/* * Copyright 2023 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkSpan.h" #include "include/core/SkTypes.h" #include "include/private/base/SkFloatingPoint.h" #include "src/base/SkBezierCurves.h" #include "src/pathops/SkPathOpsCubic.h" #include "src/pathops/SkPathOpsPoint.h" #include "src/pathops/SkPathOpsTypes.h" #include "tests/Test.h" #include #include #include #include #include // Grouping the test inputs into DoublePoints makes the test cases easier to read. struct DoublePoint { double x; double y; }; static bool nearly_equal(double expected, double actual) { if (sk_double_nearly_zero(expected)) { return sk_double_nearly_zero(actual); } return sk_doubles_nearly_equal_ulps(expected, actual, 64); } static void testChopCubicAtT(skiatest::Reporter* reporter, const std::string& name, SkSpan curveInputs, double t, SkSpan expectedOutputs) { skiatest::ReporterContext subtest(reporter, name); REPORTER_ASSERT(reporter, curveInputs.size() == 4, "Invalid test case. Should have 4 input points."); REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0, "Invalid test case. t %f should be in [0, 1]", t); // Two cubic curves, sharing an input point REPORTER_ASSERT(reporter, expectedOutputs.size() == 7, "Invalid test case. Should have 7 output points."); { skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); SkDCubic input; std::memcpy(&input.fPts[0], curveInputs.begin(), 8 * sizeof(double)); SkDCubicPair output = input.chopAt(t); for (int i = 0; i < 7; ++i) { REPORTER_ASSERT(reporter, nearly_equal(expectedOutputs[i].x, output.pts[i].fX) && nearly_equal(expectedOutputs[i].y, output.pts[i].fY), "(%.16f, %.16f) != (%.16f, %.16f) at index %d", expectedOutputs[i].x, expectedOutputs[i].y, output.pts[i].fX, output.pts[i].fY, i); } } { skiatest::ReporterContext subsubtest(reporter, "SkBezier Implementation"); double input[8]; double output[14]; std::memcpy(input, curveInputs.begin(), 8 * sizeof(double)); SkBezierCubic::Subdivide(input, t, output); for (int i = 0; i < 7; ++i) { REPORTER_ASSERT(reporter, nearly_equal(expectedOutputs[i].x, output[i*2]) && nearly_equal(expectedOutputs[i].y, output[i*2 + 1]), "(%.16f, %.16f) != (%.16f, %.16f) at index %d", expectedOutputs[i].x, expectedOutputs[i].y, output[i*2], output[i*2 + 1], i); } } } DEF_TEST(ChopCubicAtT_NormalizedCubic, reporter) { testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.0, {{ 0.000000, 0.000000 }, { 0.000000, 0.000000 }, { 0.000000, 0.000000 }, { 0.000000, 0.000000 }, { 0.120000, 1.800000 }, { 0.920000, -1.650000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.1", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.1, {{ 0.000000, 0.000000 }, { 0.012000, 0.180000 }, { 0.030800, 0.307500 }, { 0.055000, 0.393850 }, { 0.272800, 1.171000 }, { 0.928000, -1.385000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.2", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.2, {{ 0.000000, 0.000000 }, { 0.024000, 0.360000 }, { 0.075200, 0.510000 }, { 0.142400, 0.540800 }, { 0.411200, 0.664000 }, { 0.936000, -1.120000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.3", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.3, {{ 0.000000, 0.000000 }, { 0.036000, 0.540000 }, { 0.133200, 0.607500 }, { 0.253800, 0.508950 }, { 0.535200, 0.279000 }, { 0.944000, -0.855000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.4", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.4, {{ 0.000000, 0.000000 }, { 0.048000, 0.720000 }, { 0.204800, 0.600000 }, { 0.380800, 0.366400 }, { 0.644800, 0.016000 }, { 0.952000, -0.590000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.5", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.5, {{ 0.000000, 0.000000 }, { 0.060000, 0.900000 }, { 0.290000, 0.487500 }, { 0.515000, 0.181250 }, { 0.740000, -0.125000 }, { 