VkStencilOp: %d", int(operation)); } } return Byte8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00); } bool PixelRoutine::isSRGB(int index) const { return vk::Format(state.colorFormat[index]).isSRGBformat(); } void PixelRoutine::readPixel(int index, const Pointer &cBuffer, const Int &x, Vector4s &pixel) { Short4 c01; Short4 c23; Pointer buffer = cBuffer; Pointer buffer2; Int pitchB = *Pointer(data + OFFSET(DrawData, colorPitchB[index])); vk::Format format = state.colorFormat[index]; switch(format) { case VK_FORMAT_R4G4B4A4_UNORM_PACK16: buffer += 2 * x; buffer2 = buffer + pitchB; c01 = As(Int2(*Pointer(buffer), *Pointer(buffer2))); pixel.x = (c01 & Short4(0xF000u)); pixel.y = (c01 & Short4(0x0F00u)) << 4; pixel.z = (c01 & Short4(0x00F0u)) << 8; pixel.w = (c01 & Short4(0x000Fu)) << 12; // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 4); pixel.x |= As(As(pixel.x) >> 8); pixel.y |= As(As(pixel.y) >> 4); pixel.y |= As(As(pixel.y) >> 8); pixel.z |= As(As(pixel.z) >> 4); pixel.z |= As(As(pixel.z) >> 8); pixel.w |= As(As(pixel.w) >> 4); pixel.w |= As(As(pixel.w) >> 8); break; case VK_FORMAT_B4G4R4A4_UNORM_PACK16: buffer += 2 * x; buffer2 = buffer + pitchB; c01 = As(Int2(*Pointer(buffer), *Pointer(buffer2))); pixel.z = (c01 & Short4(0xF000u)); pixel.y = (c01 & Short4(0x0F00u)) << 4; pixel.x = (c01 & Short4(0x00F0u)) << 8; pixel.w = (c01 & Short4(0x000Fu)) << 12; // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 4); pixel.x |= As(As(pixel.x) >> 8); pixel.y |= As(As(pixel.y) >> 4); pixel.y |= As(As(pixel.y) >> 8); pixel.z |= As(As(pixel.z) >> 4); pixel.z |= As(As(pixel.z) >> 8); pixel.w |= As(As(pixel.w) >> 4); pixel.w |= As(As(pixel.w) >> 8); break; case VK_FORMAT_A4B4G4R4_UNORM_PACK16: buffer += 2 * x; buffer2 = buffer + pitchB; c01 = As(Int2(*Pointer(buffer), *Pointer(buffer2))); pixel.w = (c01 & Short4(0xF000u)); pixel.z = (c01 & Short4(0x0F00u)) << 4; pixel.y = (c01 & Short4(0x00F0u)) << 8; pixel.x = (c01 & Short4(0x000Fu)) << 12; // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 4); pixel.x |= As(As(pixel.x) >> 8); pixel.y |= As(As(pixel.y) >> 4); pixel.y |= As(As(pixel.y) >> 8); pixel.z |= As(As(pixel.z) >> 4); pixel.z |= As(As(pixel.z) >> 8); pixel.w |= As(As(pixel.w) >> 4); pixel.w |= As(As(pixel.w) >> 8); break; case VK_FORMAT_A4R4G4B4_UNORM_PACK16: buffer += 2 * x; buffer2 = buffer + pitchB; c01 = As(Int2(*Pointer(buffer), *Pointer(buffer2))); pixel.w = (c01 & Short4(0xF000u)); pixel.x = (c01 & Short4(0x0F00u)) << 4; pixel.y = (c01 & Short4(0x00F0u)) << 8; pixel.z = (c01 & Short4(0x000Fu)) << 12; // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 4); pixel.x |= As(As(pixel.x) >> 8); pixel.y |= As(As(pixel.y) >> 4); pixel.y |= As(As(pixel.y) >> 8); pixel.z |= As(As(pixel.z) >> 4); pixel.z |= As(As(pixel.z) >> 8); pixel.w |= As(As(pixel.w) >> 4); pixel.w |= As(As(pixel.w) >> 8); break; case VK_FORMAT_R5G5B5A1_UNORM_PACK16: buffer += 2 * x; buffer2 = buffer + pitchB; c01 = As(Int2(*Pointer(buffer), *Pointer(buffer2))); pixel.x = (c01 & Short4(0xF800u)); pixel.y = (c01 & Short4(0x07C0u)) << 5; pixel.z = (c01 & Short4(0x003Eu)) << 10; pixel.w = ((c01 & Short4(0x0001u)) << 15) >> 15; // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 5); pixel.x |= As(As(pixel.x) >> 10); pixel.y |= As(As(pixel.y) >> 5); pixel.y |= As(As(pixel.y) >> 10); pixel.z |= As(As(pixel.z) >> 5); pixel.z |= As(As(pixel.z) >> 10); break; case VK_FORMAT_B5G5R5A1_UNORM_PACK16: buffer += 2 * x; buffer2 = buffer + pitchB; c01 = As(Int2(*Pointer(buffer), *Pointer(buffer2))); pixel.z = (c01 & Short4(0xF800u)); pixel.y = (c01 & Short4(0x07C0u)) << 5; pixel.x = (c01 & Short4(0x003Eu)) << 10; pixel.w = ((c01 & Short4(0x0001u)) << 15) >> 15; // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 5); pixel.x |= As(As(pixel.x) >> 10); pixel.y |= As(As(pixel.y) >> 5); pixel.y |= As(As(pixel.y) >> 10); pixel.z |= As(As(pixel.z) >> 5); pixel.z |= As(As(pixel.z) >> 10); break; case VK_FORMAT_A1R5G5B5_UNORM_PACK16: buffer += 2 * x; buffer2 = buffer + pitchB; c01 = As(Int2(*Pointer(buffer), *Pointer(buffer2))); pixel.x = (c01 & Short4(0x7C00u)) << 1; pixel.y = (c01 & Short4(0x03E0u)) << 6; pixel.z = (c01 & Short4(0x001Fu)) << 11; pixel.w = (c01 & Short4(0x8000u)) >> 15; // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 5); pixel.x |= As(As(pixel.x) >> 10); pixel.y |= As(As(pixel.y) >> 5); pixel.y |= As(As(pixel.y) >> 10); pixel.z |= As(As(pixel.z) >> 5); pixel.z |= As(As(pixel.z) >> 10); break; case VK_FORMAT_R5G6B5_UNORM_PACK16: buffer += 2 * x; buffer2 = buffer + pitchB; c01 = As(Int2(*Pointer(buffer), *Pointer(buffer2))); pixel.x = c01 & Short4(0xF800u); pixel.y = (c01 & Short4(0x07E0u)) << 5; pixel.z = (c01 & Short4(0x001Fu)) << 11; pixel.w = Short4(0xFFFFu); // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 5); pixel.x |= As(As(pixel.x) >> 10); pixel.y |= As(As(pixel.y) >> 6); pixel.y |= As(As(pixel.y) >> 12); pixel.z |= As(As(pixel.z) >> 5); pixel.z |= As(As(pixel.z) >> 10); break; case VK_FORMAT_B5G6R5_UNORM_PACK16: buffer += 2 * x; buffer2 = buffer + pitchB; c01 = As(Int2(*Pointer(buffer), *Pointer(buffer2))); pixel.z = c01 & Short4(0xF800u); pixel.y = (c01 & Short4(0x07E0u)) << 5; pixel.x = (c01 & Short4(0x001Fu)) << 11; pixel.w = Short4(0xFFFFu); // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 5); pixel.x |= As(As(pixel.x) >> 10); pixel.y |= As(As(pixel.y) >> 6); pixel.y |= As(As(pixel.y) >> 12); pixel.z |= As(As(pixel.z) >> 5); pixel.z |= As(As(pixel.z) >> 10); break; case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_B8G8R8A8_SRGB: buffer += 4 * x; c01 = *Pointer(buffer); buffer += pitchB; c23 = *Pointer(buffer); pixel.z = c01; pixel.y = c01; pixel.z = UnpackLow(As(pixel.z), As(c23)); pixel.y = UnpackHigh(As(pixel.y), As(c23)); pixel.x = pixel.z; pixel.z = UnpackLow(As(pixel.z), As(pixel.y)); pixel.x = UnpackHigh(As(pixel.x), As(pixel.y)); pixel.y = pixel.z; pixel.w = pixel.x; pixel.x = UnpackLow(As(pixel.x), As(pixel.x)); pixel.y = UnpackHigh(As(pixel.y), As(pixel.y)); pixel.z = UnpackLow(As(pixel.z), As(pixel.z)); pixel.w = UnpackHigh(As(pixel.w), As(pixel.w)); break; case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_SRGB: buffer += 4 * x; c01 = *Pointer(buffer); buffer += pitchB; c23 = *Pointer(buffer); pixel.z = c01; pixel.y = c01; pixel.z = UnpackLow(As(pixel.z), As(c23)); pixel.y = UnpackHigh(As(pixel.y), As(c23)); pixel.x = pixel.z; pixel.z = UnpackLow(As(pixel.z), As(pixel.y)); pixel.x = UnpackHigh(As(pixel.x), As(pixel.y)); pixel.y = pixel.z; pixel.w = pixel.x; pixel.x = UnpackLow(As(pixel.z), As(pixel.z)); pixel.y = UnpackHigh(As(pixel.y), As(pixel.y)); pixel.z = UnpackLow(As(pixel.w), As(pixel.w)); pixel.w = UnpackHigh(As(pixel.w), As(pixel.w)); break; case VK_FORMAT_R8_UNORM: buffer += 1 * x; pixel.x = Insert(pixel.x, *Pointer(buffer), 0); buffer += pitchB; pixel.x = Insert(pixel.x, *Pointer(buffer), 1); pixel.x = UnpackLow(As(pixel.x), As(pixel.x)); pixel.y = Short4(0x0000); pixel.z = Short4(0x0000); pixel.w = Short4(0xFFFFu); break; case VK_FORMAT_R8G8_UNORM: buffer += 2 * x; c01 = As(Insert(As(c01), *Pointer(buffer), 0)); buffer += pitchB; c01 = As(Insert(As(c01), *Pointer(buffer), 1)); pixel.x = (c01 & Short4(0x00FFu)) | (c01 << 8); pixel.y = (c01 & Short4(0xFF00u)) | As(As(c01) >> 8); pixel.z = Short4(0x0000u); pixel.w = Short4(0xFFFFu); break; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: { Int4 v = Int4(0); buffer += 4 * x; v = Insert(v, *Pointer(buffer + 0), 0); v = Insert(v, *Pointer(buffer + 4), 1); buffer += pitchB; v = Insert(v, *Pointer(buffer + 0), 2); v = Insert(v, *Pointer(buffer + 4), 3); pixel.x = Short4(v << 6) & Short4(0xFFC0u); pixel.y = Short4(v >> 4) & Short4(0xFFC0u); pixel.z = Short4(v >> 14) & Short4(0xFFC0u); pixel.w = Short4(v >> 16) & Short4(0xC000u); // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 10); pixel.y |= As(As(pixel.y) >> 