/* * Copyright 2023 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/base/SkQuads.h" #include "include/core/SkSpan.h" #include "include/core/SkTypes.h" #include "include/private/base/SkFloatingPoint.h" #include "src/pathops/SkPathOpsQuad.h" #include "tests/Test.h" #include #include #include #include #include #include #include #include static void testQuadRootsReal(skiatest::Reporter* reporter, const std::string& name, double A, double B, double C, SkSpan expectedRoots) { skiatest::ReporterContext subtest(reporter, name); // Validate test case REPORTER_ASSERT(reporter, expectedRoots.size() <= 2, "Invalid test case, up to 2 roots allowed"); for (size_t i = 0; i < expectedRoots.size(); i++) { double x = expectedRoots[i]; // A*x^2 + B*x + C should equal 0 double y = A * x * x + B * x + C; REPORTER_ASSERT(reporter, sk_double_nearly_zero(y), "Invalid test case root %zu. %.16f != 0", i, y); if (i > 0) { REPORTER_ASSERT(reporter, expectedRoots[i-1] <= expectedRoots[i], "Invalid test case root %zu. Roots should be sorted in ascending order", i); } } { skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); double roots[2] = {0, 0}; int rootCount = SkDQuad::RootsReal(A, B, C, roots); REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedRoots.size(), rootCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(roots), std::begin(roots) + rootCount); for (int i = 0; i < rootCount; i++) { if (sk_double_nearly_zero(expectedRoots[i])) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), "0 != %.16f at index %d", roots[i], i); } else { REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); } } } { skiatest::ReporterContext subsubtest(reporter, "SkQuads Implementation"); double roots[2] = {0, 0}; int rootCount = SkQuads::RootsReal(A, B, C, roots); REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedRoots.size(), rootCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(roots), std::begin(roots) + rootCount); for (int i = 0; i < rootCount; i++) { if (sk_double_nearly_zero(expectedRoots[i])) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), "0 != %.16f at index %d", roots[i], i); } else { REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); } } } } DEF_TEST(QuadRootsReal_ActualQuadratics, reporter) { // All answers are given with 16 significant digits (max for a double) or as an integer // when the answer is exact. testQuadRootsReal(reporter, "two roots 3x^2 - 20x - 40", 3, -20, -40, {-1.610798991397109, //-1.610798991397108632474265 from Wolfram Alpha 8.277465658063775, // 8.277465658063775299140932 from Wolfram Alpha }); // (2x - 4)(x + 17) testQuadRootsReal(reporter, "two roots 2x^2 + 30x - 68", 2, 30, -68, {-17, 2}); testQuadRootsReal(reporter, "two roots x^2 - 5", 1, 0, -5, {-2.236067977499790, //-2.236067977499789696409174 from Wolfram Alpha 2.236067977499790, // 2.236067977499789696409174 from Wolfram Alpha }); testQuadRootsReal(reporter, "one root x^2 - 2x + 1", 1, -2, 1, {1}); testQuadRootsReal(reporter, "no roots 5x^2 + 6x + 7", 5, 6, 7, {}); testQuadRootsReal(reporter, "no roots 4x^2 + 1", 4, 0, 1, {}); testQuadRootsReal(reporter, "one root is zero, another is big", 14, -13, 0, {0, 0.9285714285714286 //0.9285714285714285714285714 from Wolfram Alpha }); // Values from a failing test case observed during testing. testQuadRootsReal(reporter, "one root is zero, another is small", 0.2929016490705016, 0.0000030451558069, 0, {-0.00001039651301576329, 0}); testQuadRootsReal(reporter, "b and c are zero, a is positive 4x^2", 4, 0, 0, {0}); testQuadRootsReal(reporter, "b and c