0.960000, -0.325000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.6", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.6, {{ 0.000000, 0.000000 }, { 0.072000, 1.080000 }, { 0.388800, 0.270000 }, { 0.648000, 0.021600 }, { 0.820800, -0.144000 }, { 0.968000, -0.060000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.7", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.7, {{ 0.000000, 0.000000 }, { 0.084000, 1.260000 }, { 0.501200, -0.052500 }, { 0.771400, -0.044450 }, { 0.887200, -0.041000 }, { 0.976000, 0.205000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.8", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.8, {{ 0.000000, 0.000000 }, { 0.096000, 1.440000 }, { 0.627200, -0.480000 }, { 0.876800, 0.051200 }, { 0.939200, 0.184000 }, { 0.984000, 0.470000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.9", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 0.9, {{ 0.000000, 0.000000 }, { 0.108000, 1.620000 }, { 0.766800, -1.012500 }, { 0.955800, 0.376650 }, { 0.976800, 0.531000 }, { 0.992000, 0.735000 }, { 1.000000, 1.000000 }} ); testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=1.0", {{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }}, 1.0, {{ 0.000000, 0.000000 }, { 0.120000, 1.800000 }, { 0.920000, -1.650000 }, { 1.000000, 1.000000 }, { 1.000000, 1.000000 }, { 1.000000, 1.000000 }, { 1.000000, 1.000000 }} ); } DEF_TEST(ChopCubicAtT_ArbitraryCubic, reporter) { testChopCubicAtT(reporter, "Arbitrary Cubic, t=0.1234", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.1234, {{-10.00000000000000, -20.00000000000000 }, { -9.62980000000000, -16.91500000000000 }, { -8.98550392000000, -14.31728192000000 }, { -8.16106580520000, -12.10537539118400 }, { -2.30448192000000, 3.60740632000000 }, { 12.64260000000000, -0.14900000000000 }, { 3.00000000000000, 13.00000000000000 }} ); testChopCubicAtT(reporter, "Arbitrary Cubic, t=0.3456", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.3456, {{-10.00000000000000, -20.00000000000000 }, { -8.96320000000000, -11.36000000000000 }, { -5.77649152000000, -6.54205952000000 }, { -2.50378670080000, -3.31715344793600 }, { 3.69314048000000, 2.78926592000000 }, { 10.19840000000000, 3.18400000000000 }, { 3.00000000000000, 13.00000000000000 }} ); testChopCubicAtT(reporter, "Arbitrary Cubic, t=0.8765", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.8765, {{-10.00000000000000, -20.00000000000000 }, { -7.37050000000000, 1.91250000000000 }, { 9.08754050000000, -0.75907200000000 }, { 5.70546664375000, 8.34743124475000 }, { 5.22892800000000, 9.63054950000000 }, { 4.35850000000000, 11.14750000000000 }, { 3.00000000000000, 13.00000000000000 }} ); } static void testCubicExtrema(skiatest::Reporter* reporter, const std::string& name, double A, double B, double C, double D, SkSpan expectedExtrema) { skiatest::ReporterContext subtest(reporter, name); // Validate test case REPORTER_ASSERT(reporter, expectedExtrema.size() <= 2, "Invalid test case, up to 2 extrema allowed"); { const double inputs[8] = {A, 0, B, 0, C, 0, D, 0}; std::array bezier = SkBezierCubic::ConvertToPolynomial(inputs, false); // The X extrema of the Bezier curve represented by the 4 provided X coordinates // (Start, Control Point 1, Control Point 2, Stop) are where the derivative of that // polynomial is zero. We can verify this for the expected Extrema. // lowercase letters to emphasize we are referring to Bezier curve (using t), // not X,Y values. auto [a, b, c, d] = bezier; a *= 3; // derivative (at^3 -> 3at^2) b *= 2; // derivative (bt^2 -> 2bt) c *= 1; // derivative (ct^1 -> c) d = 0; // derivative (d -> 0) for (size_t i = 0; i < expectedExtrema.size(); i++) { double t = expectedExtrema[i]; REPORTER_ASSERT(reporter, t >= 0 && t <= 1, "Invalid test case root %zu. Roots must be in [0, 1]", i); double shouldBeZero = a * t * t + b * t + c; REPORTER_ASSERT(reporter, sk_double_nearly_zero(shouldBeZero), "Invalid