/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkImageInfo.h" #include "include/core/SkM44.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkSurface.h" #include "include/core/SkTypes.h" #include "src/core/SkRectPriv.h" #include "tests/Test.h" #include #include #include static bool has_green_pixels(const SkBitmap& bm) { for (int j = 0; j < bm.height(); ++j) { for (int i = 0; i < bm.width(); ++i) { if (SkColorGetG(bm.getColor(i, j))) { return true; } } } return false; } static void test_stroke_width_clipping(skiatest::Reporter* reporter) { SkBitmap bm; bm.allocN32Pixels(100, 10); bm.eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(bm); SkPaint paint; paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(10); paint.setColor(0xff00ff00); // clip out the left half of our canvas canvas.clipRect(SkRect::MakeXYWH(51, 0, 49, 100)); // no stroke bleed should be visible canvas.drawRect(SkRect::MakeWH(44, 100), paint); REPORTER_ASSERT(reporter, !has_green_pixels(bm)); // right stroke edge should bleed into the visible area canvas.scale(2, 2); canvas.drawRect(SkRect::MakeWH(22, 50), paint); REPORTER_ASSERT(reporter, has_green_pixels(bm)); } static void test_skbug4406(skiatest::Reporter* reporter) { SkBitmap bm; bm.allocN32Pixels(10, 10); bm.eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(bm); const SkRect r = { 1.5f, 1, 3.5f, 3 }; // draw filled green rect first SkPaint paint; paint.setStyle(SkPaint::kFill_Style); paint.setColor(0xff00ff00); paint.setStrokeWidth(1); paint.setAntiAlias(true); canvas.drawRect(r, paint); // paint black with stroke rect (that asserts in bug 4406) // over the filled rect, it should cover it paint.setStyle(SkPaint::kStroke_Style); paint.setColor(0xff000000); paint.setStrokeWidth(1); canvas.drawRect(r, paint); REPORTER_ASSERT(reporter, !has_green_pixels(bm)); // do it again with thinner stroke paint.setStyle(SkPaint::kFill_Style); paint.setColor(0xff00ff00); paint.setStrokeWidth(1); paint.setAntiAlias(true); canvas.drawRect(r, paint); // paint black with stroke rect (that asserts in bug 4406) // over the filled rect, it doesnt cover it completelly with thinner stroke paint.setStyle(SkPaint::kStroke_Style); paint.setColor(0xff000000); paint.setStrokeWidth(0.99f); canvas.drawRect(r, paint); REPORTER_ASSERT(reporter, has_green_pixels(bm)); } DEF_TEST(Rect, reporter) { test_stroke_width_clipping(reporter); test_skbug4406(reporter); } DEF_TEST(Rect_grow, reporter) { test_stroke_width_clipping(reporter); test_skbug4406(reporter); } DEF_TEST(Rect_path_nan, reporter) { SkRect r = { 0, 0, SK_ScalarNaN, 100 }; SkPath p; p.addRect(r); // path normally just jams its bounds to be r, but it must notice that r is non-finite REPORTER_ASSERT(reporter, !p.isFinite()); } DEF_TEST(Rect_largest, reporter) { REPORTER_ASSERT(reporter, !SkRectPriv::MakeILarge().isEmpty()); REPORTER_ASSERT(reporter, SkRectPriv::MakeILargestInverted().isEmpty()); REPORTER_ASSERT(reporter, !SkRectPriv::MakeLargest().isEmpty()); REPORTER_ASSERT(reporter, !SkRectPriv::MakeLargeS32().isEmpty()); REPORTER_ASSERT(reporter, SkRectPriv::MakeLargestInverted().isEmpty()); } /* * Test the setBounds always handles non-finite values correctly: * - setBoundsCheck should return false, and set the rect to all zeros * - setBoundsNoCheck should ensure that rect.isFinite() is false (definitely NOT all zeros) */ DEF_TEST(Rect_setbounds, reporter) { const SkPoint