/* * Copyright 2022 Google LLC. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkAlphaType.h" #include "include/core/SkCanvas.h" #include "include/core/SkColorSpace.h" #include "include/core/SkColorType.h" #include "include/core/SkPixmap.h" #include "include/core/SkSurface.h" #include "include/effects/SkGradientShader.h" #include "include/gpu/GpuTypes.h" #include "include/gpu/graphite/BackendTexture.h" #include "include/gpu/graphite/Context.h" #include "include/gpu/graphite/Image.h" #include "include/gpu/graphite/Recorder.h" #include "include/gpu/graphite/Recording.h" #include "include/gpu/graphite/Surface.h" #include "include/gpu/graphite/TextureInfo.h" #include "src/base/SkRectMemcpy.h" #include "src/core/SkAutoPixmapStorage.h" #include "src/core/SkImageInfoPriv.h" #include "src/gpu/graphite/Caps.h" #include "src/gpu/graphite/ContextPriv.h" #include "src/gpu/graphite/RecorderPriv.h" #include "src/gpu/graphite/ResourceTypes.h" #include "tests/Test.h" #include "tests/TestUtils.h" #include "tools/ToolUtils.h" #include "tools/gpu/BackendTextureImageFactory.h" #include "tools/gpu/ManagedBackendTexture.h" #include "tools/graphite/GraphiteTestContext.h" using Mipmapped = skgpu::Mipmapped; static constexpr int min_rgb_channel_bits(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return 0; case kAlpha_8_SkColorType: return 0; case kA16_unorm_SkColorType: return 0; case kA16_float_SkColorType: return 0; case kRGB_565_SkColorType: return 5; case kARGB_4444_SkColorType: return 4; case kR8G8_unorm_SkColorType: return 8; case kR16G16_unorm_SkColorType: return 16; case kR16G16_float_SkColorType: return 16; case kRGBA_8888_SkColorType: return 8; case kSRGBA_8888_SkColorType: return 8; case kRGB_888x_SkColorType: return 8; case kBGRA_8888_SkColorType: return 8; case kRGBA_1010102_SkColorType: return 10; case kRGB_101010x_SkColorType: return 10; case kBGRA_1010102_SkColorType: return 10; case kBGR_101010x_SkColorType: return 10; case kBGR_101010x_XR_SkColorType: return 10; case kRGBA_10x6_SkColorType: return 10; case kBGRA_10101010_XR_SkColorType: return 10; case kGray_8_SkColorType: return 8; // counting gray as "rgb" case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa case kRGBA_F16_SkColorType: return 10; // just counting the mantissa case kRGB_F16F16F16x_SkColorType: return 10; case kRGBA_F32_SkColorType: return 23; // just counting the mantissa case kR16G16B16A16_unorm_SkColorType: return 16; case kR8_unorm_SkColorType: return 8; } SkUNREACHABLE; } static constexpr int alpha_channel_bits(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return 0; case kAlpha_8_SkColorType: return 8; case kA16_unorm_SkColorType: return 16; case kA16_float_SkColorType: return 16; case kRGB_565_SkColorType: return 0; case kARGB_4444_SkColorType: return 4; case kR8G8_unorm_SkColorType: return 0; case kR16G16_unorm_SkColorType: return 0; case kR16G16_float_SkColorType: return 0; case kRGBA_8888_SkColorType: return 8; case kSRGBA_8888_SkColorType: return 8; case kRGB_888x_SkColorType: return 0; case kBGRA_8888_SkColorType: return 8; case kRGBA_1010102_SkColorType: return 2; case kRGB_101010x_SkColorType: return 0; case kBGRA_1010102_SkColorType: return 2; case kBGR_101010x_SkColorType: return 0; case kBGR_101010x_XR_SkColorType: return 0; case kRGBA_10x6_SkColorType: return 10; case kBGRA_10101010_XR_SkColorType: return 10; case kGray_8_SkColorType: return 0; case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa case kRGBA_F16_SkColorType: return 10; // just counting the mantissa case kRGB_F16F16F16x_SkColorType: return 0; case kRGBA_F32_SkColorType: return 23; // just counting the mantissa case kR16G16B16A16_unorm_SkColorType: return 16; case kR8_unorm_SkColorType: return 0; } SkUNREACHABLE; } namespace { std::vector make_long_rect_array(int w, int h) { return { // entire