/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "tools/ToolUtils.h" #include "include/core/SkAlphaType.h" #include "include/core/SkBitmap.h" #include "include/core/SkBlendMode.h" #include "include/core/SkCanvas.h" #include "include/core/SkColorPriv.h" #include "include/core/SkColorSpace.h" #include "include/core/SkColorType.h" #include "include/core/SkFont.h" #include "include/core/SkFontTypes.h" #include "include/core/SkImage.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/core/SkPathBuilder.h" #include "include/core/SkPathTypes.h" #include "include/core/SkPicture.h" #include "include/core/SkPixelRef.h" // IWYU pragma: keep #include "include/core/SkPixmap.h" #include "include/core/SkPoint3.h" #include "include/core/SkRefCnt.h" #include "include/core/SkSamplingOptions.h" #include "include/core/SkStream.h" #include "include/core/SkSurface.h" #include "include/core/SkTextBlob.h" #include "include/core/SkTileMode.h" #include "include/core/SkTypeface.h" #include "include/effects/SkGradientShader.h" #include "include/private/SkColorData.h" #include "include/private/base/SkCPUTypes.h" #include "include/private/base/SkTemplates.h" #include "src/core/SkFontPriv.h" #include "tools/SkMetaData.h" #include #include using namespace skia_private; namespace ToolUtils { const char* alphatype_name(SkAlphaType at) { switch (at) { case kUnknown_SkAlphaType: return "Unknown"; case kOpaque_SkAlphaType: return "Opaque"; case kPremul_SkAlphaType: return "Premul"; case kUnpremul_SkAlphaType: return "Unpremul"; } SkUNREACHABLE; } const char* colortype_name(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return "Unknown"; case kAlpha_8_SkColorType: return "Alpha_8"; case kA16_unorm_SkColorType: return "Alpha_16"; case kA16_float_SkColorType: return "A16_float"; case kRGB_565_SkColorType: return "RGB_565"; case kARGB_4444_SkColorType: return "ARGB_4444"; case kRGBA_8888_SkColorType: return "RGBA_8888"; case kSRGBA_8888_SkColorType: return "SRGBA_8888"; case kRGB_888x_SkColorType: return "RGB_888x"; case kBGRA_8888_SkColorType: return "BGRA_8888"; case kRGBA_1010102_SkColorType: return "RGBA_1010102"; case kBGRA_1010102_SkColorType: return "BGRA_1010102"; case kRGB_101010x_SkColorType: return "RGB_101010x"; case kBGR_101010x_SkColorType: return "BGR_101010x"; case kBGR_101010x_XR_SkColorType: return "BGR_101010x_XR"; case kRGBA_10x6_SkColorType: return "RGBA_10x6"; case kGray_8_SkColorType: return "Gray_8"; case kRGBA_F16Norm_SkColorType: return "RGBA_F16Norm"; case kRGB_F16F16F16x_SkColorType: return "RGB_F16F16F16x"; case kRGBA_F16_SkColorType: return "RGBA_F16"; case kRGBA_F32_SkColorType: return "RGBA_F32"; case kR8G8_unorm_SkColorType: return "R8G8_unorm"; case kR16G16_unorm_SkColorType: return "R16G16_unorm"; case kR16G16_float_SkColorType: return "R16G16_float"; case kR16G16B16A16_unorm_SkColorType: return "R16G16B16A16_unorm"; case kR8_unorm_SkColorType: return "R8_unorm"; case kBGRA_10101010_XR_SkColorType: return "BGRA_10101010_XR"; } SkUNREACHABLE; } const char* colortype_depth(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return "Unknown"; case kAlpha_8_SkColorType: return "A8"; case kA16_unorm_SkColorType: return "A16"; case kA16_float_SkColorType: return "AF16"; case kRGB_565_SkColorType: return "565"; case kARGB_4444_SkColorType: return "4444"; case kRGBA_8888_SkColorType: return "8888"; case kSRGBA_8888_SkColorType: return "8888"; case kRGB_888x_SkColorType: return "888"; case kBGRA_8888_SkColorType: return "8888"; case kRGBA_1010102_SkColorType: return "1010102"; case kBGRA_1010102_SkColorType: return "1010102"; case kRGB_101010x_SkColorType: return "101010"; case kBGR_101010x_SkColorType: return "101010"; case kBGR_101010x_XR_SkColorType: return "101010"; case kBGRA_10101010_XR_SkColorType: return "10101010"; case kRGBA_10x6_SkColorType: return "10101010"; case kGray_8_SkColorType: return "G8"; case kRGBA_F16Norm_SkColorType: return "F16Norm"; case kRGB_F16F16F16x_SkColorType: return "F16F16F16x"; case kRGBA_F16_SkColorType: return "F16"; case kRGBA_F32_SkColorType: return "F32"; case kR8G8_unorm_SkColorType: return "88"; case kR16G16_unorm_SkColorType: return "1616"; case kR16G16_float_SkColorType: return "F16F16"; case kR16G16B16A16_unorm_SkColorType: return "16161616"; case kR8_unorm_SkColorType: return "R8"; } SkUNREACHABLE; } const char* tilemode_name(SkTileMode mode) { switch (mode) { case SkTileMode::kClamp: return "clamp"; case SkTileMode::kRepeat: return "repeat"; case SkTileMode::kMirror: return "mirror"; case SkTileMode::kDecal: return "decal"; } SkUNREACHABLE; } SkColor color_to_565(SkColor color) { // Not a good idea to use this function for greyscale colors... // it will add an obvious purple or green tint. SkASSERT(SkColorGetR(color) != SkColorGetG(color) || SkColorGetR(color) != SkColorGetB(color) || SkColorGetG(color) != SkColorGetB(color)); SkPMColor pmColor = SkPreMultiplyColor(color); U16CPU color16 = SkPixel32ToPixel16(pmColor); return SkPixel16ToColor(color16); } sk_sp create_checkerboard_shader(SkColor c1, SkColor c2, int size) { SkBitmap bm; bm.allocPixels(SkImageInfo::MakeS32(2 * size, 2 * size, kPremul_SkAlphaType)); bm.eraseColor(c1); bm.eraseArea(SkIRect::MakeLTRB(0, 0, size, size), c2); bm.eraseArea(SkIRect::MakeLTRB(size, size, 2 * size, 2 * size), c2); return bm.makeShader(SkTileMode::kRepeat, SkTileMode::kRepeat, SkSamplingOptions()); } SkBitmap create_checkerboard_bitmap(int w, int h, SkColor c1, SkColor c2, int checkSize) { SkBitmap bitmap; bitmap.allocPixels(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType)); SkCanvas canvas(bitmap); ToolUtils::draw_checkerboard(&canvas, c1, c2, checkSize); return bitmap; } sk_sp create_checkerboard_image(int w, int h, SkColor c1, SkColor c2, int checkSize) { auto surf = SkSurfaces::Raster(SkImageInfo::MakeN32Premul(w, h)); ToolUtils::draw_checkerboard(surf->getCanvas(), c1, c2, checkSize); return surf->makeImageSnapshot(); } void draw_checkerboard(SkCanvas* canvas, SkColor c1, SkColor c2, int size) { SkPaint paint; paint.setShader(create_checkerboard_shader(c1, c2, size)); paint.setBlendMode(SkBlendMode::kSrc); canvas->drawPaint(paint); } int make_pixmaps(SkColorType ct, SkAlphaType at, bool withMips, const SkColor4f colors[6], SkPixmap pixmaps[6], std::unique_ptr* mem) { int levelSize = 32; int numMipLevels = withMips ? 