p0[] = { { SK_ScalarInfinity, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 } }; const SkPoint p1[] = { { 0, SK_ScalarInfinity }, { 1, 1 }, { 2, 2 }, { 3, 3 } }; const SkPoint p2[] = { { SK_ScalarNaN, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 } }; const SkPoint p3[] = { { 0, SK_ScalarNaN }, { 1, 1 }, { 2, 2 }, { 3, 3 } }; SkRect r; const SkRect zeror = { 0, 0, 0, 0 }; for (const SkPoint* pts : { p0, p1, p2, p3 }) { for (int n = 1; n <= 4; ++n) { bool isfinite = r.setBoundsCheck(pts, n); REPORTER_ASSERT(reporter, !isfinite); REPORTER_ASSERT(reporter, r == zeror); r.setBoundsNoCheck(pts, n); if (r.isFinite()) r.setBoundsNoCheck(pts, n); REPORTER_ASSERT(reporter, !r.isFinite()); } } } static float make_big_value(skiatest::Reporter* reporter) { // need to make a big value, one that will cause rect.width() to overflow to inf. // however, the windows compiler wants about this if it can see the big value inlined. // hence, this stupid trick to try to fool their compiler. SkASSERT(reporter); return reporter ? SK_ScalarMax * 0.75f : 0; } DEF_TEST(Rect_whOverflow, reporter) { const SkScalar big = make_big_value(reporter); const SkRect r = { -big, -big, big, big }; REPORTER_ASSERT(reporter, r.isFinite()); REPORTER_ASSERT(reporter, !SkIsFinite(r.width())); REPORTER_ASSERT(reporter, !SkIsFinite(r.height())); // ensure we can compute center even when the width/height might overflow REPORTER_ASSERT(reporter, SkIsFinite(r.centerX())); REPORTER_ASSERT(reporter, SkIsFinite(r.centerY())); // ensure we can compute halfWidth and halfHeight even when width/height might overflow, // i.e. for use computing the radii filling a rectangle. REPORTER_ASSERT(reporter, SkIsFinite(SkRectPriv::HalfWidth(r))); REPORTER_ASSERT(reporter, SkIsFinite(SkRectPriv::HalfHeight(r))); } DEF_TEST(Rect_subtract, reporter) { struct Expectation { SkIRect fA; SkIRect fB; SkIRect fExpected; bool fExact; }; SkIRect a = SkIRect::MakeLTRB(2, 3, 12, 15); Expectation tests[] = { // B contains A == empty rect {a, a.makeOutset(2, 2), SkIRect::MakeEmpty(), true}, // A contains B, producing 4x12 (left), 2x12 (right), 4x10(top), and 5x10(bottom) {a, {6, 6, 10, 10}, {2, 10, 12, 15}, false}, // A is empty, B is not == empty rect {SkIRect::MakeEmpty(), a, SkIRect::MakeEmpty(), true}, // A is not empty, B is empty == a {a, SkIRect::MakeEmpty(), a, true}, // A and B are empty == empty {SkIRect::MakeEmpty(), SkIRect::MakeEmpty(), SkIRect::MakeEmpty(), true}, // A and B do not intersect == a {a, {15, 17, 20, 40}, a, true}, // B cuts off left side of A, producing 6x12 (right) {a, {0, 0, 6, 20}, {6, 3, 12, 15}, true}, // B cuts off right side of A, producing 4x12 (left) {a, {6, 0, 20, 20}, {2, 3, 6, 15}, true}, // B cuts off top side of A, producing 10x9 (bottom) {a, {0, 0, 20, 6}, {2, 6, 12, 15}, true}, // B cuts off bottom side of A, producing 10x7 (top) {a, {0, 10, 20, 20}, {2, 3, 12, 10}, true}, // B splits A horizontally, producing 10x3 (top) or 10x5 (bottom) {a, {0, 6, 20, 10}, {2, 10, 12, 15}, false}, // B splits A vertically, producing 4x12 (left) or 2x12 (right) {a, {6, 0, 10, 20}, {2, 3, 6, 15}, false}, // B cuts top-left of A, producing 8x12 (right) or 10x11 (bottom) {a, {0, 0, 4, 4}, {2, 4, 12, 15}, false}, // B cuts top-right of A, producing 8x12 (left) or 10x8 (bottom) {a, {10, 0, 14, 7}, {2, 3, 10, 15}, false}, // B cuts bottom-left of A, producing 7x12 (right) or 10x9 (top) {a, {0, 