test case root %zu. %1.16f != 0", i, shouldBeZero); } } { skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); double extrema[2] = {0, 0}; // This implementation expects the coefficients to be (X, Y), (X, Y), (X, Y), (X, Y) // but it ignores the values at odd indices. const double inputs[8] = {A, 0, B, 0, C, 0, D, 0}; int extremaCount = SkDCubic::FindExtrema(&inputs[0], extrema); REPORTER_ASSERT(reporter, expectedExtrema.size() == size_t(extremaCount), "Wrong number of extrema returned %zu != %d", expectedExtrema.size(), extremaCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(extrema), std::begin(extrema) + extremaCount); for (int i = 0; i < extremaCount; i++) { if (sk_double_nearly_zero(expectedExtrema[i])) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(extrema[i]), "0 != %1.16e at index %d", extrema[i], i); } else { REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(expectedExtrema[i], extrema[i], 64), "%1.16f != %1.16f at index %d", expectedExtrema[i], extrema[i], i); } } } } DEF_TEST(CubicExtrema_FindsLocalMinAndMaxInRangeZeroToOneInclusive, reporter) { // All answers are given with 16 significant digits (max for a double) or as an integer // when the answer is exact. // Note that the Y coordinates do not impact the X extrema, so they are omitted from // the test case (and labeled as N in the subtest names) // https://www.desmos.com/calculator/fejoovy3v1 testCubicExtrema(reporter, "(24, N) (-46, N) (-29, N) (-6, N) has 2 local extrema", 24, -46, 29, -6, {0.3476582809885365, 0.7895966209722478}); testCubicExtrema(reporter, "(10, N) (3, N) (7, N) (10, N) has 2 extrema, only 1 in range", 10, 3, 7, 10, { 0.4097697891418150 // 0.4097697891418150259166930 according to WolframAlpha // 1.423563544191518307416640 is the other root, but omitted because it is not // between 0 and 1 inclusive. }); testCubicExtrema(reporter, "(10, N) (9.99, N) (20.01, N) (10, N) with extrema near endpoints", 10, 9.99, 20.01, 20, { 0.0004987532413361362, //0.0004987532413361221515157644 according to Wolfram Alpha (2.8e-12% error) 0.9995012467586639, //0.9995012467586638778484842 according to Wolfram Alpha }); testCubicExtrema(reporter, "(10, N) (10, N) (20, N) (20, N) has extrema at endpoints", 10, 10, 20, 20, {0.0, 1.0}); // The polynomial for these points is just c(t) = 15t + 10, which has no local extrema. testCubicExtrema(reporter, "(10, N) (15, N) (20, N) (25, N) has no extrema at all", 10, 15, 20, 25, {}); // The polynomial for these points is monotonically increasing, so no local extrema. testCubicExtrema(reporter, "(10, N) (14, N) (14, N) (20, N) has no extrema at all", 10, 14, 14, 20, {}); // The polynomial for these points has a stationary point at t = 0.5, but still no extrema. testCubicExtrema(reporter, "(10, N) (14, N) (14, N) (20, N) has no extrema at all", 10, 18, 12, 20, {}); testCubicExtrema(reporter, "(10, N) (16, N) (16, N) (10, N) has a single local maximum", 10, 16, 16, 10, {0.5}); testCubicExtrema(reporter, "(10, N) (8, N) (8, N) (10, N) has a single local minima", 10, 8, 8, 10, {0.5}); // The polynomial for these points is c(t) = 10. Taking the derivative of that results in // c'(t) = 0, which has infinite solutions. Our linear solver handles this case by saying // it just has a single solution at t = 0. testCubicExtrema(reporter, "(10, N) (10, N) (10, N) (10, N) is defined to have an extrema at 0", 10, 10, 10, 10, {0.0}); } static void testCubicInflectionPoints(skiatest::Reporter* reporter, const std::string& name, SkSpan curveInputs, SkSpan expectedTValues) { skiatest::ReporterContext subtest(reporter, name); // Validate test case REPORTER_ASSERT(reporter, curveInputs.size() == 4, "Invalid test case. Input curve should have 4 points"); REPORTER_ASSERT(reporter, expectedTValues.size() <= 2, "Invalid test case, up to 2 inflection