10); pixel.z |= As(As(pixel.z) >> 10); pixel.w |= As(As(pixel.w) >> 2); pixel.w |= As(As(pixel.w) >> 4); pixel.w |= As(As(pixel.w) >> 8); } break; case VK_FORMAT_A2R10G10B10_UNORM_PACK32: { Int4 v = Int4(0); v = Insert(v, *Pointer(buffer + 4 * x), 0); v = Insert(v, *Pointer(buffer + 4 * x + 4), 1); buffer += *Pointer(data + OFFSET(DrawData, colorPitchB[index])); v = Insert(v, *Pointer(buffer + 4 * x), 2); v = Insert(v, *Pointer(buffer + 4 * x + 4), 3); pixel.x = Short4(v >> 14) & Short4(0xFFC0u); pixel.y = Short4(v >> 4) & Short4(0xFFC0u); pixel.z = Short4(v << 6) & Short4(0xFFC0u); pixel.w = Short4(v >> 16) & Short4(0xC000u); // Expand to 16 bit range pixel.x |= As(As(pixel.x) >> 10); pixel.y |= As(As(pixel.y) >> 10); pixel.z |= As(As(pixel.z) >> 10); pixel.w |= As(As(pixel.w) >> 2); pixel.w |= As(As(pixel.w) >> 4); pixel.w |= As(As(pixel.w) >> 8); } break; default: UNSUPPORTED("VkFormat %d", int(format)); } } Float PixelRoutine::blendConstant(vk::Format format, int component, BlendFactorModifier modifier) { bool inverse = (modifier == OneMinus); if(format.isUnsignedNormalized()) { return inverse ? *Pointer(data + OFFSET(DrawData, factor.invBlendConstantU.v[component])) : *Pointer(data + OFFSET(DrawData, factor.blendConstantU.v[component])); } else if(format.isSignedNormalized()) { return inverse ? *Pointer(data + OFFSET(DrawData, factor.invBlendConstantS.v[component])) : *Pointer(data + OFFSET(DrawData, factor.blendConstantS.v[component])); } else // Floating-point format { ASSERT(format.isFloatFormat()); return inverse ? *Pointer(data + OFFSET(DrawData, factor.invBlendConstantF.v[component])) : *Pointer(data + OFFSET(DrawData, factor.blendConstantF.v[component])); } } void PixelRoutine::blendFactorRGB(SIMD::Float4 &blendFactor, const SIMD::Float4 &sourceColor, const SIMD::Float4 &destColor, VkBlendFactor colorBlendFactor, vk::Format format) { switch(colorBlendFactor) { case VK_BLEND_FACTOR_ZERO: blendFactor.x = 0.0f; blendFactor.y = 0.0f; blendFactor.z = 0.0f; break; case VK_BLEND_FACTOR_ONE: blendFactor.x = 1.0f; blendFactor.y = 1.0f; blendFactor.z = 1.0f; break; case VK_BLEND_FACTOR_SRC_COLOR: blendFactor.x = sourceColor.x; blendFactor.y = sourceColor.y; blendFactor.z = sourceColor.z; break; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: blendFactor.x = 1.0f - sourceColor.x; blendFactor.y = 1.0f - sourceColor.y; blendFactor.z = 1.0f - sourceColor.z; break; case VK_BLEND_FACTOR_DST_COLOR: blendFactor.x = destColor.x; blendFactor.y = destColor.y; blendFactor.z = destColor.z; break; case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: blendFactor.x = 1.0f - destColor.x; blendFactor.y = 1.0f - destColor.y; blendFactor.z = 1.0f - destColor.z; break; case VK_BLEND_FACTOR_SRC_ALPHA: blendFactor.x = sourceColor.w; blendFactor.y = sourceColor.w; blendFactor.z = sourceColor.w; break; case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: blendFactor.x = 1.0f - sourceColor.w; blendFactor.y = 1.0f - sourceColor.w; blendFactor.z = 1.0f - sourceColor.w; break; case VK_BLEND_FACTOR_DST_ALPHA: blendFactor.x = destColor.w; blendFactor.y = destColor.w; blendFactor.z = destColor.w; break; case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: blendFactor.x = 1.0f - destColor.w; blendFactor.y = 1.0f - destColor.w; blendFactor.z = 1.0f - destColor.w; break; case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: blendFactor.x = 1.0f - destColor.w; blendFactor.x = Min(blendFactor.x, sourceColor.w); blendFactor.y = blendFactor.x; blendFactor.z = blendFactor.x; break; case VK_BLEND_FACTOR_CONSTANT_COLOR: blendFactor.x = blendConstant(format, 0); blendFactor.y = blendConstant(format, 1); blendFactor.z = blendConstant(format, 2); break; case VK_BLEND_FACTOR_CONSTANT_ALPHA: blendFactor.x = blendConstant(format, 3); blendFactor.y = blendConstant(format, 3); blendFactor.z = blendConstant(format, 3); break; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: blendFactor.x = blendConstant(format, 0, OneMinus); blendFactor.y = blendConstant(format, 1, OneMinus); blendFactor.z = blendConstant(format, 2, OneMinus); break; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: blendFactor.x = blendConstant(format, 3, OneMinus); blendFactor.y = blendConstant(format, 3, OneMinus); blendFactor.z = blendConstant(format, 3, OneMinus); break; default: UNSUPPORTED("VkBlendFactor: %d", int(colorBlendFactor)); } // "If the color attachment is fixed-point, the components of the source and destination values and blend factors are each clamped // to [0,1] or [-1,1] respectively for an unsigned normalized or signed normalized color attachment prior to evaluating the blend // operations. If the color attachment is floating-point, no clamping occurs." if(blendFactorCanExceedFormatRange(colorBlendFactor, format)) { if(format.isUnsignedNormalized()) { blendFactor.x = Min(Max(blendFactor.x, 0.0f), 1.0f); blendFactor.y = Min(Max(blendFactor.y, 0.0f), 1.0f); blendFactor.z = Min(Max(blendFactor.z, 0.0f), 1.0f); } else if(format.isSignedNormalized()) { blendFactor.x = Min(Max(blendFactor.x, -1.0f), 1.0f); blendFactor.y = Min(Max(blendFactor.y, -1.0f), 1.0f); blendFactor.z = Min(Max(blendFactor.z, -1.0f), 1.0f); } } } void PixelRoutine::blendFactorAlpha(SIMD::Float &blendFactorAlpha, const SIMD::Float &sourceAlpha, const SIMD::Float &destAlpha, VkBlendFactor alphaBlendFactor, vk::Format format) { switch(alphaBlendFactor) { case VK_BLEND_FACTOR_ZERO: blendFactorAlpha = 0.0f; break; case VK_BLEND_FACTOR_ONE: blendFactorAlpha = 1.0f; break; case VK_BLEND_FACTOR_SRC_COLOR: blendFactorAlpha = sourceAlpha; break; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: blendFactorAlpha = 1.0f - sourceAlpha; break; case VK_BLEND_FACTOR_DST_COLOR: blendFactorAlpha = destAlpha; break; case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: blendFactorAlpha = 1.0f - destAlpha; break; case VK_BLEND_FACTOR_SRC_ALPHA: blendFactorAlpha = sourceAlpha; break; case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: blendFactorAlpha = 1.0f - sourceAlpha; break; case VK_BLEND_FACTOR_DST_ALPHA: blendFactorAlpha = destAlpha; break; case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: blendFactorAlpha = 1.0f - destAlpha; break; case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: blendFactorAlpha = 1.0f; break; case VK_BLEND_FACTOR_CONSTANT_COLOR: case VK_BLEND_FACTOR_CONSTANT_ALPHA: blendFactorAlpha = blendConstant(format, 3); break; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: blendFactorAlpha = blendConstant(format, 3, OneMinus); break; default: UNSUPPORTED("VkBlendFactor: %d", int(alphaBlendFactor)); } // "If the color attachment is fixed-point, the components of the source and destination values and blend factors are each clamped // to [0,1] or [-1,1] respectively for an unsigned normalized or signed normalized color attachment prior to evaluating the blend // operations. If the color attachment is floating-point, no clamping occurs." if(blendFactorCanExceedFormatRange(alphaBlendFactor, format)) { if(format.isUnsignedNormalized()) { blendFactorAlpha = Min(Max(blendFactorAlpha, 0.0f), 1.0f); } else if(format.isSignedNormalized()) { blendFactorAlpha = Min(Max(blendFactorAlpha, -1.0f), 1.0f); } } } SIMD::Float PixelRoutine::blendOpOverlay(SIMD::Float &src, SIMD::Float &dst) { SIMD::Int largeDst = CmpGT(dst, 0.5f); return As( (~largeDst & As(2.0f * src * dst)) | (largeDst & As(1.0f - (2.0f * (1.0f - src) * (1.0f - dst))))); } SIMD::Float PixelRoutine::blendOpColorDodge(SIMD::Float &src, SIMD::Float &dst) { SIMD::Int srcBelowOne = CmpLT(src, 1.0f); SIMD::Int positiveDst = CmpGT(dst, 0.0f); return As(positiveDst & ((~srcBelowOne & As(SIMD::Float(1.0f))) | (srcBelowOne & As(Min(1.0f, (dst / (1.0f - src))))))); } SIMD::Float PixelRoutine::blendOpColorBurn(SIMD::Float &src, SIMD::Float &dst) { SIMD::Int dstBelowOne = CmpLT(dst, 1.0f); SIMD::Int positiveSrc = CmpGT(src, 0.0f); return As( (~dstBelowOne & As(SIMD::Float(1.0f))) | (dstBelowOne & positiveSrc & As(1.0f - Min(1.0f, (1.0f - dst) / src)))); } SIMD::Float PixelRoutine::blendOpHardlight(SIMD::Float &src, SIMD::Float &dst) { SIMD::Int largeSrc = CmpGT(src, 0.5f); return As( (~largeSrc & As(2.0f * src * dst)) | (largeSrc & As(1.0f - (2.0f * (1.0f - src) * (1.0f - dst))))); } SIMD::Float PixelRoutine::blendOpSoftlight(SIMD::Float &src, SIMD::Float &dst) { SIMD::Int largeSrc = CmpGT(src, 0.5f); SIMD::Int largeDst = CmpGT(dst, 0.25f); return As( (~largeSrc & As(dst - ((1.0f - (2.0f * src)) * dst * (1.0f - dst)))) | (largeSrc & ((~largeDst & As(dst + (((2.0f * src) - 1.0f) * dst * ((((16.0f * dst) - 12.0f) * dst) + 3.0f)))) | (largeDst & As(dst + (((2.0f * src) - 1.0f) * (Sqrt(dst) - dst))))))); } SIMD::Float PixelRoutine::maxRGB(SIMD::Float4 &c) { return Max(Max(c.x, c.y), c.z); } SIMD::Float PixelRoutine::minRGB(SIMD::Float4 &c) { return Min(Min(c.x, c.y), c.z); } void PixelRoutine::setLumSat(SIMD::Float4 &cbase, SIMD::Float4 &csat, SIMD::Float4 &clum, SIMD::Float &x, SIMD::Float &y, SIMD::Float &z) { SIMD::Float minbase = minRGB(cbase); SIMD::Float sbase = maxRGB(cbase) - minbase; SIMD::Float ssat = maxRGB(csat) - minRGB(csat); SIMD::Int isNonZero = CmpGT(sbase, 0.0f); SIMD::Float4 color; color.x = As(isNonZero & As((cbase.x - minbase) * ssat / sbase)); color.y = As(isNonZero & As((cbase.y - minbase) * ssat / sbase)); color.z = As(isNonZero & As((cbase.z - minbase) * ssat / sbase)); setLum(color, clum, x, y, z); } SIMD::Float PixelRoutine::lumRGB(SIMD::Float4 &c) { return c.x * 0.3f + c.y * 0.59f + c.z * 0.11f; } SIMD::Float PixelRoutine::computeLum(SIMD::Float &color, SIMD::Float &lum, SIMD::Float &mincol, SIMD::Float &maxcol, SIMD::Int &negative, SIMD::Int &aboveOne) { return As( (negative & As(lum + ((color - lum) * lum) / (lum - mincol))) | (~negative & ((aboveOne & As(lum + ((color - lum) * (1.0f - lum)) / (maxcol - lum))) | (~aboveOne & As(color))))); } void PixelRoutine::setLum(SIMD::Float4 &cbase, SIMD::Float4 &clum, SIMD::Float &x, SIMD::Float &y, SIMD::Float &z) { SIMD::Float lbase = lumRGB(cbase); SIMD::Float llum = lumRGB(clum); SIMD::Float ldiff = llum - lbase; SIMD::Float4 color; color.x = cbase.x + ldiff; color.y = cbase.y + ldiff; color.z = cbase.z + ldiff; SIMD::Float lum = lumRGB(color); SIMD::Float mincol = minRGB(color); SIMD::Float maxcol = maxRGB(color); SIMD::Int negative = CmpLT(mincol, 0.0f); SIMD::Int aboveOne = CmpGT(maxcol, 1.0f); x = computeLum(color.x, lum, mincol, maxcol, negative, aboveOne); y = computeLum(color.y, lum, mincol, maxcol, negative, aboveOne); z = computeLum(color.z, lum, mincol, maxcol, negative, aboveOne); } void PixelRoutine::premultiply(SIMD::Float4 &c) { SIMD::Int nonZeroAlpha = CmpNEQ(c.w, 0.0f); c.x = As(nonZeroAlpha & As(c.x / c.w)); c.y = As(nonZeroAlpha & As(c.y / c.w)); c.z = As(nonZeroAlpha & As(c.z / c.w)); } SIMD::Float4 PixelRoutine::computeAdvancedBlendMode(int index, const SIMD::Float4 &src, const SIMD::Float4 &dst, const SIMD::Float4 &srcFactor, const SIMD::Float4 &dstFactor) { SIMD::Float4 srcColor = src; srcColor.x *= srcFactor.x; srcColor.y *= srcFactor.y; srcColor.z *= srcFactor.z; srcColor.w *= srcFactor.w; SIMD::Float4 dstColor = dst; dstColor.x *= dstFactor.x; dstColor.y *= dstFactor.y; dstColor.z *= dstFactor.z; dstColor.w *= dstFactor.w; premultiply(srcColor); premultiply(dstColor); SIMD::Float4 blendedColor; switch(state.blendState[index].blendOperation) { case VK_BLEND_OP_MULTIPLY_EXT: blendedColor.x = (srcColor.x * dstColor.x); blendedColor.y = (srcColor.y * dstColor.y); blendedColor.z = (srcColor.z * dstColor.z); break; case VK_BLEND_OP_SCREEN_EXT: blendedColor.x = srcColor.x + dstColor.x - (srcColor.x * dstColor.x); blendedColor.y = srcColor.y + dstColor.y - (srcColor.y * dstColor.y); blendedColor.z = srcColor.z + dstColor.z - (srcColor.z * dstColor.z); break; case VK_BLEND_OP_OVERLAY_EXT: blendedColor.x = blendOpOverlay(srcColor.x, dstColor.x); blendedColor.y = blendOpOverlay(srcColor.y, dstColor.y); blendedColor.z = blendOpOverlay(srcColor.z, dstColor.z); break; case VK_BLEND_OP_DARKEN_EXT: blendedColor.x = Min(srcColor.x, dstColor.x); blendedColor.y = Min(srcColor.y, dstColor.y); blendedColor.z = Min(srcColor.z, dstColor.z); break; case VK_BLEND_OP_LIGHTEN_EXT: blendedColor.x = Max(srcColor.x, dstColor.x); blendedColor.y = Max(srcColor.y, dstColor.y); blendedColor.z = Max(srcColor.z, dstColor.z); break; case VK_BLEND_OP_COLORDODGE_EXT: blendedColor.x = blendOpColorDodge(srcColor.x, dstColor.x); blendedColor.y = blendOpColorDodge(srcColor.y, dstColor.y); blendedColor.z = blendOpColorDodge(srcColor.z, dstColor.z); break; case VK_BLEND_OP_COLORBURN_EXT: blendedColor.x = blendOpColorBurn(srcColor.x, dstColor.x); blendedColor.y = blendOpColorBurn(srcColor.y, dstColor.y); blendedColor.z = blendOpColorBurn(srcColor.z, dstColor.z); break; case VK_BLEND_OP_HARDLIGHT_EXT: blendedColor.x = blendOpHardlight(srcColor.x, dstColor.x); blendedColor.y = blendOpHardlight(srcColor.y, dstColor.y); blendedColor.z = blendOpHardlight(srcColor.z, dstColor.z); break; case VK_BLEND_OP_SOFTLIGHT_EXT: blendedColor.x = blendOpSoftlight(srcColor.x, dstColor.x); blendedColor.y = blendOpSoftlight(srcColor.y, dstColor.y); blendedColor.z = blendOpSoftlight(srcColor.z, dstColor.z); break; case VK_BLEND_OP_DIFFERENCE_EXT: blendedColor.x = Abs(srcColor.x - dstColor.x); blendedColor.y = Abs(srcColor.y - dstColor.y); blendedColor.z = Abs(srcColor.z - dstColor.z); break; case VK_BLEND_OP_EXCLUSION_EXT: blendedColor.x = srcColor.x + dstColor.x - (srcColor.x * dstColor.x * 2.0f); blendedColor.y = srcColor.y + dstColor.y - (srcColor.y * dstColor.y * 2.0f); blendedColor.z = srcColor.z + dstColor.z - (srcColor.z * dstColor.z * 2.0f); break; case VK_BLEND_OP_HSL_HUE_EXT: setLumSat(srcColor, dstColor, dstColor, blendedColor.x, blendedColor.y, blendedColor.z); break; case VK_BLEND_OP_HSL_SATURATION_EXT: setLumSat(dstColor, srcColor, dstColor, blendedColor.x, blendedColor.y, blendedColor.z); break; case VK_BLEND_OP_HSL_COLOR_EXT: setLum(srcColor, dstColor, blendedColor.x, blendedColor.y, blendedColor.z); break; case VK_BLEND_OP_HSL_LUMINOSITY_EXT: setLum(dstColor, srcColor, blendedColor.x, blendedColor.y, blendedColor.z); break; default: UNSUPPORTED("Unsupported advanced VkBlendOp: %d", int(state.blendState[index].blendOperation)); break; } SIMD::Float p = srcColor.w * dstColor.w; blendedColor.x *= p; blendedColor.y *= p; blendedColor.z *= p; p = srcColor.w * (1.0f - dstColor.w); blendedColor.x += srcColor.x * p; blendedColor.y += srcColor.y * p; blendedColor.z += srcColor.z * p; p = dstColor.w * (1.0f - srcColor.w); blendedColor.x += dstColor.x * p; blendedColor.y += dstColor.y * p; blendedColor.z += dstColor.z * p; return blendedColor; } bool PixelRoutine::blendFactorCanExceedFormatRange(VkBlendFactor blendFactor, vk::Format format) { switch(blendFactor) { case VK_BLEND_FACTOR_ZERO: case VK_BLEND_FACTOR_ONE: return false; case VK_BLEND_FACTOR_SRC_COLOR: case VK_BLEND_FACTOR_SRC_ALPHA: // Source values have been clamped after fragment shader execution if the attachment format is normalized. return false; case VK_BLEND_FACTOR_DST_COLOR: case VK_BLEND_FACTOR_DST_ALPHA: // Dest values have a valid range due to being read from the attachment. return false; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: // For signed formats, negative values cause the result to exceed 1.0. return format.isSignedNormalized(); case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: // min(As, 1 - Ad) return false; case VK_BLEND_FACTOR_CONSTANT_COLOR: case VK_BLEND_FACTOR_CONSTANT_ALPHA: case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: return false; default: UNSUPPORTED("VkBlendFactor: %d", int(blendFactor)); return false; } } SIMD::Float4 PixelRoutine::alphaBlend(int index, const Pointer &cBuffer, const