/* * Copyright 2023 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/private/base/SkFloatingPoint.h" #include "include/private/base/SkSpan_impl.h" #include "src/base/SkBezierCurves.h" #include "src/base/SkQuads.h" #include "tests/Test.h" #include #include #include #include #include #include #include // Grouping the test inputs into DoublePoints makes the test cases easier to read. struct DoublePoint { double x; double y; }; static bool nearly_equal(double expected, double actual) { if (sk_double_nearly_zero(expected)) { return sk_double_nearly_zero(actual); } return sk_doubles_nearly_equal_ulps(expected, actual, 64); } static void testCubicEvalAtT(skiatest::Reporter* reporter, const std::string& name, SkSpan curveInputs, double t, const DoublePoint& expectedXY) { skiatest::ReporterContext subtest(reporter, name); REPORTER_ASSERT(reporter, curveInputs.size() == 4, "Invalid test case. Should have 4 input points."); REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0, "Invalid test case. t %f should be in [0, 1]", t); auto [x, y] = SkBezierCubic::EvalAt(reinterpret_cast(curveInputs.data()), t); REPORTER_ASSERT(reporter, nearly_equal(expectedXY.x, x), "X wrong %1.16f != %1.16f", expectedXY.x, x); REPORTER_ASSERT(reporter, nearly_equal(expectedXY.y, y), "Y wrong %1.16f != %1.16f", expectedXY.y, y); } DEF_TEST(BezierCubicEvalAt, reporter) { testCubicEvalAtT(reporter, "linear curve @0.1234", {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, 0.1234, { 0.4192451819200000, 0.4192451819200000 }); testCubicEvalAtT(reporter, "linear curve @0.2345", {{ 0, 0 }, { 5, 5 }, { 5, 5 }, { 10, 10 }}, 0.2345, { 2.8215983862500000, 2.8215983862500000 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.0", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.0, { -10, -20 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.3456", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.3456, { -2.503786700800000, -3.31715344793600 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.5", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.5, { 1.75, 0.25 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.7891", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.7891, { 6.158763291450000, 5.938550084434000 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=1.0", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 1.0, { 3, 13 }); } static void testCubicConvertToPolynomial(skiatest::Reporter* reporter, const std::string& name, SkSpan curveInputs, bool yValues, double expectedA, double expectedB, double expectedC, double expectedD) { skiatest::ReporterContext subtest(reporter, name); REPORTER_ASSERT(reporter, curveInputs.size() == 4, "Invalid test case. Need 4 points (start, control, control, end)"); skiatest::ReporterContext subsubtest(reporter, "SkBezierCurve Implementation"); const double* input = &curveInputs[0].x; auto [A, B, C, D] = SkBezierCubic::ConvertToPolynomial(input, yValues); REPORTER_ASSERT(reporter, nearly_equal(expectedA, A), "%f != %f", expectedA, A); REPORTER_ASSERT(reporter, nearly_equal(expectedB, B), "%f != %f", expectedB, B); REPORTER_ASSERT(reporter, nearly_equal(expectedC, C), "%f != %f", expectedC, C); REPORTER_ASSERT(reporter, nearly_equal(expectedD, D), "%f != %f", expectedD, D); } DEF_TEST(BezierCubicToPolynomials, reporter) { // See also tests/PathOpsDCubicTest.cpp->SkDCubicPolynomialCoefficients testCubicConvertToPolynomial(reporter, "Arbitrary control points X direction", {{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, false, /*=yValues*/ -18, 36, -12, 1 ); testCubicConvertToPolynomial(reporter, "Arbitrary control points Y direction", {{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, true, /*=yValues*/ 36, -36, 6, 2 ); } // Since, Roots and EvalAt are separately unit tested, make sure that the parametric pramater t // is correctly in range, and checked. DEF_TEST(QuadRoots_CheckTRange, reporter) { // Pick interesting numbers around 0 and 1. const double interestingRoots[] = {-1000, -10, -1, -0.1, -0.0001, 0, 0.0001, 0.1, 0.9, 0.9999, 1, 1.0001, 1.1, 10, 1000}; // Interesting scales to make the quadratic. const double interestingScales[] = {-1000, -10, -1, -0.1, -0.0001, 0.0001, 0.1, 1, 10, 