// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "Blitter.hpp" #include "Pipeline/ShaderCore.hpp" #include "Reactor/Reactor.hpp" #include "System/CPUID.hpp" #include "System/Debug.hpp" #include "System/Half.hpp" #include "System/Memory.hpp" #include "Vulkan/VkImage.hpp" #include "Vulkan/VkImageView.hpp" #include #if defined(__i386__) || defined(__x86_64__) # include # include #endif namespace sw { static rr::RValue PackFields(const rr::Int4 &ints, const sw::int4 shifts) { return (rr::Int(ints.x) << shifts[0]) | (rr::Int(ints.y) << shifts[1]) | (rr::Int(ints.z) << shifts[2]) | (rr::Int(ints.w) << shifts[3]); } Blitter::Blitter() : blitMutex() , blitCache(1024) , cornerUpdateMutex() , cornerUpdateCache(64) // We only need one of these per format { } Blitter::~Blitter() { } void Blitter::clear(const void *pixel, vk::Format format, vk::Image *dest, const vk::Format &viewFormat, const VkImageSubresourceRange &subresourceRange, const VkRect2D *renderArea) { VkImageAspectFlagBits aspect = static_cast(subresourceRange.aspectMask); vk::Format dstFormat = viewFormat.getAspectFormat(aspect); if(dstFormat == VK_FORMAT_UNDEFINED) { return; } VkClearValue clampedPixel; if(viewFormat.isSignedNormalized() || viewFormat.isUnsignedNormalized()) { const float minValue = viewFormat.isSignedNormalized() ? -1.0f : 0.0f; if(aspect & VK_IMAGE_ASPECT_COLOR_BIT) { memcpy(clampedPixel.color.float32, pixel, sizeof(VkClearColorValue)); clampedPixel.color.float32[0] = sw::clamp(clampedPixel.color.float32[0], minValue, 1.0f); clampedPixel.color.float32[1] = sw::clamp(clampedPixel.color.float32[1], minValue, 1.0f); clampedPixel.color.float32[2] = sw::clamp(clampedPixel.color.float32[2], minValue, 1.0f); clampedPixel.color.float32[3] = sw::clamp(clampedPixel.color.float32[3], minValue, 1.0f); pixel = clampedPixel.color.float32; } // Stencil never requires clamping, so we can check for Depth only if(aspect & VK_IMAGE_ASPECT_DEPTH_BIT) { memcpy(&(clampedPixel.depthStencil), pixel, sizeof(VkClearDepthStencilValue)); clampedPixel.depthStencil.depth = sw::clamp(clampedPixel.depthStencil.depth, minValue, 1.0f); pixel = &(clampedPixel.depthStencil); } } if(fastClear(pixel, format, dest, dstFormat, subresourceRange, renderArea)) { return; } State state(format, dstFormat, 1, dest->getSampleCount(), Options{ 0xF }); auto blitRoutine = getBlitRoutine(state); if(!blitRoutine) { return; } VkImageSubresource subres = { subresourceRange.aspectMask, subresourceRange.baseMipLevel, subresourceRange.baseArrayLayer }; uint32_t lastMipLevel = dest->getLastMipLevel(subresourceRange); uint32_t lastLayer = dest->getLastLayerIndex(subresourceRange); VkRect2D area = { { 0, 0 }, { 0, 0 } }; if(renderArea) { ASSERT(subresourceRange.levelCount == 1); area = *renderArea; } for(; subres.mipLevel <= lastMipLevel; subres.mipLevel++) { VkExtent3D extent = dest->getMipLevelExtent(aspect, subres.mipLevel); if(!renderArea) { area.extent.width = extent.width; area.extent.height = extent.height; } BlitData data = { pixel, nullptr, // source, dest assert_cast(format.bytes()), // sPitchB assert_cast(dest->rowPitchBytes(aspect, subres.mipLevel)), // dPitchB 0, // sSliceB (unused in clear operations) assert_cast(dest->slicePitchBytes(aspect, subres.mipLevel)), // dSliceB 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 0.0f, // x0, y0, z0, w, h, d area.offset.x, static_cast(area.offset.x + area.extent.width), // x0d, x1d area.offset.y, static_cast(area.offset.y + area.extent.height), // y0d, y1d 0, 1, // z0d, z1d 0, 0, 0, // sWidth, sHeight, sDepth false, // filter3D }; if(renderArea && dest->is3DSlice()) { // Reinterpret layers as depth slices subres.arrayLayer = 0; for(uint32_t depth = subresourceRange.baseArrayLayer; depth <= lastLayer; depth++) { data.dest = dest->getTexelPointer({ 0, 0, static_cast(depth) }, subres); blitRoutine(&data); } } else { for(subres.arrayLayer = subresourceRange.baseArrayLayer; subres.arrayLayer <= lastLayer; subres.arrayLayer++) { for(uint32_t depth = 0; depth < extent.depth; depth++) { data.dest = dest->getTexelPointer({ 0, 0, static_cast(depth) }, subres); blitRoutine(&data); } } } } dest->contentsChanged(subresourceRange); } bool Blitter::fastClear(const void *clearValue, vk::Format clearFormat, vk::Image *dest, const vk::Format &viewFormat, const VkImageSubresourceRange &subresourceRange, const VkRect2D *renderArea) { if(clearFormat != VK_FORMAT_R32G32B32A32_SFLOAT && clearFormat != VK_FORMAT_D32_SFLOAT && clearFormat != VK_FORMAT_S8_UINT) { return false; } union ClearValue { struct { float r; float g; float b; float a; }; float rgb[3]; float d; uint32_t d_as_u32; uint32_t s; }; const ClearValue &c = *reinterpret_cast(clearValue); uint32_t packed = 0; VkImageAspectFlagBits aspect = static_cast(subresourceRange.aspectMask); switch(viewFormat) { case VK_FORMAT_R5G6B5_UNORM_PACK16: packed = ((uint16_t)(31 * c.b + 0.5f) << 0) | ((uint16_t)(63 * c.g + 0.5f) << 5) | ((uint16_t)(31 * c.r + 0.5f) << 11); break; case VK_FORMAT_B5G6R5_UNORM_PACK16: packed = ((uint16_t)(31 * c.r + 0.5f) << 0) | ((uint16_t)(63 * c.g + 0.5f) << 5) | ((uint16_t)(31 * c.b + 0.5f) << 11); break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_R8G8B8A8_UNORM: packed = ((uint32_t)(255 * c.a + 0.5f) << 24) | ((uint32_t)(255 * c.b + 0.5f) << 16) | ((uint32_t)(255 * c.g + 0.5f) << 8) | ((uint32_t)(255 * c.r + 0.5f) << 0); break; case VK_FORMAT_B8G8R8A8_UNORM: packed = ((uint32_t)(255 * c.a + 0.5f) << 24) | ((uint32_t)(255 * c.r + 0.5f) << 16) | ((uint32_t)(255 * c.g + 0.5f) << 8) | ((uint32_t)(255 * c.b + 0.5f) << 0); break; case VK_FORMAT_B10G11R11_UFLOAT_PACK32: packed = R11G11B10F(c.rgb); break; case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: packed = RGB9E5(c.rgb); break; case VK_FORMAT_D32_SFLOAT: ASSERT(clearFormat == VK_FORMAT_D32_SFLOAT); packed = c.d_as_u32; // float reinterpreted as uint32 break; case VK_FORMAT_S8_UINT: ASSERT(clearFormat == VK_FORMAT_S8_UINT); packed = static_cast(c.s); break; default: return false; } VkImageSubresource subres = { subresourceRange.aspectMask, subresourceRange.baseMipLevel, subresourceRange.baseArrayLayer }; uint32_t lastMipLevel = dest->getLastMipLevel(subresourceRange); uint32_t lastLayer = dest->getLastLayerIndex(subresourceRange); VkRect2D area = { { 0, 0 }, { 0, 0 } }; if(renderArea) { ASSERT(subresourceRange.levelCount == 1); area = *renderArea; } for(; subres.mipLevel <= lastMipLevel; subres.mipLevel++) { int rowPitchBytes = dest->rowPitchBytes(aspect, subres.mipLevel); int slicePitchBytes = dest->slicePitchBytes(aspect, subres.mipLevel); VkExtent3D extent = dest->getMipLevelExtent(aspect, subres.mipLevel); if(!renderArea) { area.extent.width = extent.width; area.extent.height = extent.height; } if(dest->is3DSlice()) { extent.depth = 1; // The 3D image is instead interpreted as a 2D image with layers } for(subres.arrayLayer = subresourceRange.baseArrayLayer; subres.arrayLayer <= lastLayer; subres.arrayLayer++) { for(uint32_t depth = 0; depth < extent.depth; depth++) { uint8_t *slice = (uint8_t *)dest->getTexelPointer( { area.offset.x, area.offset.y, static_cast(depth) }, subres); for(int j = 0; j < dest->getSampleCount(); j++) { uint8_t *d = slice; switch(viewFormat.bytes()) { case 4: for(uint32_t i = 0; i < area.extent.height; i++) { ASSERT(d < dest->end()); sw::clear((uint32_t *)d, packed, area.extent.width); d += rowPitchBytes; } break; case 2: for(uint32_t i = 0; i < area.extent.height; i++) { ASSERT(d < dest->end()); sw::clear((uint16_t *)d, static_cast(packed), area.extent.width); d += rowPitchBytes; } break; case 1: for(uint32_t i = 0; i < area.extent.height; i++) { ASSERT(d < dest->end()); memset(d, packed, area.extent.width); d += rowPitchBytes; } break; default: assert(false); } slice += slicePitchBytes; } } } } dest->contentsChanged(subresourceRange); return true; } Float4 Blitter::readFloat4(Pointer element, const State &state) { Float4 c(0.0f, 0.0f, 0.0f, 1.0f); switch(state.sourceFormat) { case VK_FORMAT_B4G4R4A4_UNORM_PACK16: c.w = Float(Int(*Pointer(element)) & Int(0xF)); c.x = Float((Int(*Pointer(element)) >> 4) & Int(0xF)); c.y = Float(Int(*Pointer(element + 1)) & Int(0xF)); c.z = Float((Int(*Pointer(element + 1)) >> 4) & Int(0xF)); break; case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_SNORM: c.x = Float(Int(*Pointer(element))); c.w = float(0x7F); break; case VK_FORMAT_R8_UNORM: case VK_FORMAT_R8_UINT: case VK_FORMAT_R8_SRGB: c.x = Float(Int(*Pointer(element))); c.w = float(0xFF); break; case VK_FORMAT_R16_SINT: case VK_FORMAT_R16_SNORM: c.x = Float(Int(*Pointer(element))); c.w = float(0x7FFF); break; case VK_FORMAT_R16_UNORM: case VK_FORMAT_R16_UINT: c.x = Float(Int(*Pointer(element))); c.w = float(0xFFFF); break; case VK_FORMAT_R32_SINT: c.x = Float(*Pointer(element)); c.w = float(0x7FFFFFFF); break; case VK_FORMAT_R32_UINT: c.x = Float(*Pointer(element)); c.w = float(0xFFFFFFFF); break; case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_B8G8R8A8_UNORM: c = Float4(*Pointer(element)).zyxw; break; case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_A8B8G8R8_SNORM_PACK32: case VK_FORMAT_R8G8B8A8_SNORM: c = Float4(*Pointer(element)); break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: case VK_FORMAT_R8G8B8A8_SRGB: c = Float4(*Pointer(element)); break; case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16A16_SNORM: c = Float4(*Pointer(element)); break; case VK_FORMAT_R16G16B16A16_UNORM: case VK_FORMAT_R16G16B16A16_UINT: c = Float4(*Pointer(element)); break; case VK_FORMAT_R32G32B32A32_SINT: c = Float4(*Pointer(element)); break; case VK_FORMAT_R32G32B32A32_UINT: c = Float4(*Pointer(element)); break; case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8_SNORM: c.x = Float(Int(*Pointer(element + 0))); c.y = Float(Int(*Pointer(element + 1))); c.w = float(0x7F); break; case VK_FORMAT_R8G8_UNORM: case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8_SRGB: c.x = Float(Int(*Pointer(element + 0))); c.y = Float(Int(*Pointer(element + 1))); c.w = float(0xFF); break; case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16_SNORM: c.x = Float(Int(*Pointer(element + 0))); c.y = Float(Int(*Pointer(element + 2))); c.w = float(0x7FFF); break; case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_UINT: c.x = Float(Int(*Pointer(element + 0))); c.y = Float(Int(*Pointer(element + 2))); c.w = float(0xFFFF); break; case VK_FORMAT_R32G32_SINT: c.x = Float(*Pointer(element + 0)); c.y = Float(*Pointer(element + 4)); c.w = float(0x7FFFFFFF); break; case VK_FORMAT_R32G32_UINT: c.x = Float(*Pointer(element + 0)); c.y = Float(*Pointer(element + 4)); c.w = float(0xFFFFFFFF); break; case VK_FORMAT_R32G32B32A32_SFLOAT: c = *Pointer(element); break; case VK_FORMAT_R32G32_SFLOAT: c.x = *Pointer(element + 0); c.y = *Pointer(element + 4); break; case VK_FORMAT_R32_SFLOAT: c.x = *Pointer(element); break; case VK_FORMAT_R16G16B16A16_SFLOAT: c.w = Float(*Pointer(element + 6)); case VK_FORMAT_R16G16B16_SFLOAT: c.z = Float(*Pointer(element + 4)); case VK_FORMAT_R16G16_SFLOAT: c.y = Float(*Pointer(element + 2)); case VK_FORMAT_R16_SFLOAT: c.x = Float(*Pointer(element)); break; case VK_FORMAT_B10G11R11_UFLOAT_PACK32: c = r11g11b10Unpack(*Pointer(element)); break; case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: // This type contains a common 5 bit exponent (E) and a 9 bit the mantissa for R, G and B. c.x = Float(*Pointer(element) & UInt(0x000001FF)); // R's mantissa (bits 0-8) c.y = Float((*Pointer(element) & UInt(0x0003FE00)) >> 9); // G's mantissa (bits 9-17) c.z = Float((*Pointer(element) & UInt(0x07FC0000)) >> 18); // B's mantissa (bits 18-26) c *= Float4( // 2^E, using the exponent (bits 27-31) and treating it as an unsigned integer value Float(UInt(1) << ((*Pointer(element) & UInt(0xF8000000)) >> 27)) * // Since the 9 bit mantissa values currently stored in RGB were converted straight // from int to float (in the [0, 1<<9] range instead of the [0, 1] range), they // are (1 << 9) times too high. // Also, the exponent has 5 bits and we compute the exponent bias of floating point // formats using "2^(k-1) - 1", so, in this case, the exponent bias is 2^(5-1)-1 = 15 // Exponent bias (15) + number of mantissa bits per component (9) = 24 Float(1.0f / (1 << 24))); c.w = 1.0f; break; case VK_FORMAT_R4G4B4A4_UNORM_PACK16: c.x = Float(Int((*Pointer(element) & UShort(0xF000)) >> UShort(12))); c.y = Float(Int((*Pointer(element) & UShort(0x0F00)) >> UShort(8))); c.z = Float(Int((*Pointer(element) & UShort(0x00F0)) >> UShort(4))); c.w = Float(Int(*Pointer(element) & UShort(0x000F))); break; case VK_FORMAT_A4B4G4R4_UNORM_PACK16: c.w = Float(Int((*Pointer(element) & UShort(0xF000)) >> UShort(12))); c.z = Float(Int((*Pointer(element) & UShort(0x0F00)) >> UShort(8))); c.y = Float(Int((*Pointer(element) & UShort(0x00F0)) >> UShort(4))); c.x = Float(Int(*Pointer(element) & UShort(0x000F))); break; case VK_FORMAT_A4R4G4B4_UNORM_PACK16: c.w = Float(Int((*Pointer(element) & UShort(0xF000)) >> UShort(12))); c.x = Float(Int((*Pointer(element) & UShort(0x0F00)) >> UShort(8))); c.y = Float(Int((*Pointer(element) & UShort(0x00F0)) >> UShort(4))); c.z = Float(Int(*Pointer(element) & UShort(0x000F))); break; case VK_FORMAT_R5G6B5_UNORM_PACK16: c.x = Float(Int((*Pointer(element) & UShort(0xF800)) >> UShort(11))); c.y = Float(Int((*Pointer(element) & UShort(0x07E0)) >> UShort(5))); c.z = Float(Int(*Pointer(element) & UShort(0x001F))); break; case VK_FORMAT_B5G6R5_UNORM_PACK16: c.z = Float(Int((*Pointer(element) & UShort(0xF800)) >> UShort(11))); c.y = Float(Int((*Pointer(element) & UShort(0x07E0)) >> UShort(5))); c.x = Float(Int(*Pointer(element) & UShort(0x001F))); break; case VK_FORMAT_R5G5B5A1_UNORM_PACK16: c.x = Float(Int((*Pointer(element) & UShort(0xF800)) >> UShort(11))); c.y = Float(Int((*Pointer(element) & UShort(0x07C0)) >> UShort(6))); c.z = Float(Int((*Pointer(element) & UShort(0x003E)) >> UShort(1))); c.w = Float(Int(*Pointer(element) & UShort(0x0001))); break; case VK_FORMAT_B5G5R5A1_UNORM_PACK16: c.z = Float(Int((*Pointer(element) & UShort(0xF800)) >> UShort(11))); c.y = Float(Int((*Pointer(element) & UShort(0x07C0)) >> UShort(6))); c.x = Float(Int((*Pointer(element) & UShort(0x003E)) >> UShort(1))); c.w = Float(Int(*Pointer(element) & UShort(0x0001))); break; case VK_FORMAT_A1R5G5B5_UNORM_PACK16: c.w = Float(Int((*Pointer(element) & UShort(0x8000)) >> UShort(15))); c.x = Float(Int((*Pointer(element) & UShort(0x7C00)) >> UShort(10))); c.y = Float(Int((*Pointer(element) & UShort(0x03E0)) >> UShort(5))); c.z = Float(Int(*Pointer(element) & UShort(0x001F))); break; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: case VK_FORMAT_A2B10G10R10_UINT_PACK32: c.x = Float(Int((*Pointer(element) & UInt(0x000003FF)))); c.y = Float(Int((*Pointer(element) & UInt(0x000FFC00)) >> 10)); c.z = Float(Int((*Pointer(element) & UInt(0x3FF00000)) >> 20)); c.w = Float(Int((*Pointer(element) & UInt(0xC0000000)) >> 30)); break; case VK_FORMAT_A2R10G10B10_UNORM_PACK32: case VK_FORMAT_A2R10G10B10_UINT_PACK32: c.z = Float(Int((*Pointer(element) & UInt(0x000003FF)))); c.y = Float(Int((*Pointer(element) & UInt(0x000FFC00)) >> 10)); c.x = Float(Int((*Pointer(element) & UInt(0x3FF00000)) >> 20)); c.w = Float(Int((*Pointer(element) & UInt(0xC0000000)) >> 30)); break; case VK_FORMAT_D16_UNORM: c.x = Float(Int((*Pointer(element)))); break; case VK_FORMAT_X8_D24_UNORM_PACK32: c.x = Float(Int((*Pointer(element) & UInt(0xFFFFFF00)) >> 8)); break; case VK_FORMAT_D32_SFLOAT: c.x = *Pointer(element); break; case VK_FORMAT_S8_UINT: c.x = Float(Int(*Pointer(element))); break; default: UNSUPPORTED("Blitter source format %d", (int)state.sourceFormat); } return c; } void Blitter::write(Float4 &c, Pointer element, const State &state) { bool writeR = state.writeRed; bool writeG = state.writeGreen; bool writeB = state.writeBlue; bool writeA = state.writeAlpha; bool writeRGBA = writeR && writeG && writeB && writeA; switch(state.destFormat) { case VK_FORMAT_R4G4_UNORM_PACK8: if(writeR | writeG) { if(!writeR) { *Pointer(element) = (Byte(RoundInt(Float(c.y))) & Byte(0xF)) | (*Pointer(element) & Byte(0xF0)); } else if(!writeG) { *Pointer(element) = (*Pointer(element) & Byte(0xF)) | (Byte(RoundInt(Float(c.x))) << Byte(4)); } else { *Pointer(element) = (Byte(RoundInt(Float(c.y))) & Byte(0xF)) | (Byte(RoundInt(Float(c.x))) << Byte(4)); } } break; case VK_FORMAT_R4G4B4A4_UNORM_PACK16: if(writeRGBA) { *Pointer(element) = UShort(PackFields(RoundInt(c) & Int4(0xF), { 12, 8, 4, 0 })); } else { unsigned short mask = (writeA ? 0x000F : 0x0000) | (writeB ? 0x00F0 : 0x0000) | (writeG ? 0x0F00 : 0x0000) | (writeR ? 0xF000 : 0x0000); unsigned short unmask = ~mask; *Pointer(element) = (*Pointer(element) & UShort(unmask)) | (UShort(PackFields(RoundInt(c) & Int4(0xF), { 12, 8, 4, 0 })) & UShort(mask)); } break; case VK_FORMAT_B4G4R4A4_UNORM_PACK16: if(writeRGBA) { *Pointer(element) = UShort(PackFields(RoundInt(c) & Int4(0xF), { 4, 8, 12, 0 })); } else { unsigned short mask = (writeA ? 0x000F : 0x0000) | (writeR ? 0x00F0 : 0x0000) | (writeG ? 0x0F00 : 0x0000) | (writeB ? 0xF000 : 0x0000); unsigned short unmask = ~mask; *Pointer(element) = (*Pointer(element) & UShort(unmask)) | (UShort(PackFields(RoundInt(c) & Int4(0xF), { 4, 8, 12, 0 })) & UShort(mask)); } break; case VK_FORMAT_A4R4G4B4_UNORM_PACK16: if(writeRGBA) { *Pointer(element) = UShort(PackFields(RoundInt(c) & Int4(0xF), { 8, 4, 0, 12 })); } else { unsigned short mask = (writeB ? 0x000F : 0x0000) | (writeG ? 0x00F0 : 0x0000) | (writeR ? 0x0F00 : 0x0000) | (writeA ? 0xF000 : 0x0000); unsigned short unmask = ~mask; *Pointer(element) = (*Pointer(element) & UShort(unmask)) | (UShort(PackFields(RoundInt(c) & Int4(0xF), { 8, 4, 0, 12 })) & UShort(mask)); } break; case VK_FORMAT_A4B4G4R4_UNORM_PACK16: if(writeRGBA) { *Pointer(element) = UShort(PackFields(RoundInt(c) & Int4(0xF), { 0, 4, 8, 12 })); } else { unsigned short mask = (writeR ? 0x000F : 0x0000) | (writeG ? 0x00F0 : 0x0000) | (writeB ? 0x0F00 : 0x0000) | (writeA ? 