thing SkIRect::MakeWH(w, h), // larger on all sides SkIRect::MakeLTRB(-10, -10, w + 10, h + 10), // fully contained SkIRect::MakeLTRB(w/4, h/4, 3*w/4, 3*h/4), // outside top left SkIRect::MakeLTRB(-10, -10, -1, -1), // touching top left corner SkIRect::MakeLTRB(-10, -10, 0, 0), // overlapping top left corner SkIRect::MakeLTRB(-10, -10, w/4, h/4), // overlapping top left and top right corners SkIRect::MakeLTRB(-10, -10, w + 10, h/4), // touching entire top edge SkIRect::MakeLTRB(-10, -10, w + 10, 0), // overlapping top right corner SkIRect::MakeLTRB(3*w/4, -10, w + 10, h/4), // contained in x, overlapping top edge SkIRect::MakeLTRB(w/4, -10, 3*w/4, h/4), // outside top right corner SkIRect::MakeLTRB(w + 1, -10, w + 10, -1), // touching top right corner SkIRect::MakeLTRB(w, -10, w + 10, 0), // overlapping top left and bottom left corners SkIRect::MakeLTRB(-10, -10, w/4, h + 10), // touching entire left edge SkIRect::MakeLTRB(-10, -10, 0, h + 10), // overlapping bottom left corner SkIRect::MakeLTRB(-10, 3*h/4, w/4, h + 10), // contained in y, overlapping left edge SkIRect::MakeLTRB(-10, h/4, w/4, 3*h/4), // outside bottom left corner SkIRect::MakeLTRB(-10, h + 1, -1, h + 10), // touching bottom left corner SkIRect::MakeLTRB(-10, h, 0, h + 10), // overlapping bottom left and bottom right corners SkIRect::MakeLTRB(-10, 3*h/4, w + 10, h + 10), // touching entire left edge SkIRect::MakeLTRB(0, h, w, h + 10), // overlapping bottom right corner SkIRect::MakeLTRB(3*w/4, 3*h/4, w + 10, h + 10), // overlapping top right and bottom right corners SkIRect::MakeLTRB(3*w/4, -10, w + 10, h + 10), }; } std::vector make_short_rect_array(int w, int h) { return { // entire thing SkIRect::MakeWH(w, h), // fully contained SkIRect::MakeLTRB(w/4, h/4, 3*w/4, 3*h/4), // overlapping top right corner SkIRect::MakeLTRB(3*w/4, -10, w + 10, h/4), }; } struct GraphiteReadPixelTestRules { // Test unpremul sources? We could omit this and detect that creating the source of the read // failed but having it lets us skip generating reference color data. bool fAllowUnpremulSrc = true; // Are reads that are overlapping but not contained by the src bounds expected to succeed? bool fUncontainedRectSucceeds = true; }; // Makes a src populated with the pixmap. The src should get its image info (or equivalent) from // the pixmap. template using GraphiteSrcFactory = T(skgpu::graphite::Recorder*, SkPixmap&); enum class Result { kFail, kSuccess, kExcusedFailure, }; // Does a read from the T into the pixmap. template using GraphiteReadSrcFn = Result(const T&, const SkIPoint& offset, const SkPixmap&); static SkAutoPixmapStorage make_ref_data(const SkImageInfo& info, bool forceOpaque) { SkAutoPixmapStorage result; if (info.alphaType() == kUnknown_SkAlphaType) { result.alloc(info.makeAlphaType(kUnpremul_SkAlphaType)); } else { result.alloc(info); } auto surface = SkSurfaces::WrapPixels(result); if (!surface) { return result; } SkPoint pts1[] = {{0, 0}, {float(info.width()), float(info.height())}}; static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED}; SkPaint paint; paint.setShader(SkGradientShader::MakeLinear(pts1, kColors1, nullptr, 2, SkTileMode::kClamp)); surface->getCanvas()->drawPaint(paint); SkPoint pts2[] = {{float(info.width()), 0}, {0, float(info.height())}}; static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK}; paint.setShader(SkGradientShader::MakeLinear(pts2, kColors2, nullptr, 2, SkTileMode::kClamp)); paint.setBlendMode(SkBlendMode::kPlus); surface->getCanvas()->drawPaint(paint); // If not opaque add some fractional alpha. if (info.alphaType() != kOpaque_SkAlphaType && !forceOpaque) { static constexpr SkColor kColors3[] = {SK_ColorWHITE, SK_ColorWHITE, 0x60FFFFFF, SK_ColorWHITE, SK_ColorWHITE}; static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f}; paint.setShader(SkGradientShader::MakeRadial({info.width()/2.f, info.height()/2.f}, (info.width() + info.height())/10.f, kColors3, kPos3, 