/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/base/SkHalf.h" #include "src/base/SkRandom.h" #include "src/base/SkVx.h" #include "tests/Test.h" #include #include #include // float = s[31] e[30:23] m[22:0] static constexpr uint32_t kF32_Sign = 1 << 31; static constexpr uint32_t kF32_Exp = 255 << 23; static constexpr uint32_t kF32_Mant = ~(kF32_Sign | kF32_Exp); static constexpr int kF32_Bias = 127; // half = s[15] e[14:10] m[9:0] static constexpr uint32_t kF16_Sign = 1 << 15; static constexpr uint32_t kF16_Exp = 31 << 10; static constexpr uint32_t kF16_Mant = ~(kF16_Sign | kF16_Exp); static constexpr int kF16_Bias = 15; DEF_TEST(FloatToHalf, r) { #if 0 // Exhaustive test (slow) for (uint64_t bits = 0; bits <= 0xffffffff; bits++) { if (bits % (1 << 24) == 0) { SkDebugf("progress 0x%08X\n", (int) bits); } #else // Check all 8-bit exponents and all 10-bit upper mantissas, with a combination of all 0s, // all 1s, and random bits in the remaining 13 fractional mantissa bits. static constexpr int kTestCount = /*sign*/2 * /*exp*/255 * /*man*/1024 * /*frac*/8; SkRandom rand; for (int i = 0; i < kTestCount; ++i) { uint32_t sign = (i & 1) << 31; uint32_t exp = ((i >> 1) & 255) << 23; uint32_t man = ((i >> 9) & 1023) << 13; uint32_t frac = ((i >> 19) & 7); // 0 and 1 are special, 6 other values are random bits uint64_t bits = sign | exp | man | ((frac == 0) ? 0 : // all 0s in lost fraction (frac == 1) ? (1 << 13) - 1 // all 1s in lost fraction : rand.nextBits(13)); // random lost bits #endif float f = SkBits2Float(bits); if (SkIsNaN(f)) { #ifndef SK_DEBUG // We want float->half and half->float to play well with infinities and max // representable values in the 16-bit precision, but NaNs should have been caught ahead // of time, so the conversion logic is allowed to convert them to infinities in release // builds. We skip calling `to_half` in debug since it asserts that NaN isn't passed in. uint16_t actual2 = to_half(skvx::float2{f})[0]; uint16_t actual4 = to_half(skvx::float4{f})[0]; REPORTER_ASSERT(r, (actual2 & kF16_Exp) == kF16_Exp); REPORTER_ASSERT(r, (actual4 & kF16_Exp) == kF16_Exp); #endif continue; } uint32_t s32 = (uint32_t) bits & kF32_Sign; uint32_t e32 = (uint32_t) bits & kF32_Exp; uint32_t m32 = (uint32_t) bits & kF32_Mant; // Half floats can represent a real exponent from -14 to 15. Anything less than that would // need to be a denorm, which is flushed to zero, or overflows and becomes infinity. int e = (int) (e32 >> 23) - kF32_Bias; // the true signed exponent uint32_t s16 = s32 >> 16; uint32_t e16; uint32_t m16; if (e < -kF16_Bias-10 || (e == -kF16_Bias-10 && m32 <= 0)) { // Rounds to zero e16 = 0; m16 = 0; } else if ((e32 | m32) < 0x38fe'0000) { // A subnormal non-zero f16 value e16 = 0; m16 = 0xffff & sk_bit_cast(0.5f + SkBits2Float(e32 | m32)); } else if ((e32 | m32) < 0x3880'0000) { // Rounds up to smallest normal f16 (2^-14) e16 = 1; m16 = 0; } else if (e > kF16_Bias) { // Either f32 infinity or a value larger than what rounds down to the max normal half. e16 = kF16_Exp; m16 = 0; } else { // A normal half value, which is rounded towards nearest even. e16 = (uint32_t) (e + kF16_Bias) << 10; SkASSERT((e16 & ~kF16_Exp) == 0); // round to nearest even m32 += 0xfff + ((m32>>13)&1); if (m32 > kF32_Mant) { // overflow e16 += (1 << 10); m16 = 0; } else { m16 = m32 >> 13; } } // Expected conversion from f32 to f16 uint16_t expected = s16 | e16 | m16; uint16_t actual2 = to_half(skvx::float2{f})[0]; uint16_t actual4 = to_half(skvx::float4{f})[0]; REPORTER_ASSERT(r, expected == actual2); REPORTER_ASSERT(r, expected == actual4); } } DEF_TEST(FloatToHalf_Constants, r) { auto to_half = [](float f) { return skvx::to_half(skvx::float4{f})[0]; }; REPORTER_ASSERT(r, 0 == to_half(0.f)); REPORTER_ASSERT(r, kF16_Sign == to_half(-0.f)); REPORTER_ASSERT(r, SK_Half1 == to_half(1.f)); REPORTER_ASSERT(r, (kF16_Sign | SK_Half1) == to_half(-1.f)); REPORTER_ASSERT(r, SK_HalfMax == to_half(65504.f)); REPORTER_ASSERT(r, SK_HalfMin == to_half(1.f / (1 << 14))); } DEF_TEST(HalfToFloat, r) { for (uint32_t bits = 0; bits <= 0xffff; bits++) { uint32_t s16 = bits & kF16_Sign; uint32_t e16 = bits & kF16_Exp; uint32_t m16 = bits & kF16_Mant; float actual2 = from_half(skvx::half2{(uint16_t) bits})[0]; float actual4 = from_half(skvx::half4{(uint16_t) bits})[0]; if (e16 == 0) { // De-normal f16 or a zero = 2^-14 * 0.[m16] = 2^-14 * 2^-10 * [m16].0 float expected = (1.f / (1 << 14)) * (1.f / (1 << 10)) * m16; if (s16 != 0) { expected *= -1.f; } REPORTER_ASSERT(r, actual2 == expected); REPORTER_ASSERT(r, actual4 == expected); } else if (e16 == kF16_Exp) { if (m16 != 0) { // A NaN stays NaN REPORTER_ASSERT(r, SkIsNaN(actual2)); REPORTER_ASSERT(r, SkIsNaN(actual4)); } else { // +/- infinity stays infinite if (s16) { REPORTER_ASSERT(r, actual2 == SK_ScalarNegativeInfinity); REPORTER_ASSERT(r, actual4 == SK_ScalarNegativeInfinity); } else { REPORTER_ASSERT(r, actual2 == SK_ScalarInfinity); REPORTER_ASSERT(r, actual4 == SK_ScalarInfinity); } } } else { // A normal f16 is exactly representable in f32 uint32_t s32 = s16 << 16; uint32_t e32 = ((e16 >> 10) + kF32_Bias - kF16_Bias) << 23; uint32_t m32 = m16 << 13; float expected = SkBits2Float(s32 | e32 | m32); REPORTER_ASSERT(r, actual2 == expected); REPORTER_ASSERT(r, actual4 == expected); } } }