12, 5, 20}, {2, 3, 12, 12}, false}, // B cuts bottom-right of A, producing 8x12 (left) or 10x9 (top) {a, {10, 12, 20, 20}, {2, 3, 10, 15}, false}, // B crosses the left of A, producing 4x12 (right) or 10x3 (top) or 10x5 (bottom) {a, {0, 6, 8, 10}, {2, 10, 12, 15}, false}, // B crosses the right side of A, producing 6x12 (left) or 10x3 (top) or 10x5 (bottom) {a, {8, 6, 20, 10}, {2, 3, 8, 15}, false}, // B crosses the top side of A, producing 4x12 (left) or 2x12 (right) or 10x8 (bottom) {a, {6, 0, 10, 7}, {2, 7, 12, 15}, false}, // B crosses the bottom side of A, producing 1x12 (left) or 4x12 (right) or 10x3 (top) {a, {4, 6, 8, 20}, {8, 3, 12, 15}, false} }; for (const Expectation& e : tests) { SkIRect difference; bool exact = SkRectPriv::Subtract(e.fA, e.fB, &difference); REPORTER_ASSERT(reporter, exact == e.fExact); REPORTER_ASSERT(reporter, difference == e.fExpected); // Generate equivalent tests for the SkRect case by moving the input rects by 0.5px SkRect af = SkRect::Make(e.fA); SkRect bf = SkRect::Make(e.fB); SkRect ef = SkRect::Make(e.fExpected); af.offset(0.5f, 0.5f); bf.offset(0.5f, 0.5f); ef.offset(0.5f, 0.5f); SkRect df; exact = SkRectPriv::Subtract(af, bf, &df); REPORTER_ASSERT(reporter, exact == e.fExact); REPORTER_ASSERT(reporter, (df.isEmpty() && ef.isEmpty()) || (df == ef)); } } DEF_TEST(Rect_subtract_overflow, reporter) { // This rectangle is sorted but whose int32 width overflows and appears negative (so // isEmpty() returns true). SkIRect reallyBig = SkIRect::MakeLTRB(-INT_MAX + 1000, 0, INT_MAX - 1000, 100); // However, because it's sorted, an intersection with a reasonably sized rectangle is still // valid so the assumption that SkIRect::Intersects() returns false when either input is // empty is invalid, leading to incorrect use of negative width (see crbug.com/1243206) SkIRect reasonable = SkIRect::MakeLTRB(-50, -5, 50, 125); // Ignoring overflow, "reallyBig - reasonable" should report exact = false and select either the // left or right portion of 'reallyBig' that excludes 'reasonable', e.g. // {-INT_MAX+1000, 0, -50, 100} or {150, 0, INT_MAX-1000, 100}. // This used to assert, but now it should be detected that 'reallyBig' overflows and is // technically empty, so the result should be itself and exact. SkIRect difference; bool exact = SkRectPriv::Subtract(reallyBig, reasonable, &difference); REPORTER_ASSERT(reporter, exact); REPORTER_ASSERT(reporter, difference == reallyBig); // Similarly, if we subtract 'reallyBig', since it's technically empty then we expect the // answer to remain 'reasonable'. exact = SkRectPriv::Subtract(reasonable, reallyBig, &difference); REPORTER_ASSERT(reporter, exact); REPORTER_ASSERT(reporter, difference == reasonable); } DEF_TEST(Rect_QuadContainsRect, reporter) { struct TestCase { std::string label; bool expect; SkMatrix m; SkIRect a; SkIRect b; float tol = 0.f; }; TestCase tests[] = { { "Identity matrix contains success", /*expect=*/true, /*m=*/SkMatrix::I(), /*a=*/{0,0,15,15}, /*b=*/{2,2,10,10} }, { "Identity matrix contains failure", /*expect=*/false, /*m=*/SkMatrix::I(), /*a=*/{0,0,15,15}, /*b=*/{-2,-2,10,10} }, { "Identity mapped rect contains itself", /*expect=*/true, /*m=*/SkMatrix::I(), /*a=*/{0,0,10,10}, /*b=*/{ 0,0,10,10} }, { "Scaled rect contains success", /*expect=*/true, /*m=*/SkMatrix::Scale(2.f, 3.4f), /*a=*/{0,0,4,4}, /*b=*/{1,1,6,6}}, { "Scaled rect contains