6 : 1; size_t size = 0; SkImageInfo ii[6]; size_t rowBytes[6]; for (int level = 0; level < numMipLevels; ++level) { ii[level] = SkImageInfo::Make(levelSize, levelSize, ct, at); rowBytes[level] = ii[level].minRowBytes(); // Make sure we test row bytes that aren't tight. if (!(level % 2)) { rowBytes[level] += (level + 1)*SkColorTypeBytesPerPixel(ii[level].colorType()); } size += rowBytes[level]*ii[level].height(); levelSize /= 2; } mem->reset(new char[size]); char* addr = mem->get(); for (int level = 0; level < numMipLevels; ++level) { pixmaps[level].reset(ii[level], addr, rowBytes[level]); addr += rowBytes[level]*ii[level].height(); pixmaps[level].erase(colors[level]); } return numMipLevels; } void add_to_text_blob_w_len(SkTextBlobBuilder* builder, const char* text, size_t len, SkTextEncoding encoding, const SkFont& font, SkScalar x, SkScalar y) { int count = font.countText(text, len, encoding); if (count < 1) { return; } auto run = builder->allocRun(font, count, x, y); font.textToGlyphs(text, len, encoding, run.glyphs, count); } void add_to_text_blob(SkTextBlobBuilder* builder, const char* text, const SkFont& font, SkScalar x, SkScalar y) { add_to_text_blob_w_len(builder, text, strlen(text), SkTextEncoding::kUTF8, font, x, y); } void get_text_path(const SkFont& font, const void* text, size_t length, SkTextEncoding encoding, SkPath* dst, const SkPoint pos[]) { SkAutoToGlyphs atg(font, text, length, encoding); const int count = atg.count(); AutoTArray computedPos; if (pos == nullptr) { computedPos.reset(count); font.getPos(atg.glyphs(), count, &computedPos[0]); pos = computedPos.get(); } struct Rec { SkPath* fDst; const SkPoint* fPos; } rec = {dst, pos}; font.getPaths(atg.glyphs(), atg.count(), [](const SkPath* src, const SkMatrix& mx, void* ctx) { Rec* rec = (Rec*)ctx; if (src) { SkMatrix tmp(mx); tmp.postTranslate(rec->fPos->fX, rec->fPos->fY); rec->fDst->addPath(*src, tmp); } rec->fPos += 1; }, &rec); } SkPath make_star(const SkRect& bounds, int numPts, int step) { SkASSERT(numPts != step); SkPathBuilder builder; builder.setFillType(SkPathFillType::kEvenOdd); builder.moveTo(0, -1); for (int i = 1; i < numPts; ++i) { int idx = i * step % numPts; SkScalar theta = idx * 2 * SK_ScalarPI / numPts + SK_ScalarPI / 2; SkScalar x = SkScalarCos(theta); SkScalar y = -SkScalarSin(theta); builder.lineTo(x, y); } SkPath path = builder.detach(); path.transform(SkMatrix::RectToRect(path.getBounds(), bounds)); return path; } static inline void norm_to_rgb(SkBitmap* bm, int x, int y, const SkVector3& norm) { SkASSERT(SkScalarNearlyEqual(norm.length(), 1.0f)); unsigned char r = static_cast((0.5f * norm.fX + 0.5f) * 255); unsigned char g = static_cast((-0.5f * norm.fY + 0.5f) * 255); unsigned char b = static_cast((0.5f * norm.fZ + 0.5f) * 255); *bm->getAddr32(x, y) = SkPackARGB32(0xFF, r, g, b); } void create_hemi_normal_map(SkBitmap* bm, const SkIRect& dst) { const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f)); const SkPoint halfSize = SkPoint::Make(dst.width() / 2.0f, dst.height() / 2.0f); SkVector3 