/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/utils/SkDashPathPriv.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/core/SkPathMeasure.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkScalar.h" #include "include/core/SkStrokeRec.h" #include "include/core/SkTypes.h" #include "include/private/base/SkAlign.h" #include "include/private/base/SkFloatingPoint.h" #include "include/private/base/SkTo.h" #include "src/core/SkPathEffectBase.h" #include "src/core/SkPathEnums.h" #include "src/core/SkPathPriv.h" #include "src/core/SkPointPriv.h" #include #include #include #include static inline int is_even(int x) { return !(x & 1); } static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase, int32_t* index, int count) { for (int i = 0; i < count; ++i) { SkScalar gap = intervals[i]; if (phase > gap || (phase == gap && gap)) { phase -= gap; } else { *index = i; return gap - phase; } } // If we get here, phase "appears" to be larger than our length. This // shouldn't happen with perfect precision, but we can accumulate errors // during the initial length computation (rounding can make our sum be too // big or too small. In that event, we just have to eat the error here. *index = 0; return intervals[0]; } void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count, SkScalar* initialDashLength, int32_t* initialDashIndex, SkScalar* intervalLength, SkScalar* adjustedPhase) { SkScalar len = 0; for (int i = 0; i < count; i++) { len += intervals[i]; } *intervalLength = len; // Adjust phase to be between 0 and len, "flipping" phase if negative. // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80 if (adjustedPhase) { if (phase < 0) { phase = -phase; if (phase > len) { phase = SkScalarMod(phase, len); } phase = len - phase; // Due to finite precision, it's possible that phase == len, // even after the subtract (if len >>> phase), so fix that here. // This fixes http://crbug.com/124652 . SkASSERT(phase <= len); if (phase == len) { phase = 0; } } else if (phase >= len) { phase = SkScalarMod(phase, len); } *adjustedPhase = phase; } SkASSERT(phase >= 0 && phase < len); *initialDashLength = find_first_interval(intervals, phase, initialDashIndex, count); SkASSERT(*initialDashLength >= 0); SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count); } static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) { SkScalar radius = SkScalarHalf(rec.getWidth()); if (0 == radius) { radius = SK_Scalar1; // hairlines } if (SkPaint::kMiter_Join == rec.getJoin()) { radius *= rec.getMiter(); } rect->outset(radius, radius); } // If line is zero-length, bump out the end by a tiny amount // to draw endcaps. The bump factor is sized so that // SkPoint::Distance() computes a non-zero length. // Offsets SK_ScalarNearlyZero or smaller create empty paths when Iter measures length. // Large values are scaled by SK_ScalarNearlyZero so significant bits change. static void adjust_zero_length_line(SkPoint pts[2]) { SkASSERT(pts[0] == pts[1]); pts[1].fX += std::max(1.001f, pts[1].fX) * SK_ScalarNearlyZero; } static bool clip_line(SkPoint pts[2], const SkRect& bounds, SkScalar intervalLength, SkScalar priorPhase) { SkVector dxy = pts[1] - pts[0]; // only horizontal or vertical lines if (dxy.fX && dxy.fY) { return false; } int xyOffset = SkToBool(dxy.fY); // 0 to adjust horizontal, 1 to adjust vertical SkScalar minXY = (&pts[0].fX)[xyOffset]; SkScalar maxXY = (&pts[1].fX)[xyOffset]; bool swapped = maxXY < minXY; if (swapped) { using std::swap; swap(minXY, maxXY); } SkASSERT(minXY <= maxXY); SkScalar leftTop = (&bounds.fLeft)[xyOffset]; SkScalar rightBottom = (&bounds.fRight)[xyOffset]; if (maxXY < leftTop || minXY > rightBottom) { return false; } // Now we actually perform the chop, removing the excess to the left/top and // right/bottom of the bounds (keeping our new line "in phase" with the dash, // hence