SIMD::Float4 &sourceColor, const Int &x) { if(!state.blendState[index].alphaBlendEnable) { return sourceColor; } vk::Format format = state.colorFormat[index]; ASSERT(format.supportsColorAttachmentBlend()); Pointer buffer = cBuffer; Int pitchB = *Pointer(data + OFFSET(DrawData, colorPitchB[index])); // texelColor holds four texel color values. // Note: Despite the type being Vector4f, the colors may be stored as // integers. Half-floats are stored as full 32-bit floats. // Non-float and non-fixed point formats are not alpha blended. Vector4f texelColor; switch(format) { case VK_FORMAT_R32_SINT: case VK_FORMAT_R32_UINT: case VK_FORMAT_R32_SFLOAT: // FIXME: movlps buffer += 4 * x; texelColor.x.x = *Pointer(buffer + 0); texelColor.x.y = *Pointer(buffer + 4); buffer += pitchB; // FIXME: movhps texelColor.x.z = *Pointer(buffer + 0); texelColor.x.w = *Pointer(buffer + 4); texelColor.y = texelColor.z = texelColor.w = 1.0f; break; case VK_FORMAT_R32G32_SINT: case VK_FORMAT_R32G32_UINT: case VK_FORMAT_R32G32_SFLOAT: buffer += 8 * x; texelColor.x = *Pointer(buffer, 16); buffer += pitchB; texelColor.y = *Pointer(buffer, 16); texelColor.z = texelColor.x; texelColor.x = ShuffleLowHigh(texelColor.x, texelColor.y, 0x0202); texelColor.z = ShuffleLowHigh(texelColor.z, texelColor.y, 0x1313); texelColor.y = texelColor.z; texelColor.z = texelColor.w = 1.0f; break; case VK_FORMAT_R32G32B32A32_SFLOAT: case VK_FORMAT_R32G32B32A32_SINT: case VK_FORMAT_R32G32B32A32_UINT: buffer += 16 * x; texelColor.x = *Pointer(buffer + 0, 16); texelColor.y = *Pointer(buffer + 16, 16); buffer += pitchB; texelColor.z = *Pointer(buffer + 0, 16); texelColor.w = *Pointer(buffer + 16, 16); transpose4x4(texelColor.x, texelColor.y, texelColor.z, texelColor.w); break; case VK_FORMAT_R16_UNORM: buffer += 2 * x; texelColor.x.x = Float(Int(*Pointer(buffer + 0))); texelColor.x.y = Float(Int(*Pointer(buffer + 2))); buffer += pitchB; texelColor.x.z = Float(Int(*Pointer(buffer + 0))); texelColor.x.w = Float(Int(*Pointer(buffer + 2))); texelColor.x *= (1.0f / 0xFFFF); texelColor.y = texelColor.z = texelColor.w = 1.0f; break; case VK_FORMAT_R16_SFLOAT: buffer += 2 * x; texelColor.x.x = Float(*Pointer(buffer + 0)); texelColor.x.y = Float(*Pointer(buffer + 2)); buffer += pitchB; texelColor.x.z = Float(*Pointer(buffer + 0)); texelColor.x.w = Float(*Pointer(buffer + 2)); texelColor.y = texelColor.z = texelColor.w = 1.0f; break; case VK_FORMAT_R16G16_UNORM: buffer += 4 * x; texelColor.x.x = Float(Int(*Pointer(buffer + 0))); texelColor.y.x = Float(Int(*Pointer(buffer + 2))); texelColor.x.y = Float(Int(*Pointer(buffer + 4))); texelColor.y.y = Float(Int(*Pointer(buffer + 6))); buffer += pitchB; texelColor.x.z = Float(Int(*Pointer(buffer + 0))); texelColor.y.z = Float(Int(*Pointer(buffer + 2))); texelColor.x.w = Float(Int(*Pointer(buffer + 4))); texelColor.y.w = Float(Int(*Pointer(buffer + 6))); texelColor.x *= (1.0f / 0xFFFF); texelColor.y *= (1.0f / 0xFFFF); texelColor.z = texelColor.w = 1.0f; break; case VK_FORMAT_R16G16_SFLOAT: buffer += 4 * x; texelColor.x.x = Float(*Pointer(buffer + 0)); texelColor.y.x = Float(*Pointer(buffer + 2)); texelColor.x.y = Float(*Pointer(buffer + 4)); texelColor.y.y = Float(*Pointer(buffer + 6)); buffer += pitchB; texelColor.x.z = Float(*Pointer(buffer + 0)); texelColor.y.z = Float(*Pointer(buffer + 2)); texelColor.x.w = Float(*Pointer(buffer + 4)); texelColor.y.w = Float(*Pointer(buffer + 6)); texelColor.z = texelColor.w = 1.0f; break; case VK_FORMAT_R16G16B16A16_UNORM: buffer += 8 * x; texelColor.x.x = Float(Int(*Pointer(buffer + 0x0))); texelColor.y.x = Float(Int(*Pointer(buffer + 0x2))); texelColor.z.x = Float(Int(*Pointer(buffer + 0x4))); texelColor.w.x = Float(Int(*Pointer(buffer + 0x6))); texelColor.x.y = Float(Int(*Pointer(buffer + 0x8))); texelColor.y.y = Float(Int(*Pointer(buffer + 0xa))); texelColor.z.y = Float(Int(*Pointer(buffer + 0xc))); texelColor.w.y = Float(Int(*Pointer(buffer + 0xe))); buffer += pitchB; texelColor.x.z = Float(Int(*Pointer(buffer + 0x0))); texelColor.y.z = Float(Int(*Pointer(buffer + 0x2))); texelColor.z.z = Float(Int(*Pointer(buffer + 0x4))); texelColor.w.z = Float(Int(*Pointer(buffer + 0x6))); texelColor.x.w = Float(Int(*Pointer(buffer + 0x8))); texelColor.y.w = Float(Int(*Pointer(buffer + 0xa))); texelColor.z.w = Float(Int(*Pointer(buffer + 0xc))); texelColor.w.w = Float(Int(*Pointer(buffer + 0xe))); texelColor.x *= (1.0f / 0xFFFF); texelColor.y *= (1.0f / 0xFFFF); texelColor.z *= (1.0f / 0xFFFF); texelColor.w *= (1.0f / 0xFFFF); break; case VK_FORMAT_R16G16B16A16_SFLOAT: buffer += 8 * x; texelColor.x.x = Float(*Pointer(buffer + 0x0)); texelColor.y.x = Float(*Pointer(buffer + 0x2)); texelColor.z.x = Float(*Pointer(buffer + 0x4)); texelColor.w.x = Float(*Pointer(buffer + 0x6)); texelColor.x.y = Float(*Pointer(buffer + 0x8)); texelColor.y.y = Float(*Pointer(buffer + 0xa)); texelColor.z.y = Float(*Pointer(buffer + 0xc)); texelColor.w.y = Float(*Pointer(buffer + 0xe)); buffer += pitchB; texelColor.x.z = Float(*Pointer(buffer + 0x0)); texelColor.y.z = Float(*Pointer(buffer + 0x2)); texelColor.z.z = Float(*Pointer(buffer + 0x4)); texelColor.w.z = Float(*Pointer(buffer + 0x6)); texelColor.x.w = Float(*Pointer(buffer + 0x8)); texelColor.y.w = Float(*Pointer(buffer + 0xa)); texelColor.z.w = Float(*Pointer(buffer + 0xc)); texelColor.w.w = Float(*Pointer(buffer + 0xe)); break; case VK_FORMAT_B10G11R11_UFLOAT_PACK32: buffer += 4 * x; texelColor.x = r11g11b10Unpack(*Pointer(buffer + 0)); texelColor.y = r11g11b10Unpack(*Pointer(buffer + 4)); buffer += pitchB; texelColor.z = r11g11b10Unpack(*Pointer(buffer + 0)); texelColor.w = r11g11b10Unpack(*Pointer(buffer + 4)); transpose4x3(texelColor.x, texelColor.y, texelColor.z, texelColor.w); texelColor.w = 1.0f; break; default: { // Attempt to read an integer based format and convert it to float Vector4s color; readPixel(index, cBuffer, x, color); texelColor.x = Float4(As(color.x)) * (1.0f / 0xFFFF); texelColor.y = Float4(As(color.y)) * (1.0f / 0xFFFF); texelColor.z = Float4(As(color.z)) * (1.0f / 0xFFFF); texelColor.w = Float4(As(color.w)) * (1.0f / 0xFFFF); if(isSRGB(index)) { texelColor.x = sRGBtoLinear(texelColor.x); texelColor.y = sRGBtoLinear(texelColor.y); texelColor.z = sRGBtoLinear(texelColor.z); } } break; } ASSERT(SIMD::Width == 4); SIMD::Float4 destColor; destColor.x = texelColor.x; destColor.y = texelColor.y; destColor.z = texelColor.z; destColor.w = texelColor.w; SIMD::Float4 sourceFactor; SIMD::Float4 destFactor; blendFactorRGB(sourceFactor, sourceColor, destColor, state.blendState[index].sourceBlendFactor, format); blendFactorRGB(destFactor, sourceColor, destColor, state.blendState[index].destBlendFactor, format); blendFactorAlpha(sourceFactor.w, sourceColor.w, destColor.w, state.blendState[index].sourceBlendFactorAlpha, format); blendFactorAlpha(destFactor.w, sourceColor.w, destColor.w, state.blendState[index].destBlendFactorAlpha, format); SIMD::Float4 blendedColor; switch(state.blendState[index].blendOperation) { case VK_BLEND_OP_ADD: blendedColor.x = sourceColor.x * sourceFactor.x + destColor.x * destFactor.x; blendedColor.y = sourceColor.y * sourceFactor.y + destColor.y * destFactor.y; blendedColor.z = sourceColor.z * sourceFactor.z + destColor.z * destFactor.z; break; case VK_BLEND_OP_SUBTRACT: blendedColor.x = sourceColor.x * sourceFactor.x - destColor.x * destFactor.x; blendedColor.y = sourceColor.y * sourceFactor.y - destColor.y * destFactor.y; blendedColor.z = sourceColor.z * sourceFactor.z - destColor.z * destFactor.z; break; case VK_BLEND_OP_REVERSE_SUBTRACT: blendedColor.x = destColor.x * destFactor.x - sourceColor.x * sourceFactor.x; blendedColor.y = destColor.y * destFactor.y - sourceColor.y * sourceFactor.y; blendedColor.z = destColor.z * destFactor.z - sourceColor.z * sourceFactor.z; break; case VK_BLEND_OP_MIN: blendedColor.x = Min(sourceColor.x, destColor.x); blendedColor.y = Min(sourceColor.y, destColor.y); blendedColor.z = Min(sourceColor.z, destColor.z); break; case VK_BLEND_OP_MAX: blendedColor.x = Max(sourceColor.x, destColor.x); blendedColor.y = Max(sourceColor.y, destColor.y); blendedColor.z = Max(sourceColor.z, destColor.z); break; case VK_BLEND_OP_SRC_EXT: blendedColor.x = sourceColor.x; blendedColor.y = sourceColor.y; blendedColor.z = sourceColor.z; break; case VK_BLEND_OP_DST_EXT: blendedColor.x = destColor.x; blendedColor.y = destColor.y; blendedColor.z = destColor.z; break; case VK_BLEND_OP_ZERO_EXT: blendedColor.x = 0.0f; blendedColor.y = 0.0f; blendedColor.z = 0.0f; break; case VK_BLEND_OP_MULTIPLY_EXT: case VK_BLEND_OP_SCREEN_EXT: case VK_BLEND_OP_OVERLAY_EXT: case VK_BLEND_OP_DARKEN_EXT: case VK_BLEND_OP_LIGHTEN_EXT: case VK_BLEND_OP_COLORDODGE_EXT: case VK_BLEND_OP_COLORBURN_EXT: case VK_BLEND_OP_HARDLIGHT_EXT: case VK_BLEND_OP_SOFTLIGHT_EXT: case VK_BLEND_OP_DIFFERENCE_EXT: case VK_BLEND_OP_EXCLUSION_EXT: case VK_BLEND_OP_HSL_HUE_EXT: case VK_BLEND_OP_HSL_SATURATION_EXT: case VK_BLEND_OP_HSL_COLOR_EXT: case VK_BLEND_OP_HSL_LUMINOSITY_EXT: blendedColor = computeAdvancedBlendMode(index, sourceColor, destColor, sourceFactor, destFactor); break; default: UNSUPPORTED("VkBlendOp: %d", int(state.blendState[index].blendOperation)); } switch(state.blendState[index].blendOperationAlpha) { case VK_BLEND_OP_ADD: blendedColor.w = sourceColor.w * sourceFactor.w + destColor.w * destFactor.w; break; case VK_BLEND_OP_SUBTRACT: blendedColor.w = sourceColor.w * sourceFactor.w - destColor.w * destFactor.w; break; case VK_BLEND_OP_REVERSE_SUBTRACT: blendedColor.w = destColor.w * destFactor.w - sourceColor.w * sourceFactor.w; break; case VK_BLEND_OP_MIN: blendedColor.w = Min(sourceColor.w, destColor.w); break; case VK_BLEND_OP_MAX: blendedColor.w = Max(sourceColor.w, destColor.w); break; case VK_BLEND_OP_SRC_EXT: blendedColor.w = sourceColor.w; break; case VK_BLEND_OP_DST_EXT: blendedColor.w = destColor.w; break; case VK_BLEND_OP_ZERO_EXT: blendedColor.w = 0.0f; break; case VK_BLEND_OP_MULTIPLY_EXT: case VK_BLEND_OP_SCREEN_EXT: case VK_BLEND_OP_OVERLAY_EXT: case VK_BLEND_OP_DARKEN_EXT: case VK_BLEND_OP_LIGHTEN_EXT: case VK_BLEND_OP_COLORDODGE_EXT: case VK_BLEND_OP_COLORBURN_EXT: case VK_BLEND_OP_HARDLIGHT_EXT: case VK_BLEND_OP_SOFTLIGHT_EXT: case VK_BLEND_OP_DIFFERENCE_EXT: case VK_BLEND_OP_EXCLUSION_EXT: case VK_BLEND_OP_HSL_HUE_EXT: case VK_BLEND_OP_HSL_SATURATION_EXT: case VK_BLEND_OP_HSL_COLOR_EXT: case VK_BLEND_OP_HSL_LUMINOSITY_EXT: // All of the currently supported 'advanced blend modes' compute the alpha the same way. blendedColor.w = sourceColor.w + destColor.w - (sourceColor.w * destColor.w); break; default: UNSUPPORTED("VkBlendOp: %d", int(state.blendState[index].blendOperationAlpha)); } return blendedColor; } void PixelRoutine::writeColor(int index, const Pointer &cBuffer, const Int &x, Vector4f &color, const Int &sMask, const Int &zMask, const Int &cMask) { if(isSRGB(index)) { color.x = linearToSRGB(color.x); color.y = linearToSRGB(color.y); color.z = linearToSRGB(color.z); } vk::Format format = state.colorFormat[index]; switch(format) { case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: color.w = Min(Max(color.w, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.w = As(RoundInt(color.w * 0xFF)); color.z = Min(Max(color.z, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.z = As(RoundInt(color.z * 0xFF)); // [[fallthrough]] case VK_FORMAT_R8G8_UNORM: color.y = Min(Max(color.y, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.y = As(RoundInt(color.y * 0xFF)); //[[fallthrough]] case VK_FORMAT_R8_UNORM: color.x = Min(Max(color.x, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.x = As(RoundInt(color.x * 0xFF)); break; case VK_FORMAT_R4G4B4A4_UNORM_PACK16: case VK_FORMAT_B4G4R4A4_UNORM_PACK16: case VK_FORMAT_A4R4G4B4_UNORM_PACK16: case VK_FORMAT_A4B4G4R4_UNORM_PACK16: color.w = Min(Max(color.w, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.w = As(RoundInt(color.w * 0xF)); color.z = Min(Max(color.z, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.z = As(RoundInt(color.z * 0xF)); color.y = Min(Max(color.y, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.y = As(RoundInt(color.y * 0xF)); color.x = Min(Max(color.x, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.x = As(RoundInt(color.x * 0xF)); break; case VK_FORMAT_B5G6R5_UNORM_PACK16: case VK_FORMAT_R5G6B5_UNORM_PACK16: color.z = Min(Max(color.z, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.z = As(RoundInt(color.z * 0x1F)); color.y = Min(Max(color.y, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.y = As(RoundInt(color.y * 0x3F)); color.x = Min(Max(color.x, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.x = As(RoundInt(color.x * 0x1F)); break; case VK_FORMAT_R5G5B5A1_UNORM_PACK16: case VK_FORMAT_B5G5R5A1_UNORM_PACK16: case VK_FORMAT_A1R5G5B5_UNORM_PACK16: color.w = Min(Max(color.w, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.w = As(RoundInt(color.w)); color.z = Min(Max(color.z, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.z = As(RoundInt(color.z * 0x1F)); color.y = Min(Max(color.y, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.y = As(RoundInt(color.y * 0x1F)); color.x = Min(Max(color.x, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.x = As(RoundInt(color.x * 0x1F)); break; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: case VK_FORMAT_A2R10G10B10_UNORM_PACK32: color.w = Min(Max(color.w, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.w = As(RoundInt(color.w * 0x3)); color.z = Min(Max(color.z, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.z = As(RoundInt(color.z * 0x3FF)); color.y = Min(Max(color.y, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.y = As(RoundInt(color.y * 0x3FF)); color.x = Min(Max(color.x, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.x = As(RoundInt(color.x * 0x3FF)); break; case VK_FORMAT_R16G16B16A16_UNORM: color.w = Min(Max(color.w, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.w = As(RoundInt(color.w * 0xFFFF)); color.z = Min(Max(color.z, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.z = As(RoundInt(color.z * 0xFFFF)); // [[fallthrough]] case VK_FORMAT_R16G16_UNORM: color.y = Min(Max(color.y, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.y = As(RoundInt(color.y * 0xFFFF)); //[[fallthrough]] case VK_FORMAT_R16_UNORM: color.x = Min(Max(color.x, 0.0f), 1.0f); // TODO(b/204560089): Omit clamp if redundant color.x = As(RoundInt(color.x * 0xFFFF)); break; default: // TODO(b/204560089): Omit clamp if redundant if(format.isUnsignedNormalized()) { color.x = Min(Max(color.x, 0.0f), 1.0f); color.y = Min(Max(color.y, 0.0f), 1.0f); color.z = Min(Max(color.z, 0.0f), 1.0f); color.w = Min(Max(color.w, 0.0f), 1.0f); } else if(format.isSignedNormalized()) { color.x = Min(Max(color.x, -1.0f), 1.0f); color.y = Min(Max(color.y, -1.0f), 1.0f); color.z = Min(Max(color.z, -1.0f), 1.0f); color.w = Min(Max(color.w, -1.0f), 1.0f); } } switch(format) { case VK_FORMAT_R16_SFLOAT: case VK_FORMAT_R32_SFLOAT: case VK_FORMAT_R32_SINT: case VK_FORMAT_R32_UINT: case VK_FORMAT_R16_UNORM: case VK_FORMAT_R16_SINT: case VK_FORMAT_R16_UINT: case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_UINT: case VK_FORMAT_R8_UNORM: case VK_FORMAT_A2B10G10R10_UINT_PACK32: case VK_FORMAT_A2R10G10B10_UINT_PACK32: case VK_FORMAT_A2B10G10R10_UNORM_PACK32: case VK_FORMAT_A2R10G10B10_UNORM_PACK32: case VK_FORMAT_R4G4B4A4_UNORM_PACK16: case VK_FORMAT_B4G4R4A4_UNORM_PACK16: case VK_FORMAT_A4R4G4B4_UNORM_PACK16: case VK_FORMAT_A4B4G4R4_UNORM_PACK16: case VK_FORMAT_B5G6R5_UNORM_PACK16: case VK_FORMAT_R5G5B5A1_UNORM_PACK16: case VK_FORMAT_B5G5R5A1_UNORM_PACK16: case VK_FORMAT_A1R5G5B5_UNORM_PACK16: case VK_FORMAT_R5G6B5_UNORM_PACK16: break; case VK_FORMAT_R16G16_SFLOAT: case VK_FORMAT_R32G32_SFLOAT: case VK_FORMAT_R32G32_SINT: case VK_FORMAT_R32G32_UINT: case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8_UNORM: color.z = color.x; color.x = UnpackLow(color.x, color.y); color.z = UnpackHigh(color.z, color.y); color.y = color.z; break; case VK_FORMAT_R16G16B16A16_SFLOAT: case VK_FORMAT_B10G11R11_UFLOAT_PACK32: case VK_FORMAT_R32G32B32A32_SFLOAT: case VK_FORMAT_R32G32B32A32_SINT: case VK_FORMAT_R32G32B32A32_UINT: case VK_FORMAT_R16G16B16A16_UNORM: case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16A16_UINT: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: transpose4x4(color.x, color.y, color.z, color.w); break; case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_B8G8R8A8_SRGB: transpose4x4zyxw(color.z, color.y, color.x, color.w); break; default: UNSUPPORTED("VkFormat: %d", int(format)); } int writeMask = state.colorWriteActive(index); if(format.isBGRformat()) { // For BGR formats, flip R and B channels in the channels mask writeMask = (writeMask & 0x0000000A) | (writeMask & 0x00000001) << 2 | (writeMask & 0x00000004) >> 2; } Int xMask; // Combination of all masks if(state.depthTestActive) { xMask = zMask; } else { xMask = cMask; } if(state.stencilActive) { xMask &= sMask; } Pointer buffer = cBuffer; Int pitchB = *Pointer(data + OFFSET(DrawData, colorPitchB[index])); Float4 value; switch(format) { case VK_FORMAT_R32_SFLOAT: case VK_FORMAT_R32_SINT: case VK_FORMAT_R32_UINT: if(writeMask & 0x00000001) { buffer += 4 * x; // FIXME: movlps value.x = *Pointer(buffer + 0); value.y = *Pointer(buffer + 4); buffer += pitchB; // FIXME: movhps value.z = *Pointer(buffer + 0); value.w = *Pointer(buffer + 4); color.x = As(As(color.x) & *Pointer(constants + OFFSET(Constants, maskD4X) + xMask * 16, 16)); value = As(As(value) & *Pointer(constants + OFFSET(Constants, invMaskD4X) + xMask * 16, 16)); color.x = As(As(color.x) | As(value)); // FIXME: movhps *Pointer(buffer + 0) = color.x.z; *Pointer(buffer + 4) = color.x.w; buffer -= pitchB; // FIXME: movlps *Pointer(buffer + 0) = color.x.x; *Pointer(buffer + 4) = color.x.y; } break; case VK_FORMAT_R16_SFLOAT: if(writeMask & 0x00000001) { buffer += 2 * x; value = Insert(value, Float(*Pointer(buffer + 0)), 0); value = Insert(value, Float(*Pointer(buffer + 2)), 1); buffer += pitchB; value = Insert(value, Float(*Pointer(buffer + 0)), 2); value = Insert(value, Float(*Pointer(buffer + 2)), 3); color.x = As(As(color.x) & *Pointer(constants + OFFSET(Constants, maskD4X) + xMask * 16, 16)); value = As(As(value) & *Pointer(constants + OFFSET(Constants, invMaskD4X) + xMask * 16, 16)); color.x = As(As(color.x) | As(value)); *Pointer(buffer + 0) = Half(color.x.z); *Pointer(buffer + 2) = Half(color.x.w); buffer -= pitchB; *Pointer(buffer + 0) = Half(color.x.x); *Pointer(buffer + 2) = Half(color.x.y); } break; case VK_FORMAT_R16_UNORM: case VK_FORMAT_R16_SINT: case VK_FORMAT_R16_UINT: if(writeMask & 0x00000001) { buffer += 2 * x; UShort4 xyzw; xyzw = As(Insert(As(xyzw), *Pointer(buffer), 0)); buffer += pitchB; xyzw = As(Insert(As(xyzw), *Pointer(buffer), 1)); value = As(Int4(xyzw)); color.x = As(As(color.x) & *Pointer(constants + OFFSET(Constants, maskD4X) + xMask * 16, 16)); value = As(As(value) & *Pointer(constants + OFFSET(Constants, invMaskD4X) + xMask * 16, 16)); color.x = As(As(color.x) | As(value)); Float component = color.x.z; *Pointer(buffer + 0) = UShort(As(component)); component = color.x.w; *Pointer(buffer + 2) = UShort(As(component)); buffer -= pitchB; component = color.x.x; *Pointer(buffer + 0) = UShort(As(component)); component = color.x.y; *Pointer(buffer + 2) = UShort(As(component)); } break; case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_UINT: case VK_FORMAT_R8_UNORM: if(writeMask & 0x00000001) { buffer += x; UInt xyzw, packedCol; xyzw = UInt(*Pointer(buffer)) & 0xFFFFu; buffer += pitchB; xyzw |= UInt(*Pointer(buffer)) << 16; Short4 tmpCol = Short4(As(color.x)); if(format == VK_FORMAT_R8_SINT) { tmpCol = As(PackSigned(tmpCol, tmpCol)); } else { tmpCol = As(PackUnsigned(tmpCol, tmpCol)); } packedCol = Extract(As(tmpCol), 0); packedCol = (packedCol & *Pointer(constants + OFFSET(Constants, maskB4Q) + 8 * xMask)) | (xyzw & *Pointer(constants + OFFSET(Constants, invMaskB4Q) + 8 * xMask)); *Pointer(buffer) = UShort(packedCol >> 16); buffer -= pitchB; *Pointer(buffer) = UShort(packedCol); } break; case VK_FORMAT_R32G32_SFLOAT: case VK_FORMAT_R32G32_SINT: case VK_FORMAT_R32G32_UINT: buffer += 8 * x; value = *Pointer(buffer); if((writeMask & 0x00000003) != 0x00000003) { Float4 masked = value; color.x = As(As(color.x) & *Pointer(constants + OFFSET(Constants, maskD01X[writeMask & 0x3][0]))); masked = As(As(masked) & *Pointer(constants + OFFSET(Constants, maskD01X[~writeMask & 0x3][0]))); color.x = As(As(color.x) | As(masked)); } color.x = As(As(color.x) & *Pointer(constants + OFFSET(Constants, maskQ01X) + xMask * 16, 16)); value = As(As(value) & *Pointer(constants + OFFSET(Constants, invMaskQ01X) + xMask * 16, 16)); color.x = As(As(color.x) | As(value)); *Pointer(buffer) = color.x; buffer += pitchB; value = *Pointer(buffer); if((writeMask & 0x00000003) != 0x00000003) { Float4 masked; masked = value; color.y = As(As(color.y) & *Pointer(constants + OFFSET(Constants, maskD01X[writeMask & 0x3][0]))); masked = As(As(masked) & *Pointer(constants + OFFSET(Constants, maskD01X[~writeMask & 0x3][0]))); color.y = As(As(color.y) | As(masked)); } color.y = As(As(color.y) & *Pointer(constants + OFFSET(Constants, maskQ23X) + xMask * 16, 16)); value = As(As(value) & *Pointer(constants + OFFSET(Constants, invMaskQ23X) + xMask * 16, 16)); color.y = As(As(color.y) | As(value)); *Pointer(buffer) = color.y; break; case VK_FORMAT_R16G16_SFLOAT: if((writeMask & 0x00000003) != 0x0) { buffer += 4 * x; UInt2 rgbaMask; UInt2 packedCol; packedCol = Insert(packedCol, (UInt(As(Half(color.x.y))) << 16) | UInt(As(Half(color.x.x))), 0); packedCol = Insert(packedCol, (UInt(As(Half(color.x.w))) << 16) | UInt(As(Half(color.x.z))), 1); UShort4 value = *Pointer(buffer); UInt2 mergedMask = *Pointer(constants + OFFSET(Constants, maskD01Q) + xMask * 8); if((writeMask & 0x3) != 0x3) { Int tmpMask = *Pointer(constants + OFFSET(Constants, maskW4Q[writeMask & 0x3])); rgbaMask = As(Int2(tmpMask, tmpMask)); mergedMask &= rgbaMask; } *Pointer(buffer) = (packedCol & mergedMask) | (As(value) & ~mergedMask); buffer += pitchB; packedCol = Insert(packedCol, (UInt(As(Half(color.y.y))) << 16) | UInt(As(Half(color.y.x))), 0); packedCol = Insert(packedCol, (UInt(As(Half(color.y.w))) << 16) | UInt(As(Half(color.y.z))), 1); value = *Pointer(buffer); mergedMask = *Pointer(constants + OFFSET(Constants, maskD23Q) + xMask * 8); if((writeMask & 0x3) != 0x3) { mergedMask &= rgbaMask; } *Pointer(buffer) = (packedCol & mergedMask) | (As(value) & ~mergedMask); } break; case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16_UINT: if((writeMask & 0x00000003) != 0x0) { buffer += 4 * x; UInt2 rgbaMask; UShort4 packedCol = UShort4(As(color.x)); UShort4 value = *Pointer(buffer); UInt2 mergedMask = *Pointer(constants + OFFSET(Constants, maskD01Q) + xMask * 8); if((writeMask & 0x3) != 0x3) { Int tmpMask = *Pointer(constants + OFFSET(Constants, maskW4Q[writeMask & 0x3])); rgbaMask = As(Int2(tmpMask, tmpMask)); mergedMask &= rgbaMask; } *Pointer(buffer) = (As(packedCol) & mergedMask) | (As(value) & ~mergedMask); buffer += pitchB; packedCol = UShort4(As(color.y)); value = *Pointer(buffer); mergedMask = *Pointer(constants + OFFSET(Constants, maskD23Q) + xMask * 8); if((writeMask & 0x3) != 0x3) { mergedMask &= rgbaMask; } *Pointer(buffer) = (As(packedCol) & mergedMask) | (As(value) & ~mergedMask); } break; case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8_UNORM: if((writeMask & 0x00000003) != 0x0) { buffer += 2 * x; Int2 xyzw, packedCol; xyzw = Insert(xyzw, *Pointer(buffer), 0); buffer += pitchB; xyzw = Insert(xyzw, *Pointer(buffer), 1); if(format == VK_FORMAT_R8G8_SINT) { packedCol = As(PackSigned(Short4(As(color.x)), Short4(As(color.y)))); } else { packedCol = As(PackUnsigned(Short4(As(color.x)), Short4(As(color.y)))); } UInt2 mergedMask = *Pointer(constants + OFFSET(Constants, maskW4Q) + xMask * 8); if((writeMask & 0x3) != 0x3) { Int tmpMask = *Pointer(constants + OFFSET(Constants, maskB4Q[5 * (writeMask & 0x3)])); UInt2 rgbaMask = As(Int2(tmpMask, tmpMask)); mergedMask &= rgbaMask; } packedCol = As((As(packedCol) & mergedMask) | (As(xyzw) & ~mergedMask)); *Pointer(buffer) = As(Extract(packedCol, 1)); buffer -= pitchB; *Pointer(buffer) = As(Extract(packedCol, 0)); } break; case VK_FORMAT_R32G32B32A32_SFLOAT: case VK_FORMAT_R32G32B32A32_SINT: case VK_FORMAT_R32G32B32A32_UINT: buffer += 16 * x; { value = *Pointer(buffer, 16); if(writeMask != 0x0000000F) { Float4 masked = value; color.x = As(As(color.x) & *Pointer(constants + OFFSET(Constants, maskD4X[writeMask]))); masked = As(As(masked) & *Pointer(constants + OFFSET(Constants, invMaskD4X[writeMask]))); color.x = As(As(color.x) | As(masked)); } color.x = As(As(color.x) & *Pointer(constants + OFFSET(Constants, maskX0X) + xMask * 16, 16)); value = As(As(value) & *Pointer(constants + OFFSET(Constants, invMaskX0X) + xMask * 16, 16)); color.x = As(As(color.x) | As(value)); *Pointer(buffer, 16) = color.x; } { value = *Pointer(buffer + 16, 16); if(writeMask != 0x0000000F) { Float4 masked = value; color.y = As(As(color.y) & *Pointer(constants + OFFSET(Constants, maskD4X[writeMask]))); masked = As(As(masked) & *Pointer(constants + OFFSET(Constants, invMaskD4X[writeMask]))); color.y = As(As(color.y) | As(masked)); } color.y = As(As(color.y) & *Pointer(constants + OFFSET(Constants, maskX1X) + xMask * 16, 16)); value = As(As(value) & *Pointer(constants + OFFSET(Constants, invMaskX1X) + xMask * 16, 16)); color.y = As(As(color.y) | As(value)); *Pointer(buffer + 16, 16) = color.y; } buffer += pitchB; { value = *Pointer(buffer, 16); if(writeMask != 0x0000000F) { Float4 masked = value; color.z = As(As(color.z) & *Pointer(constants + OFFSET(Constants, maskD4X[writeMask]))); masked = As(As(masked) & *Pointer(constants + OFFSET(Constants, invMaskD4X[writeMask]))); color.z = As(As(color.z) | As(masked)); } color.z = As(As(color.z) & *Pointer(constants + OFFSET(Constants, maskX2X) + xMask * 16, 16)); value = As(As(value) & *Pointer(constants + OFFSET(Constants, invMaskX2X) + xMask * 16, 16)); color.z = As(As(color.z) | As(value)); *Pointer(buffer, 16) = color.z; } { value = *Pointer(buffer + 16, 16); if(writeMask != 0x0000000F) { Float4 masked = value; color.w = As(As(color.w) & *Pointer(constants + OFFSET(Constants, maskD4X[writeMask]))); masked = As(As(masked) & *Pointer(constants + OFFSET(Constants, invMaskD4X[writeMask]))); color.w = As(As(color.w) | As(masked)); } color.w = As(As(color.w) & *Pointer(constants + OFFSET(Constants, maskX3X) + xMask * 16, 16)); value = As(As(value) & *Pointer(constants + OFFSET(Constants, invMaskX3X) + xMask * 16, 16)); color.w = As(As(color.w) | As(value)); *Pointer(buffer + 16, 16) = color.w; } break; case VK_FORMAT_R16G16B16A16_SFLOAT: if((writeMask & 0x0000000F) != 0x0) { buffer += 8 * x; UInt4 rgbaMask; UInt4 value = *Pointer(buffer); UInt4 packedCol; packedCol = Insert(packedCol, (UInt(As(Half(color.x.y))) << 16) | UInt(As(Half(color.x.x))), 0); packedCol = Insert(packedCol, (UInt(As(Half(color.x.w))) << 16) | UInt(As(Half(color.x.z))), 1); packedCol = Insert(packedCol, (UInt(As(Half(color.y.y))) << 16) | UInt(As(Half(color.y.x))), 2); packedCol = Insert(packedCol, (UInt(As(Half(color.y.w))) << 16) | UInt(As(Half(color.y.z))), 3); UInt4 mergedMask = *Pointer(constants + OFFSET(Constants, maskQ01X) + xMask * 16); if((writeMask & 0xF) != 0xF) { UInt2 tmpMask = *Pointer(constants + OFFSET(Constants, maskW4Q[writeMask])); rgbaMask = UInt4(tmpMask, tmpMask); mergedMask &= rgbaMask; } *Pointer(buffer) = (packedCol & mergedMask) | (As(value) & ~mergedMask); buffer += pitchB; value = *Pointer(buffer); packedCol = Insert(packedCol, (UInt(As(Half(color.z.y))) << 16) | UInt(As(Half(color.z.x))), 0); packedCol = Insert(packedCol, (UInt(As(Half(color.z.w))) << 16) | UInt(As(Half(color.z.z))), 1); packedCol = Insert(packedCol, (UInt(As(Half(color.w.y))) << 16) | UInt(As(Half(color.w.x))), 2); packedCol = Insert(packedCol, (UInt(As(Half(color.w.w))) << 16) | UInt(As(Half(color.w.z))), 3); mergedMask = *Pointer(constants + OFFSET(Constants, maskQ23X) + xMask * 16); if((writeMask & 0xF) != 0xF) { mergedMask &= rgbaMask; } *Pointer(buffer) = (packedCol & mergedMask) | (As(value) & ~mergedMask); } break; case VK_FORMAT_B10G11R11_UFLOAT_PACK32: if((writeMask & 0x7) != 0x0) { buffer += 4 * x; UInt4 packedCol; packedCol = Insert(packedCol, r11g11b10Pack(color.x), 0); packedCol = Insert(packedCol, r11g11b10Pack(color.y), 1); packedCol = Insert(packedCol, r11g11b10Pack(color.z), 2); packedCol = Insert(packedCol, r11g11b10Pack(color.w), 3); UInt4 value; value = Insert(value, *Pointer(buffer + 0), 0); value = Insert(value, *Pointer(buffer + 4), 1); buffer += pitchB; value = Insert(value, *Pointer(buffer + 0), 2); value = Insert(value, *Pointer(buffer + 4), 3); UInt4 mask = *Pointer(constants + OFFSET(Constants, maskD4X[0]) + xMask * 16, 16); if((writeMask & 0x7) != 0x7) { mask &= *Pointer(constants + OFFSET(Constants, mask11X[writeMask & 0x7]), 16); } value = (packedCol & mask) | (value & ~mask); *Pointer(buffer + 0) = value.z; *Pointer(buffer + 4) = value.w; buffer -= pitchB; *Pointer(buffer + 0) = value.x; *Pointer(buffer + 4) = value.y; } break; case VK_FORMAT_R16G16B16A16_UNORM: case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16A16_UINT: if((writeMask & 0x0000000F) != 0x0) { buffer += 8 * x; UInt4 rgbaMask; UShort8 value = *Pointer(buffer); UShort8 packedCol = UShort8(UShort4(As(color.x)), UShort4(As(color.y))); UInt4 mergedMask = *Pointer(constants + OFFSET(Constants, maskQ01X) + xMask * 16); if((writeMask & 0xF) != 0xF) { UInt2 tmpMask = *Pointer(constants + OFFSET(Constants, maskW4Q[writeMask])); rgbaMask = UInt4(tmpMask, tmpMask); mergedMask &= rgbaMask; } *Pointer(buffer) = (As(packedCol) & mergedMask) | (As(value) & ~mergedMask); buffer += pitchB; value = *Pointer(buffer); packedCol = UShort8(UShort4(As(color.z)), UShort4(As(color.w))); mergedMask = *Pointer(constants + OFFSET(Constants, maskQ23X) + xMask * 16); if((writeMask & 0xF) != 0xF) { mergedMask &= rgbaMask; } *Pointer(buffer) = (As(packedCol) & mergedMask) | (As(value) & ~mergedMask); } break; case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: if((writeMask & 0x0000000F) != 0x0) { UInt2 value, packedCol, mergedMask; buffer += 4 * x; bool isSigned = !format.isUnsigned(); if(isSigned) { packedCol = As(PackSigned(Short4(As(color.x)), Short4(As(color.y)))); } else { packedCol = As(PackUnsigned(Short4(As(color.x)), Short4(As(color.y)))); } value = *Pointer(buffer, 16); mergedMask = *Pointer(constants + OFFSET(Constants, maskD01Q) + xMask * 8); if(writeMask != 0xF) { mergedMask &= *Pointer(constants + OFFSET(Constants, maskB4Q[writeMask])); } *Pointer(buffer) = (packedCol & mergedMask) | (value & ~mergedMask); buffer += pitchB; if(isSigned) { packedCol = As(PackSigned(Short4(As(color.z)), Short4(As(color.w)))); } else { packedCol = As(PackUnsigned(Short4(As(color.z)), Short4(As(color.w)))); } value = *Pointer(buffer, 16); mergedMask = *Pointer(constants + OFFSET(Constants, maskD23Q) + xMask * 8); if(writeMask != 0xF) { mergedMask &= *Pointer(constants + OFFSET(Constants, maskB4Q[writeMask])); } *Pointer(buffer) = (packedCol & mergedMask) | (value & ~mergedMask); } break; case VK_FORMAT_A2B10G10R10_UINT_PACK32: case VK_FORMAT_A2B10G10R10_UNORM_PACK32: if((writeMask & 0x0000000F) != 0x0) { Int2 mergedMask, packedCol, value; Int4 packed = ((As(color.w) & Int4(0x3)) << 30) | ((As(color.z) & Int4(0x3ff)) << 20) | ((As(color.y) & Int4(0x3ff)) << 