norm; for (int y = dst.fTop; y < dst.fBottom; ++y) { for (int x = dst.fLeft; x < dst.fRight; ++x) { norm.fX = (x + 0.5f - center.fX) / halfSize.fX; norm.fY = (y + 0.5f - center.fY) / halfSize.fY; SkScalar tmp = norm.fX * norm.fX + norm.fY * norm.fY; if (tmp >= 1.0f) { norm.set(0.0f, 0.0f, 1.0f); } else { norm.fZ = sqrtf(1.0f - tmp); } norm_to_rgb(bm, x, y, norm); } } } void create_frustum_normal_map(SkBitmap* bm, const SkIRect& dst) { const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f)); SkIRect inner = dst; inner.inset(dst.width() / 4, dst.height() / 4); SkPoint3 norm; const SkPoint3 left = SkPoint3::Make(-SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2); const SkPoint3 up = SkPoint3::Make(0.0f, -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2); const SkPoint3 right = SkPoint3::Make(SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2); const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2); for (int y = dst.fTop; y < dst.fBottom; ++y) { for (int x = dst.fLeft; x < dst.fRight; ++x) { if (inner.contains(x, y)) { norm.set(0.0f, 0.0f, 1.0f); } else { SkScalar locX = x + 0.5f - center.fX; SkScalar locY = y + 0.5f - center.fY; if (locX >= 0.0f) { if (locY > 0.0f) { norm = locX >= locY ? right : down; // LR corner } else { norm = locX > -locY ? right : up; // UR corner } } else { if (locY > 0.0f) { norm = -locX > locY ? left : down; // LL corner } else { norm = locX > locY ? up : left; // UL corner } } } norm_to_rgb(bm, x, y, norm); } } } void create_tetra_normal_map(SkBitmap* bm, const SkIRect& dst) { const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f)); static const SkScalar k1OverRoot3 = 0.5773502692f; SkPoint3 norm; const SkPoint3 leftUp = SkPoint3::Make(-k1OverRoot3, -k1OverRoot3, k1OverRoot3); const SkPoint3 rightUp = SkPoint3::Make(k1OverRoot3, -k1OverRoot3, k1OverRoot3); const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2); for (int y = dst.fTop; y < dst.fBottom; ++y) { for (int x = dst.fLeft; x < dst.fRight; ++x) { SkScalar locX = x + 0.5f - center.fX; SkScalar locY = y + 0.5f - center.fY; if (locX >= 0.0f) { if (locY > 0.0f) { norm = locX >= locY ? rightUp : down; // LR corner } else { norm = rightUp; } } else { if (locY > 0.0f) { norm = -locX > locY ? leftUp : down; // LL corner } else { norm = leftUp; } } norm_to_rgb(bm, x, y, norm); } } } bool copy_to(SkBitmap* dst, SkColorType dstColorType, const SkBitmap& src) { SkPixmap srcPM; if (!src.peekPixels(&srcPM)) { return false; } SkBitmap tmpDst; SkImageInfo dstInfo = srcPM.info().makeColorType(dstColorType); if (!tmpDst.setInfo(dstInfo)) { return false; } if (!tmpDst.tryAllocPixels()) { return false; } SkPixmap dstPM; if (!tmpDst.peekPixels(&dstPM)) { return false; } if (!srcPM.readPixels(dstPM)) { return false; } dst->swap(tmpDst); return true; } void copy_to_g8(SkBitmap* dst, const SkBitmap& src) { SkASSERT(kBGRA_8888_SkColorType == src.colorType() || kRGBA_8888_SkColorType == src.colorType()); SkImageInfo grayInfo = src.info().makeColorType(kGray_8_SkColorType); dst->allocPixels(grayInfo); uint8_t* dst8 = (uint8_t*)dst->getPixels(); const uint32_t* src32 = (const