/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkContourMeasure.h" #include "include/core/SkPath.h" #include "include/core/SkPathMeasure.h" #include "include/core/SkPathTypes.h" #include "include/core/SkPoint.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkTypes.h" #include "src/core/SkPathMeasurePriv.h" #include "src/core/SkPathPriv.h" #include "tests/Test.h" #include #include #include #include static void test_small_segment3(skiatest::Reporter* reporter) { SkPath path; const SkPoint pts[] = { { 0, 0 }, { 100000000000.0f, 100000000000.0f }, { 0, 0 }, { 10, 10 }, { 10, 10 }, { 0, 0 }, { 10, 10 } }; path.moveTo(pts[0]); for (size_t i = 1; i < std::size(pts); i += 3) { path.cubicTo(pts[i], pts[i + 1], pts[i + 2]); } SkPathMeasure meas(path, false); meas.getLength(); // Now check that we cap the segment size even with very large resolution scales. // Earlier versions allowed the pathmeasure to recurse without limit in the face // of a very large scale. // // Before this limit, the above meas had 15K segments, and when built with // a resScale of 100, it had 184K segments -- for 1 cubic! { auto n = SkPathMeasurePriv::CountSegments(meas); REPORTER_ASSERT(reporter, n < 300); constexpr float resScale = 1000; n = SkPathMeasurePriv::CountSegments(SkPathMeasure(path, false, resScale)); REPORTER_ASSERT(reporter, n < 300); } } static void test_small_segment2() { SkPath path; const SkPoint pts[] = { { 0, 0 }, { 100000000000.0f, 100000000000.0f }, { 0, 0 }, { 10, 10 }, { 0, 0 }, }; path.moveTo(pts[0]); for (size_t i = 1; i < std::size(pts); i += 2) { path.quadTo(pts[i], pts[i + 1]); } SkPathMeasure meas(path, false); meas.getLength(); } static void test_small_segment() { SkPath path; const SkPoint pts[] = { { 100000, 100000}, // big jump between these points, makes a big segment { 1.0005f, 0.9999f }, // tiny (non-zero) jump between these points { SK_Scalar1, SK_Scalar1 }, }; path.moveTo(pts[0]); for (size_t i = 1; i < std::size(pts); ++i) { path.lineTo(pts[i]); } SkPathMeasure meas(path, false); /* this would assert (before a fix) because we added a segment with the same length as the prev segment, due to the follow (bad) pattern d = distance(pts[0], pts[1]); distance += d; seg->fDistance = distance; SkASSERT(d > 0); // TRUE SkASSERT(seg->fDistance > prevSeg->fDistance); // FALSE This 2nd assert failes because (distance += d) didn't affect distance because distance >>> d. */ meas.getLength(); } DEF_TEST(PathMeasure, reporter) { SkPath path; path.moveTo(0, 0); path.lineTo(SK_Scalar1, 0); path.lineTo(SK_Scalar1, SK_Scalar1); path.lineTo(0, SK_Scalar1); SkPathMeasure meas(path, true); SkScalar length = meas.getLength(); SkASSERT(length == SK_Scalar1*4); path.reset(); path.moveTo(0, 0); path.lineTo(SK_Scalar1*3, SK_Scalar1*4); meas.setPath(&path, false); length = meas.getLength(); REPORTER_ASSERT(reporter, length == SK_Scalar1*5); path.reset(); path.addCircle(0, 0, SK_Scalar1); meas.setPath(&path, true); length = meas.getLength(); // SkDebugf("circle arc-length = %g\n", length); // Test the behavior following a close not followed by a move. path.reset(); path.lineTo(SK_Scalar1, 0); path.lineTo(SK_Scalar1, SK_Scalar1); path.lineTo(0, SK_Scalar1); path.close(); path.lineTo(-SK_Scalar1, 0); meas.setPath(&path, false); length = meas.getLength(); REPORTER_ASSERT(reporter, length == SK_Scalar1 * 4); meas.nextContour(); length = meas.getLength(); REPORTER_ASSERT(reporter, length == SK_Scalar1); SkPoint