failure", /*expect=*/false, /*m=*/SkMatrix::Scale(0.25f, 0.3f), /*a=*/{0,0,8,8}, /*b=*/{0,0,5,5}}, { "Rotate rect contains success", /*expect=*/true, /*m=*/SkMatrix::RotateDeg(45.f, {10.f, 10.f}), /*a=*/{0,0,20,20}, /*b=*/{3,3,17,17}}, { "Rotate rect contains failure", /*expect=*/false, /*m=*/SkMatrix::RotateDeg(45.f, {10.f, 10.f}), /*a=*/{0,0,20,20}, /*b=*/{2,2,18,18}}, { "Negative scale contains success", /*expect=*/true, /*m=*/SkMatrix::Scale(-1.f, 1.f), /*a=*/{0,0,10,10}, /*b=*/{-9,1,-1,9}}, { "Empty rect contains nothing", /*expect=*/false, /*m=*/SkMatrix::RotateDeg(45.f, {0.f, 0.f}), /*a=*/{10,10,10,20}, /*b=*/{10,14,10,16}}, { "MakeEmpty() contains nothing", /*expect=*/false, /*m=*/SkMatrix::RotateDeg(45.f, {0.f, 0.f}), /*a=*/SkIRect::MakeEmpty(), /*b=*/{0,0,1,1}}, { "Unsorted rect contains nothing", /*expect=*/false, /*m=*/SkMatrix::I(), /*a=*/{10,10,0,0}, /*b=*/{2,2,8,8}}, { "Unsorted rect is contained", /*expect=*/true, /*m=*/SkMatrix::I(), /*a=*/{0,0,10,10}, /*b=*/{8,8,2,2}}, // NOTE: preTranslate(65.f, 0.f) gives enough of a different matrix that the contains() // passes even without the epsilon allowance. { "Epsilon not contained", /*expect=*/true, /*m=*/SkMatrix::MakeAll( 0.984808f, 0.173648f, -98.4808f, -0.173648f, 0.984808f, 17.3648f, 0.000000f, 0.000000f, 1.0000f) .preTranslate(65.f, 0.f), /*a=*/{0, 0, 134, 215}, /*b=*/{0, 0, 100, 200}, /*tol=*/0.001f}, }; for (const TestCase& t : tests) { skiatest::ReporterContext c{reporter, t.label}; REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(t.m, t.a, t.b, t.tol) == t.expect); // Generate equivalent tests for SkRect and SkM44 by translating a by 1/2px and 'b' by // 1/2px in post-transform space SkVector bOffset = t.m.mapVector(0.5f, 0.5f); SkRect af = SkRect::Make(t.a).makeOffset(0.5f, 0.5f); SkRect bf = SkRect::Make(t.b).makeOffset(bOffset.fX, bOffset.fY); REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(SkM44(t.m), af, bf, t.tol) == t.expect); if (t.tol != 0.f) { // Expect the opposite result if we do not provide any tol. REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(t.m, t.a, t.b) == !t.expect); bOffset = t.m.mapVector(0.5f, 0.5f); af = SkRect::Make(t.a).makeOffset(0.5f, 0.5f); bf = SkRect::Make(t.b).makeOffset(bOffset.fX, bOffset.fY); REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(SkM44(t.m), af, bf) == !t.expect); } } // Test some more complicated scenarios with perspective that don't fit into the TestCase // structure as nicely. const SkRect a = SkRect::MakeLTRB(1.83f, -0.48f, 15.53f, 30.68f); // arbitrary // Perspective matrix where the mapped A has all corners' W > 0 { skiatest::ReporterContext c{reporter, "Perspective, W > 0"}; SkM44 p = SkM44::Perspective(0.01f, 10.f, SK_ScalarPI / 3.f); p.preTranslate(0.f, 5.f, -0.1f); p.preConcat(SkM44::Rotate({0.f, 1.f, 0.f}, 0.008f /* radians */)); REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(p, a, {4.f,10.f,20.f,45.f})); REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, a, {2.f,6.f,23.f,50.f})); } // Perspective matrix where the mapped A has some corners' W < 0 { skiatest::ReporterContext c{reporter, "Perspective, some W > 0"}; SkM44 p; p.setRow(3, {-.2f, -.6f, 0.f, 8.f}); REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(p, a, {10.f,50.f,20.f,60.f})); REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, a, {0.f,1.f,10.f,10.f})); } // Perspective matrix where the mapped A has all