0xF000 : 0x0000); unsigned short unmask = ~mask; *Pointer(element) = (*Pointer(element) & UShort(unmask)) | (UShort(PackFields(RoundInt(c) & Int4(0xF), { 0, 4, 8, 12 })) & UShort(mask)); } break; case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_B8G8R8A8_UNORM: if(writeRGBA) { Short4 c0 = RoundShort4(c.zyxw); *Pointer(element) = Byte4(PackUnsigned(c0, c0)); } else { if(writeB) { *Pointer(element + 0) = Byte(RoundInt(Float(c.z))); } if(writeG) { *Pointer(element + 1) = Byte(RoundInt(Float(c.y))); } if(writeR) { *Pointer(element + 2) = Byte(RoundInt(Float(c.x))); } if(writeA) { *Pointer(element + 3) = Byte(RoundInt(Float(c.w))); } } break; case VK_FORMAT_B8G8R8_SNORM: if(writeB) { *Pointer(element + 0) = SByte(RoundInt(Float(c.z))); } if(writeG) { *Pointer(element + 1) = SByte(RoundInt(Float(c.y))); } if(writeR) { *Pointer(element + 2) = SByte(RoundInt(Float(c.x))); } break; case VK_FORMAT_B8G8R8_UNORM: case VK_FORMAT_B8G8R8_SRGB: if(writeB) { *Pointer(element + 0) = Byte(RoundInt(Float(c.z))); } if(writeG) { *Pointer(element + 1) = Byte(RoundInt(Float(c.y))); } if(writeR) { *Pointer(element + 2) = Byte(RoundInt(Float(c.x))); } break; case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_R8G8B8A8_USCALED: case VK_FORMAT_A8B8G8R8_USCALED_PACK32: if(writeRGBA) { Short4 c0 = RoundShort4(c); *Pointer(element) = Byte4(PackUnsigned(c0, c0)); } else { if(writeR) { *Pointer(element + 0) = Byte(RoundInt(Float(c.x))); } if(writeG) { *Pointer(element + 1) = Byte(RoundInt(Float(c.y))); } if(writeB) { *Pointer(element + 2) = Byte(RoundInt(Float(c.z))); } if(writeA) { *Pointer(element + 3) = Byte(RoundInt(Float(c.w))); } } break; case VK_FORMAT_R32G32B32A32_SFLOAT: if(writeRGBA) { *Pointer(element) = c; } else { if(writeR) { *Pointer(element) = c.x; } if(writeG) { *Pointer(element + 4) = c.y; } if(writeB) { *Pointer(element + 8) = c.z; } if(writeA) { *Pointer(element + 12) = c.w; } } break; case VK_FORMAT_R32G32B32_SFLOAT: if(writeR) { *Pointer(element) = c.x; } if(writeG) { *Pointer(element + 4) = c.y; } if(writeB) { *Pointer(element + 8) = c.z; } break; case VK_FORMAT_R32G32_SFLOAT: if(writeR && writeG) { *Pointer(element) = Float2(c); } else { if(writeR) { *Pointer(element) = c.x; } if(writeG) { *Pointer(element + 4) = c.y; } } break; case VK_FORMAT_R32_SFLOAT: if(writeR) { *Pointer(element) = c.x; } break; case VK_FORMAT_R16G16B16A16_SFLOAT: if(writeA) { *Pointer(element + 6) = Half(c.w); } // [[fallthrough]] case VK_FORMAT_R16G16B16_SFLOAT: if(writeB) { *Pointer(element + 4) = Half(c.z); } // [[fallthrough]] case VK_FORMAT_R16G16_SFLOAT: if(writeG) { *Pointer(element + 2) = Half(c.y); } // [[fallthrough]] case VK_FORMAT_R16_SFLOAT: if(writeR) { *Pointer(element) = Half(c.x); } break; case VK_FORMAT_B10G11R11_UFLOAT_PACK32: { UInt rgb = r11g11b10Pack(c); UInt old = *Pointer(element); unsigned int mask = (writeR ? 0x000007FF : 0) | (writeG ? 0x003FF800 : 0) | (writeB ? 0xFFC00000 : 0); *Pointer(element) = (rgb & mask) | (old & ~mask); } break; case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: { ASSERT(writeRGBA); // Can't sensibly write just part of this format. // Vulkan 1.1.117 section 15.2.1 RGB to Shared Exponent Conversion constexpr int N = 9; // number of mantissa bits per component constexpr int B = 15; // exponent bias constexpr int E_max = 31; // maximum possible biased exponent value // Maximum representable value. constexpr float sharedexp_max = ((static_cast(1 << N) - 1) / static_cast(1 << N)) * static_cast(1 << (E_max - B)); // Clamp components to valid range. NaN becomes 0. Float red_c = Min(IfThenElse(!(c.x > 0), Float(0), Float(c.x)), sharedexp_max); Float green_c = Min(IfThenElse(!(c.y > 0), Float(0), Float(c.y)), sharedexp_max); Float blue_c = Min(IfThenElse(!(c.z > 0), Float(0), Float(c.z)), sharedexp_max); // We're reducing the mantissa to 9 bits, so we must round up if the next // bit is 1. In other words add 0.5 to the new mantissa's position and // allow overflow into the exponent so we can scale correctly. constexpr int half = 1 << (23 - N); Float red_r = As(As(red_c) + half); Float green_r = As(As(green_c) + half); Float blue_r = As(As(blue_c) + half); // The largest component determines the shared exponent. It can't be lower // than 0 (after bias subtraction) so also limit to the mimimum representable. constexpr float min_s = 0.5f / (1 << B); Float max_s = Max(Max(red_r, green_r), Max(blue_r, min_s)); // Obtain the reciprocal of the shared exponent by inverting the bits, // and scale by the new mantissa's size. Note that the IEEE-754 single-precision // format has an implicit leading 1, but this shared component format does not. Float scale = As((As(max_s) & 0x7F800000) ^ 0x7F800000) * (1 << (N - 2)); UInt R9 = RoundInt(red_c * scale); UInt G9 = UInt(RoundInt(green_c * scale)); UInt B9 = UInt(RoundInt(blue_c * scale)); UInt E5 = (As(max_s) >> 23) - 127 + 15 + 1; UInt E5B9G9R9 = (E5 << 27) | (B9 << 18) | (G9 << 9) | R9; *Pointer(element) = E5B9G9R9; } break; case VK_FORMAT_B8G8R8A8_SNORM: if(writeB) { *Pointer(element) = SByte(RoundInt(Float(c.z))); } if(writeG) { *Pointer(element + 1) = SByte(RoundInt(Float(c.y))); } if(writeR) { *Pointer(element + 2) = SByte(RoundInt(Float(c.x))); } if(writeA) { *Pointer(element + 3) = SByte(RoundInt(Float(c.w))); } break; case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_A8B8G8R8_SNORM_PACK32: case VK_FORMAT_R8G8B8A8_SNORM: case VK_FORMAT_R8G8B8A8_SSCALED: case VK_FORMAT_A8B8G8R8_SSCALED_PACK32: if(writeA) { *Pointer(element + 3) = SByte(RoundInt(Float(c.w))); } // [[fallthrough]] case VK_FORMAT_R8G8B8_SINT: case VK_FORMAT_R8G8B8_SNORM: case VK_FORMAT_R8G8B8_SSCALED: if(writeB) { *Pointer(element + 2) = SByte(RoundInt(Float(c.z))); } // [[fallthrough]] case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8_SNORM: case VK_FORMAT_R8G8_SSCALED: if(writeG) { *Pointer(element + 1) = SByte(RoundInt(Float(c.y))); } // [[fallthrough]] case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_SNORM: case VK_FORMAT_R8_SSCALED: if(writeR) { *Pointer(element) = SByte(RoundInt(Float(c.x))); } break; case VK_FORMAT_R8G8B8_UINT: case VK_FORMAT_R8G8B8_UNORM: case VK_FORMAT_R8G8B8_USCALED: case VK_FORMAT_R8G8B8_SRGB: if(writeB) { *Pointer(element + 2) = Byte(RoundInt(Float(c.z))); } // [[fallthrough]] case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8_UNORM: case VK_FORMAT_R8G8_USCALED: case VK_FORMAT_R8G8_SRGB: if(writeG) { *Pointer(element + 1) = Byte(RoundInt(Float(c.y))); } // [[fallthrough]] case VK_FORMAT_R8_UINT: case VK_FORMAT_R8_UNORM: case VK_FORMAT_R8_USCALED: case VK_FORMAT_R8_SRGB: if(writeR) { *Pointer(element) = Byte(RoundInt(Float(c.x))); } break; case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16A16_SNORM: case VK_FORMAT_R16G16B16A16_SSCALED: if(writeRGBA) { *Pointer(element) = Short4(RoundInt(c)); } else { if(writeR) { *Pointer(element) = Short(RoundInt(Float(c.x))); } if(writeG) { *Pointer(element + 2) = Short(RoundInt(Float(c.y))); } if(writeB) { *Pointer(element + 4) = Short(RoundInt(Float(c.z))); } if(writeA) { *Pointer(element + 6) = Short(RoundInt(Float(c.w))); } } break; case VK_FORMAT_R16G16B16_SINT: case VK_FORMAT_R16G16B16_SNORM: case VK_FORMAT_R16G16B16_SSCALED: if(writeR) { *Pointer(element) = Short(RoundInt(Float(c.x))); } if(writeG) { *Pointer(element + 2) = Short(RoundInt(Float(c.y))); } if(writeB) { *Pointer(element + 4) = Short(RoundInt(Float(c.z))); } break; case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16_SNORM: case VK_FORMAT_R16G16_SSCALED: if(writeR && writeG) { *Pointer(element) = Short2(Short4(RoundInt(c))); } else { if(writeR) { *Pointer(element) = Short(RoundInt(Float(c.x))); } if(writeG) { *Pointer(element + 2) = Short(RoundInt(Float(c.y))); } } break; case VK_FORMAT_R16_SINT: case VK_FORMAT_R16_SNORM: case VK_FORMAT_R16_SSCALED: if(writeR) { *Pointer(element) = Short(RoundInt(Float(c.x))); } break; case VK_FORMAT_R16G16B16A16_UINT: case VK_FORMAT_R16G16B16A16_UNORM: case VK_FORMAT_R16G16B16A16_USCALED: if(writeRGBA) { *Pointer(element) = UShort4(RoundInt(c)); } else { if(writeR) { *Pointer(element) = UShort(RoundInt(Float(c.x))); } if(writeG) { *Pointer(element + 2) = UShort(RoundInt(Float(c.y))); } if(writeB) { *Pointer(element + 4) = UShort(RoundInt(Float(c.z))); } if(writeA) { *Pointer(element + 6) = UShort(RoundInt(Float(c.w))); } } break; case VK_FORMAT_R16G16B16_UINT: case VK_FORMAT_R16G16B16_UNORM: case VK_FORMAT_R16G16B16_USCALED: if(writeR) { *Pointer(element) = UShort(RoundInt(Float(c.x))); } if(writeG) { *Pointer(element + 2) = UShort(RoundInt(Float(c.y))); } if(writeB) { *Pointer(element + 4) = UShort(RoundInt(Float(c.z))); } break; case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_USCALED: if(writeR && writeG) { *Pointer(element) = UShort2(UShort4(RoundInt(c))); } else { if(writeR) { *Pointer(element) = UShort(RoundInt(Float(c.x))); } if(writeG) { *Pointer(element + 2) = UShort(RoundInt(Float(c.y))); } } break; case VK_FORMAT_R16_UINT: case