position; SkVector tangent; REPORTER_ASSERT(reporter, meas.getPosTan(SK_ScalarHalf, &position, &tangent)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(position.fX, -SK_ScalarHalf, 0.0001f)); REPORTER_ASSERT(reporter, position.fY == 0); REPORTER_ASSERT(reporter, tangent.fX == -SK_Scalar1); REPORTER_ASSERT(reporter, tangent.fY == 0); // Test degenerate paths path.reset(); path.moveTo(0, 0); path.lineTo(0, 0); path.lineTo(SK_Scalar1, 0); path.quadTo(SK_Scalar1, 0, SK_Scalar1, 0); path.quadTo(SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1 * 2); path.cubicTo(SK_Scalar1, SK_Scalar1 * 2, SK_Scalar1, SK_Scalar1 * 2, SK_Scalar1, SK_Scalar1 * 2); path.cubicTo(SK_Scalar1*2, SK_Scalar1 * 2, SK_Scalar1*3, SK_Scalar1 * 2, SK_Scalar1*4, SK_Scalar1 * 2); meas.setPath(&path, false); length = meas.getLength(); REPORTER_ASSERT(reporter, length == SK_Scalar1 * 6); REPORTER_ASSERT(reporter, meas.getPosTan(SK_ScalarHalf, &position, &tangent)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(position.fX, SK_ScalarHalf, 0.0001f)); REPORTER_ASSERT(reporter, position.fY == 0); REPORTER_ASSERT(reporter, tangent.fX == SK_Scalar1); REPORTER_ASSERT(reporter, tangent.fY == 0); REPORTER_ASSERT(reporter, meas.getPosTan(2.5f, &position, &tangent)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(position.fX, SK_Scalar1, 0.0001f)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(position.fY, 1.5f)); REPORTER_ASSERT(reporter, tangent.fX == 0); REPORTER_ASSERT(reporter, tangent.fY == SK_Scalar1); REPORTER_ASSERT(reporter, meas.getPosTan(4.5f, &position, &tangent)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(position.fX, 2.5f, 0.0001f)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(position.fY, 2.0f, 0.0001f)); REPORTER_ASSERT(reporter, tangent.fX == SK_Scalar1); REPORTER_ASSERT(reporter, tangent.fY == 0); path.reset(); path.moveTo(0, 0); path.lineTo(SK_Scalar1, 0); path.moveTo(SK_Scalar1, SK_Scalar1); path.moveTo(SK_Scalar1 * 2, SK_Scalar1 * 2); path.lineTo(SK_Scalar1, SK_Scalar1 * 2); meas.setPath(&path, false); length = meas.getLength(); REPORTER_ASSERT(reporter, length == SK_Scalar1); REPORTER_ASSERT(reporter, meas.getPosTan(SK_ScalarHalf, &position, &tangent)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(position.fX, SK_ScalarHalf, 0.0001f)); REPORTER_ASSERT(reporter, position.fY == 0); REPORTER_ASSERT(reporter, tangent.fX == SK_Scalar1); REPORTER_ASSERT(reporter, tangent.fY == 0); meas.nextContour(); length = meas.getLength(); REPORTER_ASSERT(reporter, length == SK_Scalar1); REPORTER_ASSERT(reporter, meas.getPosTan(SK_ScalarHalf, &position, &tangent)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(position.fX, 1.5f, 0.0001f)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(position.fY, 2.0f, 0.0001f)); REPORTER_ASSERT(reporter, tangent.fX == -SK_Scalar1); REPORTER_ASSERT(reporter, tangent.fY == 0); test_small_segment(); test_small_segment2(); test_small_segment3(reporter); // SkPathMeasure isn't copyable, but it should be move-able SkPathMeasure meas2(std::move(meas)); meas = std::move(meas2); } DEF_TEST(PathMeasureConic, reporter) { SkPoint stdP, hiP, pts[] = {{0,0}, {100,0}, {100,0}}; SkPath p; p.moveTo(0, 0); p.conicTo(pts[1], pts[2], 1); SkPathMeasure stdm(p, false); REPORTER_ASSERT(reporter, stdm.getPosTan(20, &stdP, nullptr)); p.reset(); p.moveTo(0, 0); p.conicTo(pts[1], pts[2], 10); stdm.setPath(&p, false); REPORTER_ASSERT(reporter, stdm.getPosTan(20, &hiP, nullptr)); REPORTER_ASSERT(reporter, 