are zero, a is negative -4x^2", -4, 0, 0, {0}); testQuadRootsReal(reporter, "a and b are huge, c is zero", 4.3719914983870202e+291, 1.0269509510194551e+152, 0, // One solution is 0, the other is so close to zero it returns // true for sk_double_nearly_zero, so it is collapsed into one. {0}); testQuadRootsReal(reporter, "Very small A B, very large C", 0x1p-1055, 0x1.3000006p-1044, -0x1.c000008p+1009, // The roots are not in the range of doubles. {}); } DEF_TEST(QuadRootsReal_Linear, reporter) { testQuadRootsReal(reporter, "positive slope 5x + 6", 0, 5, 6, {-1.2}); testQuadRootsReal(reporter, "negative slope -3x - 9", 0, -3, -9, {-3.}); } DEF_TEST(QuadRootsReal_Constant, reporter) { testQuadRootsReal(reporter, "No intersections y = -10", 0, 0, -10, {}); testQuadRootsReal(reporter, "Infinite solutions y = 0", 0, 0, 0, {0.}); } DEF_TEST(QuadRootsReal_NonFiniteNumbers, reporter) { // The Pathops implementation does not check for infinities nor nans in all cases. double roots[2]; REPORTER_ASSERT(reporter, SkQuads::RootsReal(DBL_MAX, 0, DBL_MAX, roots) == 0, "Discriminant is negative infinity" ); REPORTER_ASSERT(reporter, SkQuads::RootsReal(DBL_MAX, DBL_MAX, DBL_MAX, roots) == 0, "Double Overflow" ); REPORTER_ASSERT(reporter, SkQuads::RootsReal(1, NAN, -3, roots) == 0, "Nan quadratic" ); REPORTER_ASSERT(reporter, SkQuads::RootsReal(0, NAN, 3, roots) == 0, "Nan linear" ); REPORTER_ASSERT(reporter, SkQuads::RootsReal(0, 0, NAN, roots) == 0, "Nan constant" ); } // Test the discriminant using // Use quadratics of the form F_n * x^2 - 2 * F_(n-1) * x + F_(n-2). // This has a discriminant of F_(n-1)^2 - F_n * F_(n-2) = 1 if n is even else -1. DEF_TEST(QuadDiscriminant_Fibonacci, reporter) { // n, n-1, n-2 int64_t F[] = {1, 1, 0}; // F_79 just fits in the 53 significant bits of a double. for (int i = 2; i < 79; ++i) { F[0] = F[1] + F[2]; const int expectedDiscriminant = i % 2 == 0 ? 1 : -1; REPORTER_ASSERT(reporter, SkQuads::Discriminant(F[0], F[1], F[2]) == expectedDiscriminant); F[2] = F[1]; F[1] = F[0]; } } DEF_TEST(QuadRoots_Basic, reporter) { { // (x - 1) (x - 1) normal quadratic form A = 1, B = 2, C =1. auto [discriminant, r0, r1] = SkQuads::Roots(1, -0.5 * -2, 1); REPORTER_ASSERT(reporter, discriminant == 0); REPORTER_ASSERT(reporter, r0 == 1 && r1 == 1); } { // (x + 2) (x + 2) normal quadratic form A = 1, B = 4, C = 4. auto [discriminant, r0, r1] = SkQuads::Roots(1, -0.5 * 4, 4); REPORTER_ASSERT(reporter, discriminant == 0); REPORTER_ASSERT(reporter, r0 == -2 && r1 == -2); } } // Test the roots using // Use quadratics of the form F_n * x^2 - 2 * F_(n-1) * x + F_(n-2). // The roots are (F_(n–1) ± 1)/F_n if n is even otherwise there are no roots. DEF_TEST(QuadRoots_Fibonacci, reporter) { // n, n-1, n-2 int64_t F[] = {1, 1, 0}; // F_79 just fits in the 53 significant bits of a double. for (int i = 2; i < 79; ++i) { F[0] = F[1] + F[2]; const int expectedDiscriminant = i % 2 == 0 ? 1 : -1; auto [discriminant, r0, r1] = SkQuads::Roots(F[0], F[1], F[2]); REPORTER_ASSERT(reporter, discriminant == expectedDiscriminant); // There are only real roots when i is even. if (i % 2 == 0) { const double expectedLittle = ((double)F[1] - 1) / F[0]; const double expectedBig = ((double)F[1] + 1) / F[0]; if (r0 <= r1) { REPORTER_ASSERT(reporter, r0 == expectedLittle); REPORTER_ASSERT(reporter, r1 == expectedBig); } else { REPORTER_ASSERT(reporter, r1 == expectedLittle); REPORTER_ASSERT(reporter, r0 == expectedBig); } } else { REPORTER_ASSERT(reporter, std::isnan(r0)); REPORTER_ASSERT(reporter, std::isnan(r1)); } F[2] = F[1]; F[1] = F[0]; } } // These