1000}; auto outsideTRange = [](double r) { return r < 0 || 1 < r; }; auto insideTRange = [&] (double r) { return !outsideTRange(r); }; // The original test for AddValidTs (which quad intersect was based on) used 1 float ulp of // leeway for comparison. Tighten this up to half a float ulp. auto equalAsFloat = [] (double a, double b) { // When converted to float, a double will be rounded up to half a float ulp for a double // value between two float values. return sk_double_to_float(a) == sk_double_to_float(b); }; for (double r1 : interestingRoots) { for (double r0 : interestingRoots) { for (double s : interestingScales) { // Create a quadratic using the roots r0 and r1. // s(x-r0)(x-r1) = s(x^2 - r0*x - r1*x + r0*r1) const double A = s; // Normally B = -(r0 + r1) but this needs the modified B' = (r0 + r1) / 2. const double B = s * 0.5 * (r0 + r1); const double C = s*r0*r1; float storage[2]; // The X coefficients are set to return t's generated by root intersection. // The offset is set to 0, because an arbitrary offset is essentially encoded in C. auto intersections = SkBezierQuad::Intersect(0, -0.5, 0, A, B, C, 0, storage); if (intersections.empty()) { // Either imaginary or both roots are outside [0, 1]. REPORTER_ASSERT(reporter, SkQuads::Discriminant(A, B, C) < 0 || (outsideTRange(r0) && outsideTRange(r1))); } else if (intersections.size() == 1) { // One of the roots is outside [0, 1] REPORTER_ASSERT(reporter, insideTRange(r0) || insideTRange(r1)); const double insideRoot = insideTRange(r0) ? r0 : r1; REPORTER_ASSERT(reporter, equalAsFloat(insideRoot, intersections[0])); } else { REPORTER_ASSERT(reporter, intersections.size() == 2); REPORTER_ASSERT(reporter, insideTRange(r0) && insideTRange(r1)); auto [smaller, bigger] = std::minmax(intersections[0], intersections[1]); auto [smallerRoot, biggerRoot] = std::minmax(r0, r1); REPORTER_ASSERT(reporter, equalAsFloat(smaller, smallerRoot)); REPORTER_ASSERT(reporter, equalAsFloat(bigger, biggerRoot)); } } } } // Check when A == 0. { const double A = 0; // We need M = 4, so that will be a Kahan style B of -0.5 * M = -2. const double B = -2; const double C = -1; float storage[2]; // Assume the offset is already encoded in C. auto intersections = SkBezierQuad::Intersect(0, -0.5, 0, A, B, C, 0, storage); REPORTER_ASSERT(reporter, intersections.size() == 1); REPORTER_ASSERT(reporter, intersections[0] == 0.25); } } // Since, Roots and EvalAt are separately unit tested, make sure that the parametric pramater t // is correctly in range, and checked. DEF_TEST(SkBezierCubic_CheckTRange, reporter) { // Pick interesting numbers around 0 and 1. const double interestingRoots[] = {-10, -5, -2, -1, 0, 0.5, 1, 2, 5, 10}; // Interesting scales to make the quadratic. const double interestingScales[] = {-1000, -10, -1, -0.1, -0.0001, 0.0001, 0.1, 1, 10, 1000}; auto outsideTRange = [](double r) { return r < 0 || 1 < r; }; auto insideTRange = [&] (double r) { return !outsideTRange(r); }; auto specialEqual = [] (double actual, double test) { // At least a floats worth of digits are correct. const double errorFactor = std::numeric_limits::epsilon(); return std::abs(test - actual) <= errorFactor * std::max(std::abs(test), std::abs(actual)); }; for (double r2 : interestingRoots) { for (double r1 : interestingRoots) { for (double r0 : interestingRoots) { for (double s : interestingScales) { // Create a cubic using the roots r0, r1, and r2. // s(x-r0)(x-r1)(x-r2) = s(x^3 - (r0+r1+r2)x^2 + (r0r1+r1r2+r0r2)x - r0r1r2) const double A = s, B = -s * (r0+r1+r2), C = s * (r0*r1 + r1*r2 + r0*r2), D = -s * r0 * r1 * r2; // Accumulate all the valid t's. std::set inRangeRoots; for (auto r : {r0, r1, r2}) { if (insideTRange(r)) { inRangeRoots.insert(r); } } float storage[3]; // The X coefficients are set to return t's generated by root intersection. // The offset is set to 0, because an arbitrary offset is essentially encoded // in C. auto intersections = SkBezierCubic::Intersect(0, 0, 1, 0, A, B, C, D, 0, storage); size_t correct = 0; for (auto candidate : intersections) { for (auto answer : inRangeRoots) { if (specialEqual(candidate, answer)) { correct += 1; break; } } } REPORTER_ASSERT(reporter, correct == intersections.size()); } } } } }