19.5f < stdP.fX && stdP.fX < 20.5f); REPORTER_ASSERT(reporter, 19.5f < hiP.fX && hiP.fX < 20.5f); } // Regression test for b/26425223 DEF_TEST(PathMeasure_nextctr, reporter) { SkPath path; path.moveTo(0, 0); path.lineTo(100, 0); SkPathMeasure meas(path, false); // only expect 1 contour, even if we didn't explicitly call getLength() ourselves REPORTER_ASSERT(reporter, !meas.nextContour()); } static void test_90_degrees(const sk_sp& cm, SkScalar radius, skiatest::Reporter* reporter) { SkPoint pos; SkVector tan; SkScalar distance = cm->length() / 4; bool success = cm->getPosTan(distance, &pos, &tan); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pos.fX, 0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pos.fY, radius)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(tan.fX, -1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(tan.fY, 0)); } static void test_empty_contours(skiatest::Reporter* reporter) { SkPath path; path.moveTo(0, 0).lineTo(100, 100).lineTo(200, 100); path.moveTo(2, 2).moveTo(3, 3); // zero-length(s) path.moveTo(4, 4).close().close().close(); // zero-length path.moveTo(5, 5).lineTo(5, 5); // zero-length path.moveTo(5, 5).lineTo(5, 5).close(); // zero-length path.moveTo(5, 5).lineTo(5, 5).close().close(); // zero-length path.moveTo(6, 6).lineTo(7, 7); path.moveTo(10, 10); // zero-length SkContourMeasureIter fact(path, false); // given the above construction, we expect only 2 contours (the rest are "empty") REPORTER_ASSERT(reporter, fact.next()); REPORTER_ASSERT(reporter, fact.next()); REPORTER_ASSERT(reporter, !fact.next()); } static void test_MLM_contours(skiatest::Reporter* reporter) { SkPath path; // This odd sequence (with a trailing moveTo) used to return a 2nd contour, which is // wrong, since the contract for a measure is to only return non-zero length contours. path.moveTo(10, 10).lineTo(20, 20).moveTo(30, 30); for (bool forceClosed : {false, true}) { SkContourMeasureIter fact(path, forceClosed); REPORTER_ASSERT(reporter, fact.next()); REPORTER_ASSERT(reporter, !fact.next()); } } static void test_shrink(skiatest::Reporter* reporter) { SkPath path; path.addRect({1, 2, 3, 4}); path.incReserve(100); // give shrinkToFit() something to do SkContourMeasureIter iter(path, false); // shrinks the allocation, possibly relocating the underlying arrays. // The contouremasureiter needs to have safely copied path, to be unaffected by this // change to "path". SkPathPriv::ShrinkToFit(&path); // Note, this failed (before the fix) on an ASAN build, which notices that we were // using an internal iterator of the passed-in path, not our copy. while (iter.next()) ; } DEF_TEST(contour_measure, reporter) { SkPath path; path.addCircle(0, 0, 100); path.addCircle(0, 0, 10); SkContourMeasureIter fact(path, false); path.reset(); // we should not need the path avert we created the factory auto cm0 = fact.next(); auto cm1 = fact.next(); REPORTER_ASSERT(reporter, cm0->isClosed()); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(cm0->length(), 200 * SK_ScalarPI, 1.5f)); test_90_degrees(cm0, 100, reporter); REPORTER_ASSERT(reporter, cm1->isClosed()); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(cm1->length(), 20 * SK_ScalarPI, 0.5f)); test_90_degrees(cm1, 10, reporter); auto cm2 = fact.next(); REPORTER_ASSERT(reporter, !cm2); test_empty_contours(reporter); test_MLM_contours(reporter); test_shrink(reporter); } DEF_TEST(contour_measure_verbs, reporter) { SkPath