points possible"); for (size_t i = 0; i < expectedTValues.size(); i++) { double t = expectedTValues[i]; REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0, "Invalid test case t %zu. Should be between 0 and 1 inclusive.", i); auto inputs = reinterpret_cast(curveInputs.data()); auto [Ax, Bx, Cx, Dx] = SkBezierCubic::ConvertToPolynomial(inputs, false); auto [Ay, By, Cy, Dy] = SkBezierCubic::ConvertToPolynomial(inputs, true); // verify that X' * Y'' - X'' * Y' == 0 at the given t // https://stackoverflow.com/a/35906870 double curvature = (3 * (Bx * Ay - Ax * By)) * t * t + (3 * (Cx * Ay - Ax * Cy)) * t + (Cx * By - Bx * Cy); REPORTER_ASSERT(reporter, sk_double_nearly_zero(curvature), "Invalid test case t %zu. 0 != %1.16f.", i, curvature); if (i > 0) { REPORTER_ASSERT(reporter, expectedTValues[i - 1] <= expectedTValues[i], "Invalid test case t %zu. Sort intersections in ascending order", i); } } { skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); SkDCubic inputCubic; for (int i = 0; i < 4; i++) { inputCubic.fPts[i].fX = curveInputs[i].x; inputCubic.fPts[i].fY = curveInputs[i].y; } double actualTValues[2] = {0, 0}; int inflectionsFound = inputCubic.findInflections(actualTValues); REPORTER_ASSERT(reporter, expectedTValues.size() == size_t(inflectionsFound), "Wrong number of roots returned %zu != %d", expectedTValues.size(), inflectionsFound); // We don't care which order the t values which are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(actualTValues), std::begin(actualTValues) + inflectionsFound); for (int i = 0; i < inflectionsFound; i++) { REPORTER_ASSERT(reporter, nearly_equal(expectedTValues[i], actualTValues[i]), "%.16f != %.16f at index %d", expectedTValues[i], actualTValues[i], i); } } } DEF_TEST(CubicInflectionPoints_FindsConvexityChangesInRangeZeroToOneInclusive, reporter) { // All answers are given with 16 significant digits (max for a double) or as an integer // when the answer is exact. testCubicInflectionPoints(reporter, "curve changes convexity exactly halfway", {{ 4, 0 }, { -3, 4 }, { 7, 4 }, { 0, 8 }}, { 0.5 }); // https://www.desmos.com/calculator/8qkmrq3n3e testCubicInflectionPoints(reporter, "A curve with one inflection point", {{ 10, 5 }, { 9, 12 }, { 24, -2 }, { 25, 3 }}, { 0.5194234849019033 }); // https://www.desmos.com/calculator/sk2bbz56kv testCubicInflectionPoints(reporter, "A curve with two inflection points", {{ 5, 5 }, { 16, 15 }, { 24, -2 }, { 15, 13 }}, {0.5553407889916796, 0.8662808326299419}); testCubicInflectionPoints(reporter, "A curve which overlaps itself", {{ 3, 6 }, { -3, 4 }, { 4, 5 }, { 0, 6 }}, {}); testCubicInflectionPoints(reporter, "A monotonically increasing curve", {{ 10, 15 }, { 20, 25 }, { 30, 35 }, { 40, 45 }}, // The curvature equation becomes C(t) = 0, which // our linear solver says has 1 root at t = 0. { 0.0 }); } static void testBezierCurveHorizontalIntersectBinarySearch(skiatest::Reporter* reporter, const std::string& name, SkSpan curveInputs, double xToIntersect, SkSpan expectedTValues, bool skipPathops = false) { skiatest::ReporterContext subtest(reporter, name); // Validate test case REPORTER_ASSERT(reporter, curveInputs.size() == 4, "Invalid test case. Input curve should have 4 points"); REPORTER_ASSERT(reporter, expectedTValues.size() <= 3, "Invalid test case, up to 3 intersections possible"); for (size_t i = 0; i < expectedTValues.size(); i++) { double t = expectedTValues[i]; REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0, "Invalid test case t %zu. Should be between 0 and 1 inclusive.", i); auto [x, y] = SkBezierCubic::EvalAt(reinterpret_cast(curveInputs.data()), t); // This is explicitly approximately_equal and not something more precise because // the binary search given by the pathops algorithm is not super precise. REPORTER_ASSERT(reporter, approximately_equal(xToIntersect, x), "Invalid