VK_FORMAT_R16_UNORM: case VK_FORMAT_R16_USCALED: if(writeR) { *Pointer(element) = UShort(RoundInt(Float(c.x))); } break; case VK_FORMAT_R32G32B32A32_SINT: if(writeRGBA) { *Pointer(element) = RoundInt(c); } else { if(writeR) { *Pointer(element) = RoundInt(Float(c.x)); } if(writeG) { *Pointer(element + 4) = RoundInt(Float(c.y)); } if(writeB) { *Pointer(element + 8) = RoundInt(Float(c.z)); } if(writeA) { *Pointer(element + 12) = RoundInt(Float(c.w)); } } break; case VK_FORMAT_R32G32B32_SINT: if(writeB) { *Pointer(element + 8) = RoundInt(Float(c.z)); } // [[fallthrough]] case VK_FORMAT_R32G32_SINT: if(writeG) { *Pointer(element + 4) = RoundInt(Float(c.y)); } // [[fallthrough]] case VK_FORMAT_R32_SINT: if(writeR) { *Pointer(element) = RoundInt(Float(c.x)); } break; case VK_FORMAT_R32G32B32A32_UINT: if(writeRGBA) { *Pointer(element) = UInt4(RoundInt(c)); } else { if(writeR) { *Pointer(element) = As(RoundInt(Float(c.x))); } if(writeG) { *Pointer(element + 4) = As(RoundInt(Float(c.y))); } if(writeB) { *Pointer(element + 8) = As(RoundInt(Float(c.z))); } if(writeA) { *Pointer(element + 12) = As(RoundInt(Float(c.w))); } } break; case VK_FORMAT_R32G32B32_UINT: if(writeB) { *Pointer(element + 8) = As(RoundInt(Float(c.z))); } // [[fallthrough]] case VK_FORMAT_R32G32_UINT: if(writeG) { *Pointer(element + 4) = As(RoundInt(Float(c.y))); } // [[fallthrough]] case VK_FORMAT_R32_UINT: if(writeR) { *Pointer(element) = As(RoundInt(Float(c.x))); } break; case VK_FORMAT_R5G6B5_UNORM_PACK16: if(writeR && writeG && writeB) { *Pointer(element) = UShort(PackFields(RoundInt(c.xyzz), { 11, 5, 0, 0 })); } else { unsigned short mask = (writeB ? 0x001F : 0x0000) | (writeG ? 0x07E0 : 0x0000) | (writeR ? 0xF800 : 0x0000); unsigned short unmask = ~mask; *Pointer(element) = (*Pointer(element) & UShort(unmask)) | (UShort(PackFields(RoundInt(c.xyzz), { 11, 5, 0, 0 })) & UShort(mask)); } break; case VK_FORMAT_B5G6R5_UNORM_PACK16: if(writeR && writeG && writeB) { *Pointer(element) = UShort(PackFields(RoundInt(c.zyxx), { 11, 5, 0, 0 })); } else { unsigned short mask = (writeR ? 0x001F : 0x0000) | (writeG ? 0x07E0 : 0x0000) | (writeB ? 0xF800 : 0x0000); unsigned short unmask = ~mask; *Pointer(element) = (*Pointer(element) & UShort(unmask)) | (UShort(PackFields(RoundInt(c.zyxx), { 11, 5, 0, 0 })) & UShort(mask)); } break; case VK_FORMAT_R5G5B5A1_UNORM_PACK16: if(writeRGBA) { *Pointer(element) = UShort(PackFields(RoundInt(c), { 11, 6, 1, 0 })); } else { unsigned short mask = (writeA ? 0x8000 : 0x0000) | (writeR ? 0x7C00 : 0x0000) | (writeG ? 0x03E0 : 0x0000) | (writeB ? 0x001F : 0x0000); unsigned short unmask = ~mask; *Pointer(element) = (*Pointer(element) & UShort(unmask)) | (UShort(PackFields(RoundInt(c), { 11, 6, 1, 0 })) & UShort(mask)); } break; case VK_FORMAT_B5G5R5A1_UNORM_PACK16: if(writeRGBA) { *Pointer(element) = UShort(PackFields(RoundInt(c), { 1, 6, 11, 0 })); } else { unsigned short mask = (writeA ? 0x8000 : 0x0000) | (writeR ? 0x7C00 : 0x0000) | (writeG ? 0x03E0 : 0x0000) | (writeB ? 0x001F : 0x0000); unsigned short unmask = ~mask; *Pointer(element) = (*Pointer(element) & UShort(unmask)) | (UShort(PackFields(RoundInt(c), { 1, 6, 11, 0 })) & UShort(mask)); } break; case VK_FORMAT_A1R5G5B5_UNORM_PACK16: if(writeRGBA) { *Pointer(element) = UShort(PackFields(RoundInt(c), { 10, 5, 0, 15 })); } else { unsigned short mask = (writeA ? 0x8000 : 0x0000) | (writeR ? 0x7C00 : 0x0000) | (writeG ? 0x03E0 : 0x0000) | (writeB ? 0x001F : 0x0000); unsigned short unmask = ~mask; *Pointer(element) = (*Pointer(element) & UShort(unmask)) | (UShort(PackFields(RoundInt(c), { 10, 5, 0, 15 })) & UShort(mask)); } break; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: case VK_FORMAT_A2B10G10R10_UINT_PACK32: case VK_FORMAT_A2B10G10R10_SNORM_PACK32: if(writeRGBA) { *Pointer(element) = As(PackFields(RoundInt(c), { 0, 10, 20, 30 })); } else { unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | (writeB ? 0x3FF00000 : 0x0000) | (writeG ? 0x000FFC00 : 0x0000) | (writeR ? 0x000003FF : 0x0000); unsigned int unmask = ~mask; *Pointer(element) = (*Pointer(element) & UInt(unmask)) | (As(PackFields(RoundInt(c), { 0, 10, 20, 30 })) & UInt(mask)); } break; case VK_FORMAT_A2R10G10B10_UNORM_PACK32: case VK_FORMAT_A2R10G10B10_UINT_PACK32: case VK_FORMAT_A2R10G10B10_SNORM_PACK32: if(writeRGBA) { *Pointer(element) = As(PackFields(RoundInt(c), { 20, 10, 0, 30 })); } else { unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | (writeR ? 0x3FF00000 : 0x0000) | (writeG ? 0x000FFC00 : 0x0000) | (writeB ? 0x000003FF : 0x0000); unsigned int unmask = ~mask; *Pointer(element) = (*Pointer(element) & UInt(unmask)) | (As(PackFields(RoundInt(c), { 20, 10, 0, 30 })) & UInt(mask)); } break; case VK_FORMAT_D16_UNORM: *Pointer(element) = UShort(RoundInt(Float(c.x))); break; case VK_FORMAT_X8_D24_UNORM_PACK32: *Pointer(element) = UInt(RoundInt(Float(c.x)) << 8); break; case VK_FORMAT_D32_SFLOAT: *Pointer(element) = c.x; break; case VK_FORMAT_S8_UINT: *Pointer(element) = Byte(RoundInt(Float(c.x))); break; default: UNSUPPORTED("Blitter destination format %d", (int)state.destFormat); break; } } Int4 Blitter::readInt4(Pointer element, const State &state) { Int4 c(0, 0, 0, 1); switch(state.sourceFormat) { case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: c = Insert(c, Int(*Pointer(element + 3)), 3); c = Insert(c, Int(*Pointer(element + 2)), 2); // [[fallthrough]] case VK_FORMAT_R8G8_SINT: c = Insert(c, Int(*Pointer(element + 1)), 1); // [[fallthrough]] case VK_FORMAT_R8_SINT: c = Insert(c, Int(*Pointer(element)), 0); break; case VK_FORMAT_A2B10G10R10_UINT_PACK32: c = Insert(c, Int((*Pointer(element) & UInt(0x000003FF))), 0); c = Insert(c, Int((*Pointer(element) & UInt(0x000FFC00)) >> 10), 1); c = Insert(c, Int((*Pointer(element) & UInt(0x3FF00000)) >> 20), 2); c = Insert(c, Int((*Pointer(element) & UInt(0xC0000000)) >> 30), 3); break; case VK_FORMAT_A2R10G10B10_UINT_PACK32: c = Insert(c, Int((*Pointer(element) & UInt(0x000003FF))), 2); c = Insert(c, Int((*Pointer(element) & UInt(0x000FFC00)) >> 10), 1); c = Insert(c, Int((*Pointer(element) & UInt(0x3FF00000)) >> 20), 0); c = Insert(c, Int((*Pointer(element) & UInt(0xC0000000)) >> 30), 3); break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_R8G8B8A8_UINT: c = Insert(c, Int(*Pointer(element + 3)), 3); c = Insert(c, Int(*Pointer(element + 2)), 2); // [[fallthrough]] case VK_FORMAT_R8G8_UINT: c = Insert(c, Int(*Pointer(element + 1)), 1); // [[fallthrough]] case VK_FORMAT_R8_UINT: case VK_FORMAT_S8_UINT: c = Insert(c, Int(*Pointer(element)), 0); break; case VK_FORMAT_R16G16B16A16_SINT: c = Insert(c, Int(*Pointer(element + 6)), 3); c = Insert(c, Int(*Pointer(element + 4)), 2); // [[fallthrough]] case VK_FORMAT_R16G16_SINT: c = Insert(c, Int(*Pointer(element + 2)), 1); // [[fallthrough]] case VK_FORMAT_R16_SINT: c = Insert(c, Int(*Pointer(element)), 0); break; case VK_FORMAT_R16G16B16A16_UINT: c = Insert(c, Int(*Pointer(element + 6)), 3); c = Insert(c, Int(*Pointer(element + 4)), 2); // [[fallthrough]] case VK_FORMAT_R16G16_UINT: c = Insert(c, Int(*Pointer(element + 2)), 1); // [[fallthrough]] case VK_FORMAT_R16_UINT: c = Insert(c, Int(*Pointer(element)), 0); break; case VK_FORMAT_R32G32B32A32_SINT: case VK_FORMAT_R32G32B32A32_UINT: c = *Pointer(element); break; case VK_FORMAT_R32G32_SINT: case VK_FORMAT_R32G32_UINT: c = Insert(c, *Pointer(element + 4), 1); // [[fallthrough]] case VK_FORMAT_R32_SINT: case VK_FORMAT_R32_UINT: c = Insert(c, *Pointer(element), 0); break; default: UNSUPPORTED("Blitter source format %d", (int)state.sourceFormat); } return c; } void Blitter::write(Int4 &c, Pointer element, const State &state) { bool writeR = state.writeRed; bool writeG = state.writeGreen; bool writeB = state.writeBlue; bool writeA = state.writeAlpha; bool writeRGBA = writeR && writeG && writeB && writeA; ASSERT(state.sourceFormat.isUnsigned() == state.destFormat.isUnsigned()); switch(state.destFormat) { case VK_FORMAT_A2B10G10R10_UINT_PACK32: case VK_FORMAT_A2R10G10B10_UINT_PACK32: c = Min(As(c), UInt4(0x03FF, 0x03FF, 0x03FF, 0x0003)); break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_R8G8B8_UINT: case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8_UINT: case VK_FORMAT_R8G8B8A8_USCALED: case VK_FORMAT_R8G8B8_USCALED: case VK_FORMAT_R8G8_USCALED: case VK_FORMAT_R8_USCALED: case VK_FORMAT_S8_UINT: c = Min(As(c), UInt4(0xFF)); break; case VK_FORMAT_R16G16B16A16_UINT: case VK_FORMAT_R16G16B16_UINT: case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R16_UINT: case VK_FORMAT_R16G16B16A16_USCALED: case VK_FORMAT_R16G16B16_USCALED: case VK_FORMAT_R16G16_USCALED: case VK_FORMAT_R16_USCALED: c = Min(As(c), UInt4(0xFFFF)); break; case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8_SINT: case VK_FORMAT_R8G8B8A8_SSCALED: case VK_FORMAT_R8G8B8_SSCALED: case VK_FORMAT_R8G8_SSCALED: case VK_FORMAT_R8_SSCALED: c = Min(Max(c, Int4(-0x80)), Int4(0x7F)); break; case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16_SINT: case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16_SINT: case VK_FORMAT_R16G16B16A16_SSCALED: case VK_FORMAT_R16G16B16_SSCALED: case VK_FORMAT_R16G16_SSCALED: case VK_FORMAT_R16_SSCALED: c = Min(Max(c, Int4(-0x8000)), Int4(0x7FFF)); break; default: break; } switch(state.destFormat) { case VK_FORMAT_B8G8R8A8_SINT: case VK_FORMAT_B8G8R8A8_SSCALED: if(writeA) { *Pointer(element + 3) = SByte(Extract(c, 3)); } // [[fallthrough]] case VK_FORMAT_B8G8R8_SINT: case VK_FORMAT_B8G8R8_SSCALED: if(writeB) { *Pointer(element) = SByte(Extract(c, 2)); } if(writeG) { *Pointer(element + 1) = SByte(Extract(c, 1)); } if(writeR) { *Pointer(element + 2) = SByte(Extract(c, 0)); } break; case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_R8G8B8A8_SSCALED: case VK_FORMAT_A8B8G8R8_SSCALED_PACK32: if(writeA) { *Pointer(element + 3) = SByte(Extract(c, 3)); } // [[fallthrough]] case VK_FORMAT_R8G8B8_SINT: case VK_FORMAT_R8G8B8_SSCALED: if(writeB) { *Pointer(element + 2) = SByte(Extract(c, 2)); } // [[fallthrough]] case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8_SSCALED: if(writeG) { *Pointer(element + 1) = SByte(Extract(c, 1)); } // [[fallthrough]] case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_SSCALED: if(writeR) { *Pointer(element) = SByte(Extract(c, 0)); } break; case VK_FORMAT_A2B10G10R10_UINT_PACK32: case VK_FORMAT_A2B10G10R10_SINT_PACK32: case VK_FORMAT_A2B10G10R10_USCALED_PACK32: case VK_FORMAT_A2B10G10R10_SSCALED_PACK32: if(writeRGBA) { *Pointer(element) = As(PackFields(c, { 0, 10, 20, 30 })); } else { unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | (writeB ? 0x3FF00000 : 0x0000) | (writeG ? 0x000FFC00 : 0x0000) | (writeR ? 0x000003FF : 0x0000); unsigned int unmask = ~mask; *Pointer(element) = (*Pointer(element) & UInt(unmask)) | (As(PackFields(c, { 0, 10, 20, 30 })) & UInt(mask)); } break; case VK_FORMAT_A2R10G10B10_UINT_PACK32: case VK_FORMAT_A2R10G10B10_SINT_PACK32: case VK_FORMAT_A2R10G10B10_USCALED_PACK32: case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: if(writeRGBA) { *Pointer(element) = As(PackFields(c, { 20, 10, 0, 30 })); } else { unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | (writeR ? 0x3FF00000 : 0x0000) | (writeG ? 0x000FFC00 : 0x0000) | (writeB ? 0x000003FF : 0x0000); unsigned int unmask = ~mask; *Pointer(element) = (*Pointer(element) & UInt(unmask)) | (As(PackFields(c, { 20, 10, 0, 30 })) & UInt(mask)); } break; case VK_FORMAT_B8G8R8A8_UINT: case VK_FORMAT_B8G8R8A8_USCALED: if(writeA) { *Pointer(element + 3) = Byte(Extract(c, 3)); } // [[fallthrough]] case VK_FORMAT_B8G8R8_UINT: case VK_FORMAT_B8G8R8_USCALED: case VK_FORMAT_B8G8R8_SRGB: if(writeB) { *Pointer(element) = Byte(Extract(c, 2)); } if(writeG) { *Pointer(element + 1) = Byte(Extract(c, 1)); } if(writeR) { *Pointer(element + 2) = Byte(Extract(c, 0)); } break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_R8G8B8A8_USCALED: case VK_FORMAT_A8B8G8R8_USCALED_PACK32: if(writeA) { *Pointer(element + 3) = Byte(Extract(c, 3)); } // [[fallthrough]] case VK_FORMAT_R8G8B8_UINT: case VK_FORMAT_R8G8B8_USCALED: if(writeB) { *Pointer(element + 2) = Byte(Extract(c, 2)); } // [[fallthrough]] case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8_USCALED: if(writeG) { *Pointer(element + 1) = Byte(Extract(c, 1)); } // [[fallthrough]] case VK_FORMAT_R8_UINT: case VK_FORMAT_R8_USCALED: case VK_FORMAT_S8_UINT: if(writeR) { *Pointer(element) = Byte(Extract(c, 0)); } break; case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16A16_SSCALED: if(writeA) { *Pointer(element + 6) = Short(Extract(c, 3)); } // [[fallthrough]] case VK_FORMAT_R16G16B16_SINT: case VK_FORMAT_R16G16B16_SSCALED: if(writeB) { *Pointer(element + 4) = Short(Extract(c, 2)); } // [[fallthrough]] case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16_SSCALED: if(writeG) { *Pointer(element + 2) = Short(Extract(c, 1)); } // [[fallthrough]] case VK_FORMAT_R16_SINT: case VK_FORMAT_R16_SSCALED: if(writeR) { *Pointer(element) = Short(Extract(c, 0)); } break; case VK_FORMAT_R16G16B16A16_UINT: case VK_FORMAT_R16G16B16A16_USCALED: if(writeA) { *Pointer(element + 6) = UShort(Extract(c, 3)); } // [[fallthrough]] case VK_FORMAT_R16G16B16_UINT: case VK_FORMAT_R16G16B16_USCALED: if(writeB) { *Pointer(element + 4) = UShort(Extract(c, 2)); } // [[fallthrough]] case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R16G16_USCALED: if(writeG) { *Pointer(element + 2) = UShort(Extract(c, 1)); } // [[fallthrough]] case VK_FORMAT_R16_UINT: case VK_FORMAT_R16_USCALED: if(writeR) { *Pointer(element) = UShort(Extract(c, 0)); } break; case VK_FORMAT_R32G32B32A32_SINT: if(writeRGBA) { *Pointer(element) = c; } else { if(writeR) { *Pointer(element) = Extract(c, 0); } if(writeG) { *Pointer(element + 4) = Extract(c, 1); } if(writeB) { *Pointer(element + 8) = Extract(c, 2); } if(writeA) { *Pointer(element + 12) = Extract(c, 3); } } break; case VK_FORMAT_R32G32B32_SINT: if(writeR) { *Pointer(element) = Extract(c, 0); } if(writeG) { *Pointer(element + 4) = Extract(c, 1); } if(writeB) { *Pointer(element + 8) = Extract(c, 2); } break; case VK_FORMAT_R32G32_SINT: if(writeR) { *Pointer(element) = Extract(c, 0); } if(writeG) { *Pointer(element + 4) = Extract(c, 1); } break; case VK_FORMAT_R32_SINT: if(writeR) { *Pointer(element) = Extract(c, 0); } break; case VK_FORMAT_R32G32B32A32_UINT: if(writeRGBA) { *Pointer(element) = As(c); } else { if(writeR) { *Pointer(element) = As(Extract(c, 0)); } if(writeG) { *Pointer(element + 4) = As(Extract(c, 1)); } if(writeB) { *Pointer(element + 8) = As(Extract(c, 2)); } if(writeA) { *Pointer(element + 12) = As(Extract(c, 3)); } } break; case VK_FORMAT_R32G32B32_UINT: if(writeB) { *Pointer(element + 8) = As(Extract(c, 2)); } // [[fallthrough]] case VK_FORMAT_R32G32_UINT: if(writeG) { *Pointer(element + 4) = As(Extract(c, 1)); } // [[fallthrough]] case VK_FORMAT_R32_UINT: if(writeR) { *Pointer(element) = As(Extract(c, 0)); } break; default: UNSUPPORTED("Blitter destination format %d", (int)state.destFormat); } } void Blitter::ApplyScaleAndClamp(Float4 &value, const State &state, bool preScaled) { float4 scale{}, unscale{}; if(state.clearOperation && state.sourceFormat.isUnnormalizedInteger() && !state.destFormat.isUnnormalizedInteger()) { // If we're clearing a buffer from an int or uint color into a normalized color, // then the whole range of the int or uint color must be scaled between 0 and 1. switch(state.sourceFormat) { case VK_FORMAT_R32G32B32A32_SINT: unscale = float4(static_cast(0x7FFFFFFF)); break; case VK_FORMAT_R32G32B32A32_UINT: unscale = float4(static_cast(0xFFFFFFFF)); break; default: UNSUPPORTED("Blitter source format %d", (int)state.sourceFormat); } } else { unscale = state.sourceFormat.getScale(); } scale = state.destFormat.getScale(); bool srcSRGB = state.sourceFormat.isSRGBformat(); bool dstSRGB = state.destFormat.isSRGBformat(); if(state.allowSRGBConversion && ((srcSRGB && !preScaled) || dstSRGB)) // One of the formats is sRGB encoded. { value *= preScaled ? Float4(1.0f / scale.x, 1.0f / scale.y, 1.0f / scale.z, 1.0f / scale.w) : // Unapply scale Float4(1.0f / unscale.x, 1.0f / unscale.y, 1.0f / unscale.z, 1.0f / unscale.w); // Apply unscale value.xyz = (srcSRGB && !preScaled) ? sRGBtoLinear(value) : linearToSRGB(value); value *= Float4(scale.x, scale.y, scale.z, scale.w); // Apply scale } else if(unscale != scale) { value *= Float4(scale.x / unscale.x, scale.y / unscale.y, scale.z / unscale.z, scale.w / unscale.w); } if(state.sourceFormat.isFloatFormat() && !state.destFormat.isFloatFormat()) { value = Min(value, Float4(scale.x, scale.y, scale.z, scale.w)); value = Max(value, Float4(state.destFormat.isUnsignedComponent(0) ? 0.0f : -scale.x, state.destFormat.isUnsignedComponent(1) ? 0.0f : -scale.y, state.destFormat.isUnsignedComponent(2) ? 0.0f : -scale.z, state.destFormat.isUnsignedComponent(3) ? 