path; path.moveTo(10, 10); path.lineTo(10, 30); path.lineTo(30, 30); path.quadTo({40, 30}, {40, 40}); path.cubicTo({50, 40}, {50, 50}, {40, 50}); path.conicTo({50, 50}, {50, 60}, 1.2f); SkContourMeasureIter measure(path, false); sk_sp cmeasure = measure.next(); REPORTER_ASSERT(reporter, cmeasure); SkContourMeasure::ForwardVerbIterator viter = cmeasure->begin(); { REPORTER_ASSERT(reporter, viter != cmeasure->end()); const auto vmeasure = *viter; REPORTER_ASSERT(reporter, vmeasure.fVerb == SkPathVerb::kLine); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(vmeasure.fDistance, 20)); REPORTER_ASSERT(reporter, vmeasure.fPts.size() == 2); REPORTER_ASSERT(reporter, vmeasure.fPts[0] == SkPoint::Make(10, 10)); REPORTER_ASSERT(reporter, vmeasure.fPts[1] == SkPoint::Make(10, 30)); } ++viter; { REPORTER_ASSERT(reporter, viter != cmeasure->end()); const auto vmeasure = *viter; REPORTER_ASSERT(reporter, vmeasure.fVerb == SkPathVerb::kLine); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(vmeasure.fDistance, 40)); REPORTER_ASSERT(reporter, vmeasure.fPts.size() == 2); REPORTER_ASSERT(reporter, vmeasure.fPts[0] == SkPoint::Make(10, 30)); REPORTER_ASSERT(reporter, vmeasure.fPts[1] == SkPoint::Make(30, 30)); } ++viter; { REPORTER_ASSERT(reporter, viter != cmeasure->end()); const auto vmeasure = *viter; REPORTER_ASSERT(reporter, vmeasure.fVerb == SkPathVerb::kQuad); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(vmeasure.fDistance, 56.127525f)); REPORTER_ASSERT(reporter, vmeasure.fPts.size() == 3); REPORTER_ASSERT(reporter, vmeasure.fPts[0] == SkPoint::Make(30, 30)); REPORTER_ASSERT(reporter, vmeasure.fPts[1] == SkPoint::Make(40, 30)); REPORTER_ASSERT(reporter, vmeasure.fPts[2] == SkPoint::Make(40, 40)); } ++viter; { REPORTER_ASSERT(reporter, viter != cmeasure->end()); const auto vmeasure = *viter; REPORTER_ASSERT(reporter, vmeasure.fVerb == SkPathVerb::kCubic); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(vmeasure.fDistance, 76.004692f)); REPORTER_ASSERT(reporter, vmeasure.fPts.size() == 4); REPORTER_ASSERT(reporter, vmeasure.fPts[0] == SkPoint::Make(40, 40)); REPORTER_ASSERT(reporter, vmeasure.fPts[1] == SkPoint::Make(50, 40)); REPORTER_ASSERT(reporter, vmeasure.fPts[2] == SkPoint::Make(50, 50)); REPORTER_ASSERT(reporter, vmeasure.fPts[3] == SkPoint::Make(40, 50)); } ++viter; { REPORTER_ASSERT(reporter, viter != cmeasure->end()); const auto vmeasure = *viter; REPORTER_ASSERT(reporter, vmeasure.fVerb == SkPathVerb::kConic); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(vmeasure.fDistance, 92.428185f)); REPORTER_ASSERT(reporter, vmeasure.fPts.size() == 4); REPORTER_ASSERT(reporter, vmeasure.fPts[0] == SkPoint::Make(40, 50)); REPORTER_ASSERT(reporter, vmeasure.fPts[1] == SkPoint::Make(1.2f, 0)); REPORTER_ASSERT(reporter, vmeasure.fPts[2] == SkPoint::Make(50, 50)); REPORTER_ASSERT(reporter, vmeasure.fPts[3] == SkPoint::Make(50, 60)); // The last verb distance should also match the contour length. REPORTER_ASSERT(reporter, SkScalarNearlyEqual(vmeasure.fDistance, cmeasure->length())); } ++viter; { REPORTER_ASSERT(reporter, viter == cmeasure->end()); } // Exercise the range iterator form. float current_distance = 0; size_t verb_count = 0; for (const auto vmeasure : *cmeasure) { REPORTER_ASSERT(reporter, vmeasure.fDistance > current_distance); current_distance = vmeasure.fDistance; verb_count++; } REPORTER_ASSERT(reporter, verb_count == 5); }