uint32_t*)src.getPixels(); const int w = src.width(); const int h = src.height(); const bool isBGRA = (kBGRA_8888_SkColorType == src.colorType()); for (int y = 0; y < h; ++y) { if (isBGRA) { // BGRA for (int x = 0; x < w; ++x) { uint32_t s = src32[x]; dst8[x] = SkComputeLuminance((s >> 16) & 0xFF, (s >> 8) & 0xFF, s & 0xFF); } } else { // RGBA for (int x = 0; x < w; ++x) { uint32_t s = src32[x]; dst8[x] = SkComputeLuminance(s & 0xFF, (s >> 8) & 0xFF, (s >> 16) & 0xFF); } } src32 = (const uint32_t*)((const char*)src32 + src.rowBytes()); dst8 += dst->rowBytes(); } } ////////////////////////////////////////////////////////////////////////////////////////////// bool equal_pixels(const SkPixmap& a, const SkPixmap& b) { if (a.width() != b.width() || a.height() != b.height()) { SkDebugf("[ToolUtils::equal_pixels] Dimensions do not match (%d x %d) != (%d x %d)\n", a.width(), a.height(), b.width(), b.height()); return false; } if (a.colorType() != b.colorType()) { SkDebugf("[ToolUtils::equal_pixels] colorType does not match %d != %d\n", (int) a.colorType(), (int) b.colorType()); return false; } for (int y = 0; y < a.height(); ++y) { const char* aptr = (const char*)a.addr(0, y); const char* bptr = (const char*)b.addr(0, y); if (0 != memcmp(aptr, bptr, a.width() * a.info().bytesPerPixel())) { SkDebugf("[ToolUtils::equal_pixels] row %d does not match byte for byte\n", y); return false; } } return true; } bool equal_pixels(const SkBitmap& bm0, const SkBitmap& bm1) { SkPixmap pm0, pm1; if (!bm0.peekPixels(&pm0)) { SkDebugf("Could not read pixels from A\n"); return false; } if (!bm1.peekPixels(&pm1)) { SkDebugf("Could not read pixels from B\n"); return false; } return equal_pixels(pm0, pm1); } bool equal_pixels(const SkImage* a, const SkImage* b) { SkASSERT_RELEASE(a); SkASSERT_RELEASE(b); // ensure that peekPixels will succeed auto imga = a->makeRasterImage(); auto imgb = b->makeRasterImage(); SkPixmap pm0, pm1; if (!imga->peekPixels(&pm0)) { SkDebugf("Could not read pixels from A\n"); return false; } if (!imgb->peekPixels(&pm1)) { SkDebugf("Could not read pixels from B\n"); return false; } return equal_pixels(pm0, pm1); } sk_sp makeSurface(SkCanvas* canvas, const SkImageInfo& info, const SkSurfaceProps* props) { auto surf = canvas->makeSurface(info, props); if (!surf) { surf = SkSurfaces::Raster(info, props); } return surf; } VariationSliders::VariationSliders(SkTypeface* typeface, SkFontArguments::VariationPosition variationPosition) { if (!typeface) { return; } int numAxes = typeface->getVariationDesignParameters(nullptr, 0); if (numAxes < 0) { return; } std::unique_ptr copiedAxes = std::make_unique(numAxes); numAxes = typeface->getVariationDesignParameters(copiedAxes.get(), numAxes); if (numAxes < 0) { return; } auto argVariationPositionOrDefault = [&variationPosition](SkFourByteTag tag, SkScalar defaultValue) -> SkScalar { for (int i = 0; i < variationPosition.coordinateCount; ++i) { if (variationPosition.coordinates[i].axis == tag) { return variationPosition.coordinates[i].value; } } return defaultValue; }; fAxisSliders.resize(numAxes); fCoords = std::make_unique(numAxes); for (int i = 0; i < numAxes; ++i) { fAxisSliders[i].axis = copiedAxes[i]; fAxisSliders[i].current = argVariationPositionOrDefault(copiedAxes[i].tag, copiedAxes[i].def); fAxisSliders[i].name = tagToString(fAxisSliders[i].axis.tag); fCoords[i] = { fAxisSliders[i].axis.tag, fAxisSliders[i].current }; } } /* static */ SkString VariationSliders::tagToString(SkFourByteTag tag) { char tagAsString[5]; tagAsString[4] = 0; tagAsString[0] = (char)(uint8_t)(tag >> 24); tagAsString[1] = (char)(uint8_t)(tag >> 16); tagAsString[2] = (char)(uint8_t)(tag >> 8); tagAsString[3] = (char)(uint8_t)(tag >> 0); return SkString(tagAsString); } bool VariationSliders::writeControls(SkMetaData* controls) { for (size_t i = 0; i < fAxisSliders.size(); ++i) { SkScalar axisVars[kAxisVarsSize]; axisVars[0] = fAxisSliders[i].current; axisVars[1] = fAxisSliders[i].axis.min; axisVars[2] = fAxisSliders[i].axis.max; controls->setScalars(fAxisSliders[i].name.c_str(), kAxisVarsSize, axisVars); } return true; } void VariationSliders::readControls(const SkMetaData& controls, bool* changed) { for (size_t i = 0; i < fAxisSliders.size(); ++i) { SkScalar axisVars[kAxisVarsSize] = {0}; int resultAxisVarsSize = 0; SkASSERT_RELEASE(controls.findScalars( tagToString(fAxisSliders[i].axis.tag).c_str(), &resultAxisVarsSize, axisVars)); SkASSERT_RELEASE(resultAxisVarsSize == kAxisVarsSize); if (changed) { *changed |= fAxisSliders[i].current != axisVars[0]; } fAxisSliders[i].current = axisVars[0]; fCoords[i] = { fAxisSliders[i].axis.tag, fAxisSliders[i].current }; } } SkSpan VariationSliders::getCoordinates() { return SkSpan{fCoords.get(), fAxisSliders.size()}; } //////////////////////////////////////////////////////////////////////////////////////////////////// HilbertGenerator::HilbertGenerator(float desiredSize, float desiredLineWidth, int desiredDepth) : fDesiredSize(desiredSize) , fDesiredDepth(desiredDepth) , fSegmentLength(fDesiredSize / ((0x1 << fDesiredDepth) - 1.0f)) , fDesiredLineWidth(desiredLineWidth) , fActualBounds(SkRect::MakeEmpty()) , fCurPos(SkPoint::Make(0.0f, 0.0f)) , fCurDir(0) , fExpectedLen(fSegmentLength * ((0x1 << (2*fDesiredDepth)) - 1.0f)) , fCurLen(0.0f) { } void HilbertGenerator::draw(SkCanvas* canvas) { this->recursiveDraw(canvas, /* curDepth= */ 0, /* turnLeft= */ true); SkScalarNearlyEqual(fExpectedLen, fCurLen, 0.01f); SkScalarNearlyEqual(fDesiredSize, fActualBounds.width(), 0.01f); SkScalarNearlyEqual(fDesiredSize, fActualBounds.height(), 0.01f); } void HilbertGenerator::turn90(bool turnLeft) { fCurDir += turnLeft ? 90 : -90; if (fCurDir >= 360) { fCurDir = 0; } else if (fCurDir < 0) { fCurDir = 270; } SkASSERT(fCurDir == 0 || fCurDir == 90 || fCurDir == 180 || fCurDir == 270); } void HilbertGenerator::line(SkCanvas* canvas) { SkPoint before = fCurPos; SkRect r; switch (fCurDir) { case 0: r.fLeft = fCurPos.fX; r.fTop = fCurPos.fY - fDesiredLineWidth / 2.0f; r.fRight = fCurPos.fX + fSegmentLength; r.fBottom = fCurPos.fY + fDesiredLineWidth / 2.0f; fCurPos.fX += fSegmentLength; break; case 90: r.fLeft = fCurPos.fX - fDesiredLineWidth / 2.0f; r.fTop = fCurPos.fY - fSegmentLength; r.fRight = fCurPos.fX + fDesiredLineWidth / 2.0f; r.fBottom = fCurPos.fY; fCurPos.fY -= fSegmentLength; break; case 180: r.fLeft = fCurPos.fX - fSegmentLength; r.fTop = fCurPos.fY - fDesiredLineWidth / 2.0f; r.fRight = fCurPos.fX; r.fBottom = fCurPos.fY + fDesiredLineWidth / 2.0f; fCurPos.fX -= fSegmentLength; break; case 270: r.fLeft = fCurPos.fX - fDesiredLineWidth / 2.0f; r.fTop = fCurPos.fY; r.fRight = fCurPos.fX + fDesiredLineWidth / 2.0f; r.fBottom = fCurPos.fY + fSegmentLength; fCurPos.fY += fSegmentLength; break; default: return; } SkPoint pts[2] = { before, fCurPos }; SkColor4f colors[2] = { this->getColor(fCurLen), this->getColor(fCurLen + fSegmentLength), }; fCurLen += fSegmentLength; if (fActualBounds.isEmpty()) { fActualBounds = r; } else { fActualBounds.join(r); } SkPaint paint; paint.setShader(SkGradientShader::MakeLinear(pts, colors, /* colorSpace= */ nullptr, /* pos= */ nullptr, 2, SkTileMode::kClamp)); canvas->drawRect(r, paint); } void HilbertGenerator::recursiveDraw(SkCanvas* canvas, int curDepth, bool turnLeft) { if (curDepth >= fDesiredDepth) { return; } this->turn90(turnLeft); this->recursiveDraw(canvas, curDepth + 1, !turnLeft); this->line(canvas); this->turn90(!turnLeft); this->recursiveDraw(canvas, curDepth + 1, turnLeft); this->line(canvas); this->recursiveDraw(canvas, curDepth + 1, turnLeft); this->turn90(!turnLeft); this->line(canvas); this->recursiveDraw(canvas, curDepth + 1, !turnLeft); this->turn90(turnLeft); } SkColor4f HilbertGenerator::getColor(float curLen) { static const SkColor4f kColors[] = { SkColors::kBlack, SkColors::kBlue, SkColors::kCyan, SkColors::kGreen, SkColors::kYellow, SkColors::kRed, SkColors::kWhite, }; static const float kStops[] = { 0.0f, 1.0f/6.0f, 2.0f/6.0f, 0.5f, 4.0f/6.0f, 5.0f/6.0f, 1.0f, }; static_assert(std::size(kColors) == std::size(kStops)); float t = curLen / fExpectedLen; if (t <= 0.0f) { return kColors[0]; } else if (t >= 1.0f) { return kColors[std::size(kColors)-1]; } for (unsigned int i = 0; i < std::size(kColors)-1; ++i) { if (kStops[i] <= t && t <= kStops[i+1]) { t = (t - kStops[i]) / (kStops[i+1] - kStops[i]); SkASSERT(0.0f <= t && t <= 1.0f); return { kColors[i].fR * (1 - t) + kColors[i+1].fR * t, kColors[i].fG * (1 - t) + kColors[i+1].fG * t, kColors[i].fB * (1 - t) + kColors[i+1].fB * t, kColors[i].fA * (1 - t) + kColors[i+1].fA * t }; } } return SkColors::kBlack; } void ExtractPathsFromSKP(const char filepath[], std::function callback) { SkFILEStream stream(filepath); if (!stream.isValid()) { SkDebugf("ExtractPaths: invalid input file at \"%s\"\n", filepath); return; } class PathSniffer : public SkCanvas { public: PathSniffer(std::function callback) : SkCanvas(4096, 4096, nullptr) , fPathSniffCallback(callback) {} private: void onDrawPath(const SkPath& path, const SkPaint& paint) override { fPathSniffCallback(this->getTotalMatrix(), path, paint); } std::function fPathSniffCallback; }; sk_sp skp = SkPicture::MakeFromStream(&stream); if (!skp) { SkDebugf("ExtractPaths: couldn't load skp at \"%s\"\n", filepath); return; } PathSniffer pathSniffer(callback); skp->playback(&pathSniffer); } } // namespace ToolUtils