5, SkTileMode::kMirror)); paint.setBlendMode(SkBlendMode::kDstIn); surface->getCanvas()->drawPaint(paint); } return result; }; } // anonymous namespace template static void graphite_read_pixels_test_driver(skiatest::Reporter* reporter, skgpu::graphite::Context* context, const GraphiteReadPixelTestRules& rules, const std::function>& srcFactory, const std::function>& read, SkString label) { if (!label.isEmpty()) { // Add space for printing. label.append(" "); } // Separate this out just to give it some line width to breathe. Note 'srcPixels' should have // the same image info as src. We will do a converting readPixels() on it to get the data // to compare with the results of 'read'. auto runTest = [&](const T& src, const SkPixmap& srcPixels, const SkImageInfo& readInfo, SkIPoint offset) { const bool csConversion = !SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace()); const auto readCT = readInfo.colorType(); const auto readAT = readInfo.alphaType(); const auto srcCT = srcPixels.info().colorType(); const auto srcAT = srcPixels.info().alphaType(); const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset); const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height()); const size_t readBpp = SkColorTypeBytesPerPixel(readCT); // Make the row bytes in the dst be loose for extra stress. const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp; // This will make the last row tight. const size_t dstSize = readInfo.computeByteSize(dstRB); std::unique_ptr dstData(new char[dstSize]); SkPixmap dstPixels(readInfo, dstData.get(), dstRB); // Initialize with an arbitrary value for each byte. Later we will check that only the // correct part of the destination gets overwritten by 'read'. static constexpr auto kInitialByte = static_cast(0x1B); std::fill_n(static_cast(dstPixels.writable_addr()), dstPixels.computeByteSize(), kInitialByte); const Result result = read(src, offset, dstPixels); if (!SkIRect::Intersects(rect, surfBounds)) { REPORTER_ASSERT(reporter, result != Result::kSuccess); } else if (readCT == kUnknown_SkColorType) { REPORTER_ASSERT(reporter, result != Result::kSuccess); } else if (readAT == kUnknown_SkAlphaType) { REPORTER_ASSERT(reporter, result != Result::kSuccess); } else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) { REPORTER_ASSERT(reporter, result != Result::kSuccess); } else if (result == Result::kFail) { // TODO: Support BGR 101010x, BGRA 1010102, on the GPU. ERRORF(reporter, "Read failed. %sSrc CT: %s, Src AT: %s Read CT: %s, Read AT: %s, " "Rect [%d, %d, %d, %d], CS conversion: %d\n", label.c_str(), ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion); return result; } bool guardOk = true; auto guardCheck = [](char x) { return x == kInitialByte; }; // Considering the rect we tried to read and the surface bounds figure out which pixels in // both src and dst space should actually have been read and written. SkIRect srcReadRect; if (result == Result::kSuccess && srcReadRect.intersect(surfBounds, rect)) { SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop); const bool lumConversion = !(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) && (SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag); // A CS or luminance conversion allows a 3 value difference and otherwise a 2 value // difference. Note that sometimes read back on GPU can be lossy even when there no // conversion at all because GPU->CPU read may go to a lower bit depth format and then // be promoted back to the original type. For example, GL ES cannot read to 1010102, so // we go through 8888. float numer = (lumConversion || csConversion) ? 