test case %zu, %1.16f != %1.16f", i, xToIntersect, x); if (i > 0) { REPORTER_ASSERT(reporter, expectedTValues[i-1] <= expectedTValues[i], "Invalid test case t %zu. Sort intersections in ascending order", i); } } if (!skipPathops) { skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); // This implementation expects the coefficients to be (X, Y), (X, Y), (X, Y), (X, Y) // but it ignores the values at odd indices. SkDCubic inputCubic; for (int i = 0; i < 4; i++) { inputCubic.fPts[i].fX = curveInputs[i].x; inputCubic.fPts[i].fY = curveInputs[i].y; } double actualTValues[3] = {0, 0, 0}; // There are only 2 extrema that could be found, but the searchRoots will put // the inflection points (up to 2) and the end points (0, 1) in to this array // as well. double extremaAndInflections[6] = {0, 0, 0, 0, 0}; int extrema = SkDCubic::FindExtrema(&inputCubic[0].fX, extremaAndInflections); int rootCount = inputCubic.searchRoots(extremaAndInflections, extrema, xToIntersect, SkDCubic::kXAxis, actualTValues); REPORTER_ASSERT(reporter, expectedTValues.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedTValues.size(), rootCount); // We don't care which order the t values which are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(actualTValues), std::begin(actualTValues) + rootCount); for (int i = 0; i < rootCount; i++) { REPORTER_ASSERT(reporter, nearly_equal(expectedTValues[i], actualTValues[i]), "%.16f != %.16f at index %d", expectedTValues[i], actualTValues[i], i); } } } DEF_TEST(BezierCurveHorizontalIntersectBinarySearch, reporter) { // All answers are given with 16 significant digits (max for a double) or as an integer // when the answer is exact. // The Y values in these curves do not impact the test case, but make it easier to visualize // when plotting the curves to verify the solutions. testBezierCurveHorizontalIntersectBinarySearch(reporter, "straight curve crosses once @ 2.0", {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, 2.0, {0.2871407270431519}); testBezierCurveHorizontalIntersectBinarySearch(reporter, "straight curve crosses once @ 6.0", {{ 0, 0 }, { 3, 3 }, { 6, 6 }, { 10, 10 }}, 6.0, {0.6378342509269714}); testBezierCurveHorizontalIntersectBinarySearch(reporter, "out and back curve exactly touches @ 3.0", {{ 0, 0 }, { 4, 4 }, { 4, 4 }, { 0, 8 }}, 3.0, // The binary search algorithm (currently) gets close to, but not quite 0.5 {0.4999389648437500, 0.5000610351562500}); testBezierCurveHorizontalIntersectBinarySearch(reporter, "out and back curve crosses twice @ 2.0", {{ 0, 0 }, { 4, 4 }, { 4, 4 }, { 0, 8 }}, 2.0, {0.2113248705863953, 0.7886751294136047}); testBezierCurveHorizontalIntersectBinarySearch(reporter, "out and back curve never crosses 4.0", {{ 0, 0 }, { 4, 4 }, { 4, 4 }, { 0, 8 }}, 4.0, {}); testBezierCurveHorizontalIntersectBinarySearch(reporter, "left right left curve crosses three times @ 2.0", {{ 4, 0 }, { -3, 4 }, { 7, 4 }, { 0, 8 }}, 2.0, { 0.1361965624455005, // 0.1361965624455005397216403 according to Wolfram Alpha 0.5, 0.8638034375544995 // 0.8638034375544994602783597 according to Wolfram Alpha }, // PathOps version fails to find these roots (has not been investigated yet) true /* = skipPathops */); testBezierCurveHorizontalIntersectBinarySearch(reporter, "left right left curve crosses one time @ 1.0", {{ 4, 0 }, { -3, 4 }, { 7, 4 }, { 0, 8 }}, 1.0, { 0.9454060400510326, // 0.9454060415952252910201453 according to Wolfram Alpha }); testBezierCurveHorizontalIntersectBinarySearch(reporter, "left right left curve crosses three times @ 2.5", {{ 4, 0 }, { -3, 4 }, { 7, 4 }, { 0, 8 }}, 2.5, { 0.0898667385750473, // 0.08986673805184604633583244 according to Wolfram Alpha 0.6263520961813417, // 0.6263521357441907129444252 according to Wolfram Alpha 0.7837811281217468, // 0.7837811262039632407197424 according to Wolfram Alpha }); }