are test cases used in the paper "The Ins and Outs of Solving Quadratic Equations with // Floating-Point Arithmetic" located at // https://github.com/goualard-f/QuadraticEquation.jl/blob/main/test/tests.jl struct TestCase { const double A; const double B; const double C; const double answerLo; const double answerHi; }; DEF_TEST(QuadRoots_Hard, reporter) { const double nan = std::numeric_limits::quiet_NaN(); const double infinity = std::numeric_limits::infinity(); auto specialEqual = [] (double actual, double test) { if (std::isnan(actual)) { return std::isnan(test); } if (std::isinf(actual)) { return std::isinf(test); } // Comparison function from the paper "The Ins and Outs ...." const double errorFactor = std::sqrt(std::numeric_limits::epsilon()); return std::abs(test - actual) <= errorFactor * std::max(std::abs(test), std::abs(actual)); }; auto p2 = [](double a) { return std::exp2(a); }; TestCase cases[] = { // no real solutions {2, 0, 3, nan, nan}, {1, 1, 1, nan, nan}, {2.0 * p2(600), 0, 2.0 * p2(600), nan, nan}, {-2.0 * p2(600), 0, -2.0 * p2(600), nan, nan}, // degenerate cases {0, 0, 0, infinity, infinity}, {0, 1, 0, 0, 0}, {0, 1, 2, -2, -2}, {0, 3, 4, -4.0/3.0, -4.0/3.0}, {0, p2(600), -p2(600), 1, 1}, {0, p2(600), p2(600), -1, -1}, {0, p2(-600), p2(600), -infinity, -infinity}, {0, p2(600), p2(-600), 0, 0}, {0, 2, -1.0e-323, 5.0e-324, 5.0e-324}, {3, 0, 0, 0, 0}, {p2(600), 0, 0, 0, 0}, {2, 0, -3, -sqrt(3.0/2.0), sqrt(3.0/2.0)}, // {p2(600), 0, -p2(600), -1, 1}, determinant is infinity {3, 2, 0, -2.0/3.0, 0}, // {p2(600), p2(700), 0, -p2(100), 0}, {p2(-600), p2(700), 0, -infinity, 0}, {p2(600), p2(-700), 0, 0, 0}, // two solutions tests {1, -1, -1, -0.6180339887498948, 1.618033988749895}, {1, 1 + p2(-52), 0.25 + p2(-53), (-1 - p2(-51)) / 2.0, -0.5}, {1, p2(-511) + p2(-563), std::exp2(-1024), -7.458340888372987e-155,-7.458340574027429e-155}, {1, p2(27), 0.75, -134217728.0, -5.587935447692871e-09}, {1, -1e9, 1, 1e-09, 1000000000.0}, // {1.3407807929942596e154, -1.3407807929942596e154, -1.3407807929942596e154, -0.6180339887498948, 1.618033988749895}, {p2(600), 0.5, -p2(-600), -3.086568504549085e-181, 1.8816085719976428e-181}, // {p2(600), 0.5, -p2(600), -1.0, 1.0}, // {8.0, p2(800),-p2(500), -8.335018041099818e+239, 4.909093465297727e-91}, {1, p2(26), -0.125, -67108864.0, 1.862645149230957e-09}, // {p2(-1073), -p2(-1073), -p2(-1073), -0.6180339887498948,1.618033988749895}, {p2(600), -p2(-600), -p2(-600), -2.409919865102884e-181, 2.409919865102884e-181}, // Tests in Nivergelt paper {-158114166017, 316227766017, -158113600000, 0.99999642020057874, 1}, {-312499999999.0, 707106781186.0, -400000000000.0, 1.131369396027, 1.131372303775}, {-67, 134, -65, 0.82722631488372798, 1.17277368511627202}, {0.247260273973, 0.994520547945, -0.138627953316, -4.157030027041105, 0.1348693622211607}, {1, -2300000, 2.0e11, 90518.994979145, 2209481.005020854}, {1.5*p2(-1026), 0, -p2(1022), -1.4678102981723264e308, 1.4678102981723264e308}, // one solution tests {1.5*p2(-1026), 0, -p2(1022), -1.4678102981723264e308, 1.4678102981723264e308}, }; for (auto testCase : cases) { double A = testCase.A, B = testCase.B, C = testCase.C, answerLo = testCase.answerLo, answerHi = testCase.answerHi; if (SkIsFinite(answerLo, answerHi)) { SkASSERT(answerLo <= answerHi); } auto [discriminate, r0, r1] = SkQuads::Roots(A, -0.5*B, C); double rLo = std::min(r0, r1), rHi = std::max(r0, r1); REPORTER_ASSERT(reporter, specialEqual(rLo, answerLo)); REPORTER_ASSERT(reporter, specialEqual(rHi, answerHi)); } }