corners' W < 0) // For B, we use the previous success contains query above; a rectangle that is inside the // convex hull of the mapped corners of A, projecting each corner with its negative W; and a // rectangle that contains said convex hull. { skiatest::ReporterContext c{reporter, "Perspective, no W > 0"}; SkM44 p; p.setRow(3, {-.2f, -.6f, 0.f, 8.f}); const SkRect na = a.makeOffset(16.f, 31.f); REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, na, {10.f,50.f,20.f,60.f})); REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, na, {-1.1f,-1.8f,-1.f,-1.79f})); REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, na, {-1.9f,-2.3f,-0.4f,-1.6f})); } } DEF_TEST(Rect_ClosestDisjointEdge, r) { struct TestCase { std::string label; SkIRect dst; SkIRect expect; }; // All test cases will use this rect for the src, so dst can be conveniently relative to it. static constexpr SkIRect kSrc = {0,0,10,10}; TestCase tests[] = { { "src left edge", /*dst=*/{-15, -5, -2, 15}, /*expected=*/{0, 0, 1, 10}}, { "src left edge clipped to dst", /*dst=*/{-15, 2, -2, 8}, /*expected=*/{0, 2, 1, 8}}, { "src top-left corner", /*dst=*/{-15,-15, -2, -2}, /*expected=*/{0, 0, 1, 1}}, { "src top edge", /*dst=*/{ -5,-10, 15, -2}, /*expected=*/{0, 0, 10, 1}}, { "src top edge clipped to dst", /*dst=*/{ 2,-10, 8, -2}, /*expected=*/{2, 0, 8, 1}}, { "src top-right corner", /*dst=*/{ 15,-15, 20, -2}, /*expected=*/{9, 0, 10, 1}}, { "src right edge", /*dst=*/{ 15, -5, 20, 15}, /*expected=*/{9, 0, 10, 10}}, { "src right edge clipped to dst", /*dst=*/{ 15, 2, 20, 8}, /*expected=*/{9, 2, 10, 8}}, { "src bottom-right corner", /*dst=*/{ 15, 15, 20, 20}, /*expected=*/{9, 9, 10, 10}}, { "src bottom edge", /*dst=*/{ -5, 15, 15, 20}, /*expected=*/{0, 9, 10, 10}}, { "src bottom edge clipped to dst", /*dst=*/{ 2, 15, 8, 20}, /*expected=*/{2, 9, 8, 10}}, { "src bottom-left corner", /*dst=*/{-15, 15, -2, 20}, /*expected=*/{0, 9, 1, 10}}, { "src intersects dst high", /*dst=*/{ 2, 2, 15, 15}, /*expected=*/{2, 2, 10, 10}}, { "src intersects dst low", /*dst=*/{ -5, -5, 8, 8}, /*expected=*/{0, 0, 8, 8}}, { "src contains dst", /*dst=*/{ 2, 2, 8, 8}, /*expected=*/{2, 2, 8, 8}}, { "src contained in dst", /*dst=*/{ -5, -5, 15, 15}, /*expected=*/{0, 0, 10, 10}} }; for (const TestCase& t : tests) { skiatest::ReporterContext c{r, t.label}; SkIRect actual = SkRectPriv::ClosestDisjointEdge(kSrc, t.dst); REPORTER_ASSERT(r, actual == t.expect); } // Test emptiness of src and dst REPORTER_ASSERT(r, SkRectPriv::ClosestDisjointEdge(SkIRect::MakeEmpty(), {0,0,8,8}).isEmpty()); REPORTER_ASSERT(r, SkRectPriv::ClosestDisjointEdge({0,0,8,8}, SkIRect::MakeEmpty()).isEmpty()); REPORTER_ASSERT(r, SkRectPriv::ClosestDisjointEdge({10,10,-1,2}, {15,8,-2,20}).isEmpty()); } // Before the fix, this sequence would trigger a release_assert in the Tiler // in SkBitmapDevice.cpp DEF_TEST(big_tiled_rect_crbug_927075, reporter) { // since part of the regression test allocates a huge buffer, don't bother trying on // 32-bit devices (e.g. chromecast) so we avoid them failing to allocated. if (sizeof(void*) == 8) { const int w = 67108863; const int h = 1; const auto info = SkImageInfo::MakeN32Premul(w, h); auto surf = SkSurfaces::Raster(info); auto canvas = surf->getCanvas(); const SkRect r = { 257, 213, 67109120, 214 }; SkPaint paint; paint.setAntiAlias(true); canvas->translate(-r.fLeft, -r.fTop); canvas->drawRect(r, paint); } }