3.f : 2.f; // Allow some extra tolerance if unpremuling. if (srcAT == kPremul_SkAlphaType && readAT == kUnpremul_SkAlphaType) { numer += 1; } int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8}); float tol = numer / (1 << rgbBits); float alphaTol = 0; if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) { // Alpha can also get squashed down to 8 bits going through an intermediate // color format. const int alphaBits = std::min({alpha_channel_bits(readCT), alpha_channel_bits(srcCT), 8}); alphaTol = 2.f / (1 << alphaBits); } const float tols[4] = {tol, tol, tol, alphaTol}; auto error = std::function([&](int x, int y, const float diffs[4]) { SkASSERT(x >= 0 && y >= 0); ERRORF(reporter, "%sSrc CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]" ", CS conversion: %d\n" "Error at %d, %d. Diff in floats: (%f, %f, %f, %f)", label.c_str(), ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y, diffs[0], diffs[1], diffs[2], diffs[3]); }); SkAutoPixmapStorage ref; SkImageInfo refInfo = readInfo.makeDimensions(dstWriteRect.size()); ref.alloc(refInfo); if (readAT == kUnknown_SkAlphaType) { // Do a spoofed read where src and dst alpha type are both kUnpremul. This will // allow SkPixmap readPixels to succeed and won't do any alpha type conversion. SkPixmap unpremulRef(refInfo.makeAlphaType(kUnpremul_SkAlphaType), ref.addr(), ref.rowBytes()); SkPixmap unpremulSrc(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType), srcPixels.addr(), srcPixels.rowBytes()); unpremulSrc.readPixels(unpremulRef, srcReadRect.x(), srcReadRect.y()); } else { srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y()); } // This is the part of dstPixels that should have been updated. SkPixmap actual; SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect)); ComparePixels(ref, actual, tols, error); const auto* v = dstData.get(); const auto* end = dstData.get() + dstSize; guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck); v += dstWriteRect.top() * dstPixels.rowBytes(); for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) { guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck); auto pad = v + dstWriteRect.right() * readBpp; auto rowEnd = std::min(end, v + dstPixels.rowBytes()); // min protects against reading past the end of the tight last row. guardOk |= std::all_of(pad, rowEnd, guardCheck); v = rowEnd; } guardOk |= std::all_of(v, end, guardCheck); } else { guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck); } if (!guardOk) { ERRORF(reporter, "Result pixels modified result outside read rect [%d, %d, %d, %d]. " "%sSrc CT: %s, Read CT: %s, CS conversion: %d", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, label.c_str(), ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT), csConversion); } return result; }; static constexpr int kW = 16; static constexpr int kH = 16; const std::vector longRectArray = make_long_rect_array(kW, kH); const std::vector shortRectArray = make_short_rect_array(kW, kH); // We ensure we use the long array once per src and read color type and otherwise use the // short array to improve test run time. // Also, some color types have no alpha values and thus Opaque Premul and Unpremul are // equivalent. Just ensure each redundant AT is tested once with each CT (src and read). // Similarly, alpha-only color types behave the same for all alpha types so just test premul // after one iter. // We consider a src or read CT thoroughly tested once it has run through the long rect array // and full complement of alpha types with one successful read in the loop. std::array srcCTTestedThoroughly = {}, readCTTestedThoroughly = {}; for (int sat = 0; sat <= kLastEnum_SkAlphaType; ++sat) { const auto srcAT = static_cast(sat); if (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc) { continue; } for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) { const auto srcCT = static_cast(sct); // We always make our ref data as