0.0f : -scale.w)); } if(!state.sourceFormat.isUnsigned() && state.destFormat.isUnsigned()) { value = Max(value, Float4(0.0f)); } } Int Blitter::ComputeOffset(Int &x, Int &y, Int &pitchB, int bytes) { return y * pitchB + x * bytes; } Int Blitter::ComputeOffset(Int &x, Int &y, Int &z, Int &sliceB, Int &pitchB, int bytes) { return z * sliceB + y * pitchB + x * bytes; } Float4 Blitter::sample(Pointer &source, Float &x, Float &y, Float &z, Int &sWidth, Int &sHeight, Int &sDepth, Int &sSliceB, Int &sPitchB, const State &state) { bool intSrc = state.sourceFormat.isUnnormalizedInteger(); int srcBytes = state.sourceFormat.bytes(); Float4 color; bool preScaled = false; if(!state.filter || intSrc) { Int X = Int(x); Int Y = Int(y); Int Z = Int(z); if(state.clampToEdge) { X = Clamp(X, 0, sWidth - 1); Y = Clamp(Y, 0, sHeight - 1); Z = Clamp(Z, 0, sDepth - 1); } Pointer s = source + ComputeOffset(X, Y, Z, sSliceB, sPitchB, srcBytes); color = readFloat4(s, state); if(state.srcSamples > 1) // Resolve multisampled source { if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat()) // sRGB -> RGB { ApplyScaleAndClamp(color, state); preScaled = true; } Float4 accum = color; for(int sample = 1; sample < state.srcSamples; sample++) { s += sSliceB; color = readFloat4(s, state); if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat()) // sRGB -> RGB { ApplyScaleAndClamp(color, state); preScaled = true; } accum += color; } color = accum * Float4(1.0f / static_cast(state.srcSamples)); } } else // Bilinear filtering { Float X = x; Float Y = y; Float Z = z; if(state.clampToEdge) { X = Min(Max(x, 0.5f), Float(sWidth) - 0.5f); Y = Min(Max(y, 0.5f), Float(sHeight) - 0.5f); Z = Min(Max(z, 0.5f), Float(sDepth) - 0.5f); } Float x0 = X - 0.5f; Float y0 = Y - 0.5f; Float z0 = Z - 0.5f; Int X0 = Max(Int(x0), 0); Int Y0 = Max(Int(y0), 0); Int Z0 = Max(Int(z0), 0); Int X1 = X0 + 1; Int Y1 = Y0 + 1; X1 = IfThenElse(X1 >= sWidth, X0, X1); Y1 = IfThenElse(Y1 >= sHeight, Y0, Y1); if(state.filter3D) { Int Z1 = Z0 + 1; Z1 = IfThenElse(Z1 >= sHeight, Z0, Z1); Pointer s000 = source + ComputeOffset(X0, Y0, Z0, sSliceB, sPitchB, srcBytes); Pointer s010 = source + ComputeOffset(X1, Y0, Z0, sSliceB, sPitchB, srcBytes); Pointer s100 = source + ComputeOffset(X0, Y1, Z0, sSliceB, sPitchB, srcBytes); Pointer s110 = source + ComputeOffset(X1, Y1, Z0, sSliceB, sPitchB, srcBytes); Pointer s001 = source + ComputeOffset(X0, Y0, Z1, sSliceB, sPitchB, srcBytes); Pointer s011 = source + ComputeOffset(X1, Y0, Z1, sSliceB, sPitchB, srcBytes); Pointer s101 = source + ComputeOffset(X0, Y1, Z1, sSliceB, sPitchB, srcBytes); Pointer s111 = source + ComputeOffset(X1, Y1, Z1, sSliceB, sPitchB, srcBytes); Float4 c000 = readFloat4(s000, state); Float4 c010 = readFloat4(s010, state); Float4 c100 = readFloat4(s100, state); Float4 c110 = readFloat4(s110, state); Float4 c001 = readFloat4(s001, state); Float4 c011 = readFloat4(s011, state); Float4 c101 = readFloat4(s101, state); Float4 c111 = readFloat4(s111, state); if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat()) // sRGB -> RGB { ApplyScaleAndClamp(c000, state); ApplyScaleAndClamp(c010, state); ApplyScaleAndClamp(c100, state); ApplyScaleAndClamp(c110, state); ApplyScaleAndClamp(c001, state); ApplyScaleAndClamp(c011, state); ApplyScaleAndClamp(c101, state); ApplyScaleAndClamp(c111, state); preScaled = true; } Float4 fx = Float4(x0 - Float(X0)); Float4 fy = Float4(y0 - Float(Y0)); Float4 fz = Float4(z0 - Float(Z0)); Float4 ix = Float4(1.0f) - fx; Float4 iy = Float4(1.0f) - fy; Float4 iz = Float4(1.0f) - fz; color = ((c000 * ix + c010 * fx) * iy + (c100 * ix + c110 * fx) * fy) * iz + ((c001 * ix + c011 * fx) * iy + (c101 * ix + c111 * fx) * fy) * fz; } else { Pointer s00 = source + ComputeOffset(X0, Y0, Z0, sSliceB, sPitchB, srcBytes); Pointer s01 = source + ComputeOffset(X1, Y0, Z0, sSliceB, sPitchB, srcBytes); Pointer s10 = source + ComputeOffset(X0, Y1, Z0, sSliceB, sPitchB, srcBytes); Pointer s11 = source + ComputeOffset(X1, Y1, Z0, sSliceB, sPitchB, srcBytes); Float4 c00 = readFloat4(s00, state); Float4 c01 = readFloat4(s01, state); Float4 c10 = readFloat4(s10, state); Float4 c11 = readFloat4(s11, state); if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat()) // sRGB -> RGB { ApplyScaleAndClamp(c00, state); ApplyScaleAndClamp(c01, state); ApplyScaleAndClamp(c10, state); ApplyScaleAndClamp(c11, state); preScaled = true; } Float4 fx = Float4(x0 - Float(X0)); Float4 fy = Float4(y0 - Float(Y0)); Float4 ix = Float4(1.0f) - fx; Float4 iy = Float4(1.0f) - fy; color = (c00 * ix + c01 * fx) * iy + (c10 * ix + c11 * fx) * fy; } } ApplyScaleAndClamp(color, state, preScaled); return color; } Blitter::BlitRoutineType Blitter::generate(const State &state) { BlitFunction function; { Pointer blit(function.Arg<0>()); Pointer source = *Pointer>(blit + OFFSET(BlitData, source)); Pointer dest = *Pointer>(blit + OFFSET(BlitData, dest)); Int sPitchB = *Pointer(blit + OFFSET(BlitData, sPitchB)); Int dPitchB = *Pointer(blit + OFFSET(BlitData, dPitchB)); Int sSliceB = *Pointer(blit + OFFSET(BlitData, sSliceB)); Int dSliceB = *Pointer(blit + OFFSET(BlitData, dSliceB)); Float x0 = *Pointer(blit + OFFSET(BlitData, x0)); Float y0 = *Pointer(blit + OFFSET(BlitData, y0)); Float z0 = *Pointer(blit + OFFSET(BlitData, z0)); Float w = *Pointer(blit + OFFSET(BlitData, w)); Float h = *Pointer(blit + OFFSET(BlitData, h)); Float d = *Pointer(blit + OFFSET(BlitData, d)); Int x0d = *Pointer(blit + OFFSET(BlitData, x0d)); Int x1d = *Pointer(blit + OFFSET(BlitData, x1d)); Int y0d = *Pointer(blit + OFFSET(BlitData, y0d)); Int y1d = *Pointer(blit + OFFSET(BlitData, y1d)); Int z0d = *Pointer(blit + OFFSET(BlitData, z0d)); Int z1d = *Pointer(blit + OFFSET(BlitData, z1d)); Int sWidth = *Pointer(blit + OFFSET(BlitData, sWidth)); Int sHeight = *Pointer(blit + OFFSET(BlitData, sHeight)); Int sDepth = *Pointer(blit + OFFSET(BlitData, sDepth)); bool intSrc = state.sourceFormat.isUnnormalizedInteger(); bool intDst = state.destFormat.isUnnormalizedInteger(); bool intBoth = intSrc && intDst; int srcBytes = state.sourceFormat.bytes(); int dstBytes = state.destFormat.bytes(); bool hasConstantColorI = false; Int4 constantColorI; bool hasConstantColorF = false; Float4 constantColorF; if(state.clearOperation) { if(intBoth) // Integer types { constantColorI = readInt4(source, state); hasConstantColorI = true; } else { constantColorF = readFloat4(source, state); hasConstantColorF = true; ApplyScaleAndClamp(constantColorF, state); } } For(Int k = z0d, k < z1d, k++) { Float z = state.clearOperation ? RValue(z0) : z0 + Float(k) * d; Pointer destSlice = dest + k * dSliceB; For(Int j = y0d, j < y1d, j++) { Float y = state.clearOperation ? RValue(y0) : y0 + Float(j) * h; Pointer destLine = destSlice + j * dPitchB; For(Int i = x0d, i < x1d, i++) { Float x = state.clearOperation ? RValue(x0) : x0 + Float(i) * w; Pointer d = destLine + i * dstBytes; if(hasConstantColorI) { for(int s = 0; s < state.destSamples; s++) { write(constantColorI, d, state); d += dSliceB; } } else if(hasConstantColorF) { for(int s = 0; s < state.destSamples; s++) { write(constantColorF, d, state); d += dSliceB; } } else if(intBoth) // Integer types do not support filtering { Int X = Int(x); Int Y = Int(y); Int Z = Int(z); if(state.clampToEdge) { X = Clamp(X, 0, sWidth - 1); Y = Clamp(Y, 0, sHeight - 1); Z = Clamp(Z, 0, sDepth - 1); } Pointer s = source + ComputeOffset(X, Y, Z, sSliceB, sPitchB, srcBytes); // When both formats are true integer types, we don't go to float to avoid losing precision Int4 color = readInt4(s, state); for(int s = 0; s < state.destSamples; s++) { write(color, d, state); d += dSliceB; } } else { Float4 color = sample(source, x, y, z, sWidth, sHeight, sDepth, sSliceB, sPitchB, state); for(int s = 0; s < state.destSamples; s++) { write(color, d, state); d += dSliceB; } } } } } } return function("BlitRoutine"); } Blitter::BlitRoutineType Blitter::getBlitRoutine(const State &state) { marl::lock lock(blitMutex); auto blitRoutine = blitCache.lookup(state); if(!blitRoutine) { blitRoutine = generate(state); blitCache.add(state, blitRoutine); } return blitRoutine; } Blitter::CornerUpdateRoutineType Blitter::getCornerUpdateRoutine(const State &state) { marl::lock lock(cornerUpdateMutex); auto cornerUpdateRoutine = cornerUpdateCache.lookup(state); if(!cornerUpdateRoutine) { cornerUpdateRoutine = generateCornerUpdate(state); cornerUpdateCache.add(state, cornerUpdateRoutine); } return cornerUpdateRoutine; } void Blitter::blit(const vk::Image *src, vk::Image *dst, VkImageBlit2KHR region, VkFilter filter) { ASSERT(src->getFormat() != VK_FORMAT_UNDEFINED); ASSERT(dst->getFormat() != VK_FORMAT_UNDEFINED); // Vulkan 1.2 section 18.5. Image Copies with Scaling: // "The layerCount member of srcSubresource and dstSubresource must match" // "The aspectMask member of srcSubresource and dstSubresource must match" ASSERT(region.srcSubresource.layerCount == region.dstSubresource.layerCount); ASSERT(region.srcSubresource.aspectMask == region.dstSubresource.aspectMask); if(region.dstOffsets[0].x > region.dstOffsets[1].x) { std::swap(region.srcOffsets[0].x, region.srcOffsets[1].x); std::swap(region.dstOffsets[0].x, region.dstOffsets[1].x); } if(region.dstOffsets[0].y > region.dstOffsets[1].y) { std::swap(region.srcOffsets[0].y, region.srcOffsets[1].y); std::swap(region.dstOffsets[0].y, region.dstOffsets[1].y); } if(region.dstOffsets[0].z > region.dstOffsets[1].z) { std::swap(region.srcOffsets[0].z, region.srcOffsets[1].z); std::swap(region.dstOffsets[0].z, region.dstOffsets[1].z); } VkImageAspectFlagBits srcAspect = static_cast(region.srcSubresource.aspectMask); VkImageAspectFlagBits dstAspect = static_cast(region.dstSubresource.aspectMask); VkExtent3D srcExtent = src->getMipLevelExtent(srcAspect, region.srcSubresource.mipLevel); float widthRatio = static_cast(region.srcOffsets[1].x - region.srcOffsets[0].x) / static_cast(region.dstOffsets[1].x - region.dstOffsets[0].x); float heightRatio = static_cast(region.srcOffsets[1].y - region.srcOffsets[0].y) / static_cast(region.dstOffsets[1].y - region.dstOffsets[0].y); float depthRatio = static_cast(region.srcOffsets[1].z - region.srcOffsets[0].z) / static_cast(region.dstOffsets[1].z - region.dstOffsets[0].z); float x0 = region.srcOffsets[0].x + (0.5f - region.dstOffsets[0].x) * widthRatio; float y0 = region.srcOffsets[0].y + (0.5f - region.dstOffsets[0].y) * heightRatio; float z0 = region.srcOffsets[0].z + (0.5f - region.dstOffsets[0].z) * depthRatio; auto srcFormat = src->getFormat(srcAspect); auto dstFormat = dst->getFormat(dstAspect); bool doFilter = (filter != VK_FILTER_NEAREST); bool allowSRGBConversion = doFilter || (src->getSampleCount() > 1) || (srcFormat.isSRGBformat() != dstFormat.isSRGBformat()); State state(srcFormat, dstFormat, src->getSampleCount(), dst->getSampleCount(), Options{ doFilter, allowSRGBConversion }); state.clampToEdge = (region.srcOffsets[0].x < 0) || (region.srcOffsets[0].y < 0) || (static_cast(region.srcOffsets[1].x) > srcExtent.width) || (static_cast(region.srcOffsets[1].y) > srcExtent.height) || (doFilter && ((x0 < 0.5f) || (y0 < 0.5f))); state.filter3D = (region.srcOffsets[1].z - region.srcOffsets[0].z) != (region.dstOffsets[1].z - region.dstOffsets[0].z); auto blitRoutine = getBlitRoutine(state); if(!blitRoutine) { return; } BlitData data = { nullptr, // source nullptr, // dest assert_cast(src->rowPitchBytes(srcAspect, region.srcSubresource.mipLevel)), // sPitchB assert_cast(dst->rowPitchBytes(dstAspect, region.dstSubresource.mipLevel)), // dPitchB assert_cast(src->slicePitchBytes(srcAspect, region.srcSubresource.mipLevel)), // sSliceB assert_cast(dst->slicePitchBytes(dstAspect, region.dstSubresource.mipLevel)), // dSliceB x0, y0, z0, widthRatio, heightRatio, depthRatio, region.dstOffsets[0].x, // x0d region.dstOffsets[1].x, // x1d region.dstOffsets[0].y, // y0d region.dstOffsets[1].y, // y1d region.dstOffsets[0].z, // z0d region.dstOffsets[1].z, // z1d static_cast(srcExtent.width), // sWidth static_cast(srcExtent.height), // sHeight static_cast(srcExtent.depth), // sDepth false, // filter3D }; VkImageSubresource srcSubres = { region.srcSubresource.aspectMask, region.srcSubresource.mipLevel, region.srcSubresource.baseArrayLayer }; VkImageSubresource dstSubres = { region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, region.dstSubresource.baseArrayLayer }; VkImageSubresourceRange dstSubresRange = { region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, 1, // levelCount region.dstSubresource.baseArrayLayer, region.dstSubresource.layerCount }; uint32_t lastLayer = src->getLastLayerIndex(dstSubresRange); for(; dstSubres.arrayLayer <= lastLayer; srcSubres.arrayLayer++, dstSubres.arrayLayer++) { data.source = src->getTexelPointer({ 0, 0, 0 }, srcSubres); data.dest = dst->getTexelPointer({ 0, 0, 0 }, dstSubres); ASSERT(data.source < src->end()); ASSERT(data.dest < dst->end()); blitRoutine(&data); } dst->contentsChanged(dstSubresRange); } static void resolveDepth(const vk::ImageView *src, vk::ImageView *dst, const VkResolveModeFlagBits depthResolveMode) { if(depthResolveMode == VK_RESOLVE_MODE_NONE) { return; } vk::Format format = src->getFormat(VK_IMAGE_ASPECT_DEPTH_BIT); VkExtent2D extent = src->getMipLevelExtent(0, VK_IMAGE_ASPECT_DEPTH_BIT); int width = extent.width; int height = extent.height; int pitch = src->rowPitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0); // To support other resolve modes, get the slice bytes and get a pointer to each sample plane. // Then modify the loop below to include logic for handling each new mode. uint8_t *source = (uint8_t *)src->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_DEPTH_BIT, 0, 0); uint8_t *dest = (uint8_t *)dst->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_DEPTH_BIT, 0, 0); size_t formatSize = format.bytes(); // TODO(b/167558951) support other resolve modes. ASSERT(depthResolveMode == VK_RESOLVE_MODE_SAMPLE_ZERO_BIT); for(int y = 0; y < height; y++) { memcpy(dest, source, formatSize * width); source += pitch; dest += pitch; } dst->contentsChanged(vk::Image::DIRECT_MEMORY_ACCESS); } static void resolveStencil(const vk::ImageView *src, vk::ImageView *dst, const VkResolveModeFlagBits stencilResolveMode) { if(stencilResolveMode == VK_RESOLVE_MODE_NONE) { return; } VkExtent2D extent = src->getMipLevelExtent(0, VK_IMAGE_ASPECT_STENCIL_BIT); int width = extent.width; int height = extent.height; int pitch = src->rowPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0); // To support other resolve modes, use src->slicePitchBytes() and get a pointer to each sample's slice. // Then modify the loop below to include logic for handling each new mode. uint8_t *source = reinterpret_cast(src->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, 0)); uint8_t *dest = reinterpret_cast(dst->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, 0)); // TODO(b/167558951) support other resolve modes. ASSERT(stencilResolveMode == VK_RESOLVE_MODE_SAMPLE_ZERO_BIT); for(int y = 0; y < height; y++) { // Stencil is always 8 bits, so the width of the resource we're resolving is // the number of bytes in each row we need to copy during for SAMPLE_ZERO memcpy(dest, source, width); source += pitch; dest += pitch; } dst->contentsChanged(vk::Image::DIRECT_MEMORY_ACCESS); } void Blitter::resolveDepthStencil(const vk::ImageView *src, vk::ImageView *dst, VkResolveModeFlagBits depthResolveMode, VkResolveModeFlagBits stencilResolveMode) { VkImageSubresourceRange srcRange = src->getSubresourceRange(); VkImageSubresourceRange dstRange = src->getSubresourceRange(); ASSERT(src->getFormat() == dst->getFormat()); ASSERT(srcRange.layerCount == 1 && dstRange.layerCount == 1); ASSERT(srcRange.aspectMask == dstRange.aspectMask); if(srcRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { resolveDepth(src, dst, depthResolveMode); } if(srcRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) { resolveStencil(src, dst, stencilResolveMode); } } void Blitter::resolve(const vk::Image *src, vk::Image *dst, VkImageResolve2KHR region) { // "The aspectMask member of srcSubresource and dstSubresource must only contain VK_IMAGE_ASPECT_COLOR_BIT" ASSERT(region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); ASSERT(region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); // "The layerCount member of srcSubresource and dstSubresource must match" ASSERT(region.srcSubresource.layerCount == region.dstSubresource.layerCount); // We use this method both for explicit resolves from vkCmdResolveImage, and implicit ones for resolve attachments. // - vkCmdResolveImage: "srcImage and dstImage must have been created with the same image format." // - VkSubpassDescription: "each resolve attachment that is not VK_ATTACHMENT_UNUSED must have the same VkFormat as its corresponding color attachment." ASSERT(src->getFormat() == dst->getFormat()); if(fastResolve(src, dst, region)) { return; } // Fall back to a generic blit which performs the resolve. VkImageBlit2KHR blitRegion; blitRegion.sType = VK_STRUCTURE_TYPE_IMAGE_BLIT_2_KHR; blitRegion.pNext = nullptr; blitRegion.srcOffsets[0] = blitRegion.srcOffsets[1] = region.srcOffset; blitRegion.srcOffsets[1].x += region.extent.width; blitRegion.srcOffsets[1].y += region.extent.height; blitRegion.srcOffsets[1].z += region.extent.depth; blitRegion.dstOffsets[0] = blitRegion.dstOffsets[1] = region.dstOffset; blitRegion.dstOffsets[1].x += region.extent.width; blitRegion.dstOffsets[1].y += region.extent.height; blitRegion.dstOffsets[1].z += region.extent.depth; blitRegion.srcSubresource = region.srcSubresource; blitRegion.dstSubresource = region.dstSubresource; blit(src, dst, blitRegion, VK_FILTER_NEAREST); } static inline uint32_t averageByte4(uint32_t x, uint32_t y) { return (x & y) + (((x ^ y) >> 1) & 0x7F7F7F7F) + ((x ^ y) & 0x01010101); } bool Blitter::fastResolve(const vk::Image *src, vk::Image *dst, VkImageResolve2KHR region) { if(region.dstOffset != VkOffset3D{ 0, 0, 0 }) { return false; } if(region.srcOffset != VkOffset3D{ 0, 0, 0 }) { return false; } if(region.srcSubresource.layerCount != 1) { return false; } if(region.extent != src->getExtent() || region.extent != dst->getExtent() || region.extent.depth != 1) { return false; } VkImageSubresource srcSubresource = { region.srcSubresource.aspectMask, region.srcSubresource.mipLevel, region.srcSubresource.baseArrayLayer }; VkImageSubresource dstSubresource = { region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, region.dstSubresource.baseArrayLayer }; VkImageSubresourceRange dstSubresourceRange = { region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, 1, // levelCount region.dstSubresource.baseArrayLayer, region.dstSubresource.layerCount }; void *source = src->getTexelPointer({ 0, 0, 0 }, srcSubresource); uint8_t *dest = reinterpret_cast(dst->getTexelPointer({ 0, 0, 0 }, dstSubresource)); auto format = src->getFormat(); auto samples = src->getSampleCount(); auto extent = src->getExtent(); int width = extent.width; int height = extent.height; int pitch = src->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, region.srcSubresource.mipLevel); int slice = src->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, region.srcSubresource.mipLevel); uint8_t *source0 = (uint8_t *)source; uint8_t *source1 = source0 + slice; uint8_t *source2 = source1 + slice; uint8_t *source3 = source2 + slice; [[maybe_unused]] const bool SSE2 = CPUID::supportsSSE2(); if(format == VK_FORMAT_R8G8B8A8_UNORM || format == VK_FORMAT_B8G8R8A8_UNORM || format == VK_FORMAT_A8B8G8R8_UNORM_PACK32) { if(samples == 4) { for(int y = 0; y < height; y++) { int x = 0; #if defined(__i386__) || defined(__x86_64__) if(SSE2) { for(; (x + 3) < width; x += 4) { __m128i c0 = _mm_loadu_si128((__m128i *)(source0 + 4 * x)); __m128i c1 = _mm_loadu_si128((__m128i *)(source1 + 4 * x)); __m128i c2 = _mm_loadu_si128((__m128i *)(source2 + 4 * x)); __m128i c3 = _mm_loadu_si128((__m128i *)(source3 + 4 * x)); c0 = _mm_avg_epu8(c0, c1); c2 = _mm_avg_epu8(c2, c3); c0 = _mm_avg_epu8(c0, c2); _mm_storeu_si128((__m128i *)(dest + 4 * x), c0); } } #endif for(; x < width; x++) { uint32_t c0 = *(uint32_t *)(source0 + 4 * x); uint32_t c1 = *(uint32_t *)(source1 + 4 * x); uint32_t c2 = *(uint32_t *)(source2 + 4 * x); uint32_t c3 = *(uint32_t *)(source3 + 4 * x); uint32_t c01 = averageByte4(c0, c1); uint32_t c23 = averageByte4(c2, c3); uint32_t c03 = averageByte4(c01, c23); *(uint32_t *)(dest + 4 * x) = c03; } source0 += pitch; source1 += pitch; source2 += pitch; source3 += pitch; dest += pitch; ASSERT(source0 < src->end()); ASSERT(source3 < src->end()); ASSERT(dest < dst->end()); } } else UNSUPPORTED("Samples: %d", samples); } else { return false; } dst->contentsChanged(dstSubresourceRange); return true; } void Blitter::copy(const vk::Image *src, uint8_t *dst, unsigned int dstPitch) { VkExtent3D extent = src->getExtent(); size_t rowBytes = src->getFormat(VK_IMAGE_ASPECT_COLOR_BIT).bytes() * extent.width; unsigned int srcPitch = src->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); ASSERT(dstPitch >= rowBytes && srcPitch >= rowBytes && src->getMipLevelExtent(VK_IMAGE_ASPECT_COLOR_BIT, 0).height >= extent.height); const uint8_t *s = (uint8_t *)src->getTexelPointer({ 0, 0, 0 }, { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0 }); uint8_t *d = dst; for(uint32_t y = 0; y < extent.height; y++) { memcpy(d, s, rowBytes); s += srcPitch; d += dstPitch; } } void Blitter::computeCubeCorner(Pointer &layer, Int &x0, Int &x1, Int &y0, Int &y1, Int &pitchB, const State &state) { int bytes = state.sourceFormat.bytes(); Float4 c = readFloat4(layer + ComputeOffset(x0, y1, pitchB, bytes), state) + readFloat4(layer + ComputeOffset(x1, y0, pitchB, bytes), state) + readFloat4(layer + ComputeOffset(x1, y1, pitchB, bytes), state); c *= Float4(1.0f / 3.0f); write(c, layer + ComputeOffset(x0, y0, pitchB, bytes), state); } Blitter::CornerUpdateRoutineType Blitter::generateCornerUpdate(const State &state) { // Reading and writing from/to the same image ASSERT(state.sourceFormat == state.destFormat); ASSERT(state.srcSamples == state.destSamples); // Vulkan 1.2: "If samples is not VK_SAMPLE_COUNT_1_BIT, then imageType must be // VK_IMAGE_TYPE_2D, flags must not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT" ASSERT(state.srcSamples == 1); CornerUpdateFunction function; { Pointer blit(function.Arg<0>()); Pointer layers = *Pointer>(blit + OFFSET(CubeBorderData, layers)); Int pitchB = *Pointer(blit + OFFSET(CubeBorderData, pitchB)); UInt layerSize = *Pointer(blit + OFFSET(CubeBorderData, layerSize)); UInt dim = *Pointer(blit + OFFSET(CubeBorderData, dim)); // Low Border, Low Pixel, High Border, High Pixel Int LB(-1), LP(0), HB(dim), HP(dim - 1); for(int face = 0; face < 6; face++) { computeCubeCorner(layers, LB, LP, LB, LP, pitchB, state); computeCubeCorner(layers, LB, LP, HB, HP, pitchB, state); computeCubeCorner(layers, HB, HP, LB, LP, pitchB, state); computeCubeCorner(layers, HB, HP, HB, HP, pitchB, state); layers = layers + layerSize; } } return function("BlitRoutine"); } void Blitter::updateBorders(const vk::Image *image, const VkImageSubresource &subresource) { ASSERT(image->getArrayLayers() >= (subresource.arrayLayer + 6)); // From Vulkan 1.1 spec, section 11.5. Image Views: // "For cube and cube array image views, the layers of the image view starting // at baseArrayLayer correspond to faces in the order +X, -X, +Y, -Y, +Z, -Z." VkImageSubresource posX = subresource; VkImageSubresource negX = posX; negX.arrayLayer++; VkImageSubresource posY = negX; posY.arrayLayer++; VkImageSubresource negY = posY; negY.arrayLayer++; VkImageSubresource posZ = negY; posZ.arrayLayer++; VkImageSubresource negZ = posZ; negZ.arrayLayer++; // Copy top / bottom copyCubeEdge(image, posX, BOTTOM, negY, RIGHT); copyCubeEdge(image, posY, BOTTOM, posZ, TOP); copyCubeEdge(image, posZ, BOTTOM, negY, TOP); copyCubeEdge(image, negX, BOTTOM, negY, LEFT); copyCubeEdge(image, negY, BOTTOM, negZ, BOTTOM); copyCubeEdge(image, negZ, BOTTOM, negY, BOTTOM); copyCubeEdge(image, posX, TOP, posY, RIGHT); copyCubeEdge(image, posY, TOP, negZ, TOP); copyCubeEdge(image, posZ, TOP, posY, BOTTOM); copyCubeEdge(image, negX, TOP, posY, LEFT); copyCubeEdge(image, negY, TOP, posZ, BOTTOM); copyCubeEdge(image, negZ, TOP, posY, TOP); // Copy left / right copyCubeEdge(image, posX, RIGHT, negZ, LEFT); copyCubeEdge(image, posY, RIGHT, posX, TOP); copyCubeEdge(image, posZ, RIGHT, posX, LEFT); copyCubeEdge(image, negX, RIGHT, posZ, LEFT); copyCubeEdge(image, negY, RIGHT, posX, BOTTOM); copyCubeEdge(image, negZ, RIGHT, negX, LEFT); copyCubeEdge(image, posX, LEFT, posZ, RIGHT); copyCubeEdge(image, posY, LEFT, negX, TOP); copyCubeEdge(image, posZ, LEFT, negX, RIGHT); copyCubeEdge(image, negX, LEFT, negZ, RIGHT); copyCubeEdge(image, negY, LEFT, negX, BOTTOM); copyCubeEdge(image, negZ, LEFT, posX, RIGHT); // Compute corner colors VkImageAspectFlagBits aspect = static_cast(subresource.aspectMask); vk::Format format = image->getFormat(aspect); VkSampleCountFlagBits samples = image->getSampleCount(); State state(format, format, samples, samples, Options{ 0xF }); // Vulkan 1.2: "If samples is not VK_SAMPLE_COUNT_1_BIT, then imageType must be // VK_IMAGE_TYPE_2D, flags must not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT" ASSERT(samples == VK_SAMPLE_COUNT_1_BIT); auto cornerUpdateRoutine = getCornerUpdateRoutine(state); if(!cornerUpdateRoutine) { return; } VkExtent3D extent = image->getMipLevelExtent(aspect, subresource.mipLevel); CubeBorderData data = { image->getTexelPointer({ 0, 0, 0 }, posX), assert_cast(image->rowPitchBytes(aspect, subresource.mipLevel)), assert_cast(image->getLayerSize(aspect)), extent.width }; cornerUpdateRoutine(&data); } void Blitter::copyCubeEdge(const vk::Image *image, const VkImageSubresource &dstSubresource, Edge dstEdge, const VkImageSubresource &srcSubresource, Edge srcEdge) { ASSERT(srcSubresource.aspectMask == dstSubresource.aspectMask); ASSERT(srcSubresource.mipLevel == dstSubresource.mipLevel); ASSERT(srcSubresource.arrayLayer != dstSubresource.arrayLayer); // Figure out if the edges to be copied in reverse order respectively from one another // The copy should be reversed whenever the same edges are contiguous or if we're // copying top <-> right or bottom <-> left. This is explained by the layout, which is: // // | +y | // | -x | +z | +x | -z | // | -y | bool reverse = (srcEdge == dstEdge) || ((srcEdge == TOP) && (dstEdge == RIGHT)) || ((srcEdge == RIGHT) && (dstEdge == TOP)) || ((srcEdge == BOTTOM) && (dstEdge == LEFT)) || ((srcEdge == LEFT) && (dstEdge == BOTTOM)); VkImageAspectFlagBits aspect = static_cast(srcSubresource.aspectMask); int bytes = image->getFormat(aspect).bytes(); int pitchB = image->rowPitchBytes(aspect, srcSubresource.mipLevel); VkExtent3D extent = image->getMipLevelExtent(aspect, srcSubresource.mipLevel); int w = extent.width; int h = extent.height; if(w != h) { UNSUPPORTED("Cube doesn't have square faces : (%d, %d)", w, h); } // Src is expressed in the regular [0, width-1], [0, height-1] space bool srcHorizontal = ((srcEdge == TOP) || (srcEdge == BOTTOM)); int srcDelta = srcHorizontal ? bytes : pitchB; VkOffset3D srcOffset = { (srcEdge == RIGHT) ? (w - 1) : 0, (srcEdge == BOTTOM) ? (h - 1) : 0, 0 }; // Dst contains borders, so it is expressed in the [-1, width], [-1, height] space bool dstHorizontal = ((dstEdge == TOP) || (dstEdge == BOTTOM)); int dstDelta = (dstHorizontal ? bytes : pitchB) * (reverse ? -1 : 1); VkOffset3D dstOffset = { (dstEdge == RIGHT) ? w : -1, (dstEdge == BOTTOM) ? h : -1, 0 }; // Don't write in the corners if(dstHorizontal) { dstOffset.x += reverse ? w : 1; } else { dstOffset.y += reverse ? h : 1; } const uint8_t *src = static_cast(image->getTexelPointer(srcOffset, srcSubresource)); uint8_t *dst = static_cast(image->getTexelPointer(dstOffset, dstSubresource)); ASSERT((src < image->end()) && ((src + (w * srcDelta)) < image->end())); ASSERT((dst < image->end()) && ((dst + (w * dstDelta)) < image->end())); for(int i = 0; i < w; ++i, dst += dstDelta, src += srcDelta) { memcpy(dst, src, bytes); } } } // namespace sw