10) | ((As(color.x) & Int4(0x3ff))); buffer += 4 * x; value = *Pointer(buffer, 16); mergedMask = *Pointer(constants + OFFSET(Constants, maskD01Q) + xMask * 8); if(writeMask != 0xF) { mergedMask &= *Pointer(constants + OFFSET(Constants, mask10Q[writeMask])); } *Pointer(buffer) = (As(packed) & mergedMask) | (value & ~mergedMask); buffer += pitchB; value = *Pointer(buffer, 16); mergedMask = *Pointer(constants + OFFSET(Constants, maskD23Q) + xMask * 8); if(writeMask != 0xF) { mergedMask &= *Pointer(constants + OFFSET(Constants, mask10Q[writeMask])); } *Pointer(buffer) = (As(Int4(packed.zwww)) & mergedMask) | (value & ~mergedMask); } break; case VK_FORMAT_A2R10G10B10_UINT_PACK32: case VK_FORMAT_A2R10G10B10_UNORM_PACK32: if((writeMask & 0x0000000F) != 0x0) { Int2 mergedMask, packedCol, value; Int4 packed = ((As(color.w) & Int4(0x3)) << 30) | ((As(color.x) & Int4(0x3ff)) << 20) | ((As(color.y) & Int4(0x3ff)) << 10) | ((As(color.z) & Int4(0x3ff))); buffer += 4 * x; value = *Pointer(buffer, 16); mergedMask = *Pointer(constants + OFFSET(Constants, maskD01Q) + xMask * 8); if(writeMask != 0xF) { mergedMask &= *Pointer(constants + OFFSET(Constants, mask10Q[writeMask])); } *Pointer(buffer) = (As(packed) & mergedMask) | (value & ~mergedMask); buffer += pitchB; value = *Pointer(buffer, 16); mergedMask = *Pointer(constants + OFFSET(Constants, maskD23Q) + xMask * 8); if(writeMask != 0xF) { mergedMask &= *Pointer(constants + OFFSET(Constants, mask10Q[writeMask])); } *Pointer(buffer) = (As(Int4(packed.zwww)) & mergedMask) | (value & ~mergedMask); } break; case VK_FORMAT_R4G4B4A4_UNORM_PACK16: case VK_FORMAT_B4G4R4A4_UNORM_PACK16: case VK_FORMAT_A4B4G4R4_UNORM_PACK16: case VK_FORMAT_A4R4G4B4_UNORM_PACK16: { buffer += 2 * x; Int value = *Pointer(buffer); Int channelMask; Short4 current; switch(format) { case VK_FORMAT_R4G4B4A4_UNORM_PACK16: channelMask = *Pointer(constants + OFFSET(Constants, mask4argbQ[writeMask][0])); current = (UShort4(As(color.x)) & UShort4(0xF)) << 12 | (UShort4(As(color.y)) & UShort4(0xF)) << 8 | (UShort4(As(color.z)) & UShort4(0xF)) << 4 | (UShort4(As(color.w)) & UShort4(0xF)); break; case VK_FORMAT_B4G4R4A4_UNORM_PACK16: channelMask = *Pointer(constants + OFFSET(Constants, mask4argbQ[writeMask][0])); current = (UShort4(As(color.z)) & UShort4(0xF)) << 12 | (UShort4(As(color.y)) & UShort4(0xF)) << 8 | (UShort4(As(color.x)) & UShort4(0xF)) << 4 | (UShort4(As(color.w)) & UShort4(0xF)); break; case VK_FORMAT_A4R4G4B4_UNORM_PACK16: channelMask = *Pointer(constants + OFFSET(Constants, mask4rgbaQ[writeMask][0])); current = (UShort4(As(color.w)) & UShort4(0xF)) << 12 | (UShort4(As(color.x)) & UShort4(0xF)) << 8 | (UShort4(As(color.y)) & UShort4(0xF)) << 4 | (UShort4(As(color.z)) & UShort4(0xF)); break; case VK_FORMAT_A4B4G4R4_UNORM_PACK16: channelMask = *Pointer(constants + OFFSET(Constants, mask4rgbaQ[writeMask][0])); current = (UShort4(As(color.w)) & UShort4(0xF)) << 12 | (UShort4(As(color.z)) & UShort4(0xF)) << 8 | (UShort4(As(color.y)) & UShort4(0xF)) << 4 | (UShort4(As(color.x)) & UShort4(0xF)); break; default: UNREACHABLE("Format: %s", vk::Stringify(format).c_str()); } Int c01 = Extract(As(current), 0); Int mask01 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8); if(writeMask != 0x0000000F) { mask01 &= channelMask; } *Pointer(buffer) = (c01 & mask01) | (value & ~mask01); buffer += pitchB; value = *Pointer(buffer); Int c23 = Extract(As(current), 1); Int mask23 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8); if(writeMask != 0x0000000F) { mask23 &= channelMask; } *Pointer(buffer) = (c23 & mask23) | (value & ~mask23); } break; case VK_FORMAT_R5G5B5A1_UNORM_PACK16: { buffer += 2 * x; Int value = *Pointer(buffer); Int channelMask = *Pointer(constants + OFFSET(Constants, maskr5g5b5a1Q[writeMask][0])); Short4 current = (UShort4(As(color.x)) & UShort4(0x1F)) << 11 | (UShort4(As(color.y)) & UShort4(0x1F)) << 6 | (UShort4(As(color.z)) & UShort4(0x1F)) << 1 | (UShort4(As(color.w)) & UShort4(0x1)); Int c01 = Extract(As(current), 0); Int mask01 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8); if(writeMask != 0x0000000F) { mask01 &= channelMask; } *Pointer(buffer) = (c01 & mask01) | (value & ~mask01); buffer += pitchB; value = *Pointer(buffer); Int c23 = Extract(As(current), 1); Int mask23 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8); if(writeMask != 0x0000000F) { mask23 &= channelMask; } *Pointer(buffer) = (c23 & mask23) | (value & ~mask23); } break; case VK_FORMAT_B5G5R5A1_UNORM_PACK16: { buffer += 2 * x; Int value = *Pointer(buffer); Int channelMask = *Pointer(constants + OFFSET(Constants, maskb5g5r5a1Q[writeMask][0])); Short4 current = (UShort4(As(color.z)) & UShort4(0x1F)) << 11 | (UShort4(As(color.y)) & UShort4(0x1F)) << 6 | (UShort4(As(color.x)) & UShort4(0x1F)) << 1 | (UShort4(As(color.w)) & UShort4(0x1)); Int c01 = Extract(As(current), 0); Int mask01 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8); if(writeMask != 0x0000000F) { mask01 &= channelMask; } *Pointer(buffer) = (c01 & mask01) | (value & ~mask01); buffer += pitchB; value = *Pointer(buffer); Int c23 = Extract(As(current), 1); Int mask23 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8); if(writeMask != 0x0000000F) { mask23 &= channelMask; } *Pointer(buffer) = (c23 & mask23) | (value & ~mask23); } break; case VK_FORMAT_A1R5G5B5_UNORM_PACK16: { buffer += 2 * x; Int value = *Pointer(buffer); Int channelMask = *Pointer(constants + OFFSET(Constants, mask5551Q[writeMask][0])); Short4 current = (UShort4(As(color.w)) & UShort4(0x1)) << 15 | (UShort4(As(color.x)) & UShort4(0x1F)) << 10 | (UShort4(As(color.y)) & UShort4(0x1F)) << 5 | (UShort4(As(color.z)) & UShort4(0x1F)); Int c01 = Extract(As(current), 0); Int mask01 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8); if(writeMask != 0x0000000F) { mask01 &= channelMask; } *Pointer(buffer) = (c01 & mask01) | (value & ~mask01); buffer += pitchB; value = *Pointer(buffer); Int c23 = Extract(As(current), 1); Int mask23 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8); if(writeMask != 0x0000000F) { mask23 &= channelMask; } *Pointer(buffer) = (c23 & mask23) | (value & ~mask23); } break; case VK_FORMAT_R5G6B5_UNORM_PACK16: { buffer += 2 * x; Int value = *Pointer(buffer); Int channelMask = *Pointer(constants + OFFSET(Constants, mask565Q[writeMask & 0x7][0])); Short4 current = (UShort4(As(color.z)) & UShort4(0x1F)) | (UShort4(As(color.y)) & UShort4(0x3F)) << 5 | (UShort4(As(color.x)) & UShort4(0x1F)) << 11; Int c01 = Extract(As(current), 0); Int mask01 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8); if((writeMask & 0x00000007) != 0x00000007) { mask01 &= channelMask; } *Pointer(buffer) = (c01 & mask01) | (value & ~mask01); buffer += pitchB; value = *Pointer(buffer); Int c23 = Extract(As(current), 1); Int mask23 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8); if((writeMask & 0x00000007) != 0x00000007) { mask23 &= channelMask; } *Pointer(buffer) = (c23 & mask23) | (value & ~mask23); } break; case VK_FORMAT_B5G6R5_UNORM_PACK16: { buffer += 2 * x; Int value = *Pointer(buffer); Int channelMask = *Pointer(constants + OFFSET(Constants, mask565Q[writeMask & 0x7][0])); Short4 current = (UShort4(As(color.x)) & UShort4(0x1F)) | (UShort4(As(color.y)) & UShort4(0x3F)) << 5 | (UShort4(As(color.z)) & UShort4(0x1F)) << 11; Int c01 = Extract(As(current), 0); Int mask01 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8); if((writeMask & 0x00000007) != 0x00000007) { mask01 &= channelMask; } *Pointer(buffer) = (c01 & mask01) | (value & ~mask01); buffer += pitchB; value = *Pointer(buffer); Int c23 = Extract(As(current), 1); Int mask23 = *Pointer(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8); if((writeMask & 0x00000007) != 0x00000007) { mask23 &= channelMask; } *Pointer(buffer) = (c23 & mask23) | (value & ~mask23); } break; default: UNSUPPORTED("VkFormat: %d", int(format)); } } } // namespace sw