F32 auto refInfo = SkImageInfo::Make(kW, kH, kRGBA_F32_SkColorType, srcAT, SkColorSpace::MakeSRGB()); // 1010102 formats have an issue where it's easy to make a resulting // color where r, g, or b is greater than a. CPU/GPU differ in whether the stored color // channels are clipped to the alpha value. CPU clips but GPU does not. // Note that we only currently use srcCT for the 1010102 workaround. If we remove this // we can also put the ref data setup above the srcCT loop. bool forceOpaque = srcAT == kPremul_SkAlphaType && (srcCT == kRGBA_1010102_SkColorType || srcCT == kBGRA_1010102_SkColorType); SkAutoPixmapStorage refPixels = make_ref_data(refInfo, forceOpaque); // Convert the ref data to our desired src color type. const auto srcInfo = SkImageInfo::Make(kW, kH, srcCT, srcAT, SkColorSpace::MakeSRGB()); SkAutoPixmapStorage srcPixels; srcPixels.alloc(srcInfo); { SkPixmap readPixmap = srcPixels; // Spoof the alpha type to kUnpremul so the read will succeed without doing any // conversion (because we made our surface also use kUnpremul). if (srcAT == kUnknown_SkAlphaType) { readPixmap.reset(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType), srcPixels.addr(), srcPixels.rowBytes()); } refPixels.readPixels(readPixmap, 0, 0); } std::unique_ptr recorder = context->makeRecorder(); auto src = srcFactory(recorder.get(), srcPixels); if (!src) { continue; } if (SkColorTypeIsAlwaysOpaque(srcCT) && srcCTTestedThoroughly[srcCT] && (kPremul_SkAlphaType == srcAT || kUnpremul_SkAlphaType == srcAT)) { continue; } if (SkColorTypeIsAlphaOnly(srcCT) && srcCTTestedThoroughly[srcCT] && (kUnpremul_SkAlphaType == srcAT || kOpaque_SkAlphaType == srcAT || kUnknown_SkAlphaType == srcAT)) { continue; } for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) { const auto readCT = static_cast(rct); // ComparePixels will end up converting these types to kUnknown // because there's no corresponding GrColorType, and hence it will fail if (readCT == kBGR_101010x_XR_SkColorType || readCT == kBGRA_10101010_XR_SkColorType || readCT == kBGR_101010x_SkColorType) { continue; } for (const sk_sp& readCS : {SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) { for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) { const auto readAT = static_cast(at); if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) { // This doesn't make sense. continue; } if (SkColorTypeIsAlwaysOpaque(readCT) && readCTTestedThoroughly[readCT] && (kPremul_SkAlphaType == readAT || kUnpremul_SkAlphaType == readAT)) { continue; } if (SkColorTypeIsAlphaOnly(readCT) && readCTTestedThoroughly[readCT] && (kUnpremul_SkAlphaType == readAT || kOpaque_SkAlphaType == readAT || kUnknown_SkAlphaType == readAT)) { continue; } const auto& rects = srcCTTestedThoroughly[sct] && readCTTestedThoroughly[rct] ? shortRectArray : longRectArray; for (const auto& rect : rects) { const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(), readCT, readAT, readCS); const SkIPoint offset = rect.topLeft(); Result r = runTest(src, srcPixels, readInfo, offset); if (r == Result::kSuccess) { srcCTTestedThoroughly[sct] = true; readCTTestedThoroughly[rct] = true; } } } } } } } } namespace { struct AsyncContext { bool fCalled = false; std::unique_ptr fResult; }; } // anonymous namespace // Making this a lambda in the test functions caused: // "error: cannot compile this forwarded non-trivially copyable parameter yet" // on x86/Win/Clang bot, referring to 'result'. static void async_callback(void* c, std::unique_ptr result) { auto context = static_cast(c); context->fResult = std::move(result); context->fCalled = true; }; DEF_CONDITIONAL_GRAPHITE_TEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixelsGraphite, reporter, context, testContext, true, CtsEnforcement::kApiLevel_V) { using Image = sk_sp; using Renderable = skgpu::Renderable; using TextureInfo = skgpu::graphite::TextureInfo; auto reader = std::function>([context, testContext]( const Image& image, const SkIPoint& offset, const SkPixmap& pixels) { AsyncContext asyncContext; auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); // The GPU implementation is based on rendering and will fail for non-renderable color // types. TextureInfo texInfo = context->priv().caps()->getDefaultSampledTextureInfo( image->colorType(), Mipmapped::kNo, skgpu::Protected::kNo, Renderable::kYes); if (!context->priv().caps()->isRenderable(texInfo)) { return Result::kExcusedFailure; } context->asyncRescaleAndReadPixels(image.get(), pixels.info(), rect, SkImage::RescaleGamma::kSrc, SkImage::RescaleMode::kRepeatedLinear, async_callback, &asyncContext); if (!asyncContext.fCalled) { context->submit(); } while (!asyncContext.fCalled) { testContext->tick(); context->checkAsyncWorkCompletion(); } if (!asyncContext.fResult) { return Result::kFail; } SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0), asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(), pixels.height()); return Result::kSuccess; }); GraphiteReadPixelTestRules rules; rules.fAllowUnpremulSrc = true; rules.fUncontainedRectSucceeds = false; for (auto renderable : {Renderable::kNo, Renderable::kYes}) { auto factory = std::function>([&]( skgpu::graphite::Recorder* recorder, const SkPixmap& src) { Image image = sk_gpu_test::MakeBackendTextureImage(recorder, src, Mipmapped::kNo, renderable, skgpu::Origin::kTopLeft, skgpu::Protected::kNo); std::unique_ptr recording = recorder->snap(); skgpu::graphite::InsertRecordingInfo recordingInfo; recordingInfo.fRecording = recording.get(); context->insertRecording(recordingInfo); return image; }); auto label = SkStringPrintf("Renderable: %d", (int)renderable); graphite_read_pixels_test_driver(reporter, context, rules, factory, reader, label); } // It's possible that we've created an Image using the factory, but then don't try to do // readPixels on it, leaving a hanging command buffer. So we submit here to clean up. context->submit(); } DEF_CONDITIONAL_GRAPHITE_TEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixelsGraphite, reporter, context, testContext, true, CtsEnforcement::kApiLevel_V) { using Surface = sk_sp; auto reader = std::function>([context, testContext]( const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) { AsyncContext asyncContext; auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); context->asyncRescaleAndReadPixels(surface.get(), pixels.info(), rect, SkImage::RescaleGamma::kSrc, SkImage::RescaleMode::kRepeatedLinear, async_callback, &asyncContext); if (!asyncContext.fCalled) { context->submit(); } while (!asyncContext.fCalled) { testContext->tick(); context->checkAsyncWorkCompletion(); } if (!asyncContext.fResult) { return Result::kFail; } SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0), asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(), pixels.height()); return Result::kSuccess; }); GraphiteReadPixelTestRules rules; rules.fAllowUnpremulSrc = true; rules.fUncontainedRectSucceeds = false; auto factory = std::function>( [&](skgpu::graphite::Recorder* recorder, const SkPixmap& src) { Surface surface = SkSurfaces::RenderTarget(recorder, src.info(), Mipmapped::kNo, /*surfaceProps=*/nullptr); if (surface) { surface->writePixels(src, 0, 0); std::unique_ptr recording = recorder->snap(); skgpu::graphite::InsertRecordingInfo recordingInfo; recordingInfo.fRecording = recording.get(); context->insertRecording(recordingInfo); } return surface; }); graphite_read_pixels_test_driver(reporter, context, rules, factory, reader, {}); // It's possible that we've created an Image using the factory, but then don't try to do // readPixels on it, leaving a hanging command buffer. So we submit here to clean up. context->submit(); }