the (mod intervalLength). if (minXY < leftTop) { minXY = leftTop - SkScalarMod(leftTop - minXY, intervalLength); if (!swapped) { minXY -= priorPhase; // for rectangles, adjust by prior phase } } if (maxXY > rightBottom) { maxXY = rightBottom + SkScalarMod(maxXY - rightBottom, intervalLength); if (swapped) { maxXY += priorPhase; // for rectangles, adjust by prior phase } } SkASSERT(maxXY >= minXY); if (swapped) { using std::swap; swap(minXY, maxXY); } (&pts[0].fX)[xyOffset] = minXY; (&pts[1].fX)[xyOffset] = maxXY; if (minXY == maxXY) { adjust_zero_length_line(pts); } return true; } // Handles only lines and rects. // If cull_path() returns true, dstPath is the new smaller path, // otherwise dstPath may have been changed but you should ignore it. static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec, const SkRect* cullRect, SkScalar intervalLength, SkPath* dstPath) { if (!cullRect) { SkPoint pts[2]; if (srcPath.isLine(pts) && pts[0] == pts[1]) { adjust_zero_length_line(pts); dstPath->moveTo(pts[0]); dstPath->lineTo(pts[1]); return true; } return false; } SkRect bounds; bounds = *cullRect; outset_for_stroke(&bounds, rec); { SkPoint pts[2]; if (srcPath.isLine(pts)) { if (clip_line(pts, bounds, intervalLength, 0)) { dstPath->moveTo(pts[0]); dstPath->lineTo(pts[1]); return true; } return false; } } if (srcPath.isRect(nullptr)) { // We'll break the rect into four lines, culling each separately. SkPath::Iter iter(srcPath, false); SkPoint pts[4]; // Rects are all moveTo and lineTo, so we'll only use pts[0] and pts[1]. SkAssertResult(SkPath::kMove_Verb == iter.next(pts)); double accum = 0; // Sum of unculled edge lengths to keep the phase correct. // Intentionally a double to minimize the risk of overflow and drift. while (iter.next(pts) == SkPath::kLine_Verb) { // Notice this vector v and accum work with the original unclipped length. SkVector v = pts[1] - pts[0]; if (clip_line(pts, bounds, intervalLength, std::fmod(accum, intervalLength))) { // pts[0] may have just been changed by clip_line(). // If that's not where we ended the previous lineTo(), we need to moveTo() there. SkPoint last; if (!dstPath->getLastPt(&last) || last != pts[0]) { dstPath->moveTo(pts[0]); } dstPath->lineTo(pts[1]); } // We either just traveled v.fX horizontally or v.fY vertically. SkASSERT(v.fX == 0 || v.fY == 0); accum += SkScalarAbs(v.fX + v.fY); } return !dstPath->isEmpty(); } return false; } class SpecialLineRec { public: bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec, int intervalCount, SkScalar intervalLength) { if (rec->isHairlineStyle() || !src.isLine(fPts)) { return false; } // can relax this in the future, if we handle square and round caps if (SkPaint::kButt_Cap != rec->getCap()) { return false; } SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]); fTangent = fPts[1] - fPts[0]; if (fTangent.isZero()) { return false; } fPathLength = pathLength; fTangent.scale(sk_ieee_float_divide(1.0f, pathLength)); if (!SkIsFinite(fTangent.fX, fTangent.fY)) { return false; } SkPointPriv::RotateCCW(fTangent, &fNormal); fNormal.scale(SkScalarHalf(rec->getWidth())); // now estimate how many quads will be added to the path // resulting segments = pathLen * intervalCount / intervalLen // resulting points = 4 * segments SkScalar ptCount = pathLength * intervalCount / (float)intervalLength; ptCount = std::min(ptCount, SkDashPath::kMaxDashCount); if (SkIsNaN(ptCount)) { return false; } int n = SkScalarCeilToInt(ptCount) << 2; dst->incReserve(n); // we will take care of the stroking rec->setFillStyle(); return true; } void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const { SkASSERT(d0 <= fPathLength); // clamp the segment to our length if (d1 > fPathLength) { d1 = fPathLength; } SkScalar x0 = fPts[0].fX + fTangent.fX * d0; SkScalar x1 = fPts[0].fX + fTangent.fX * d1; SkScalar y0 = fPts[0].fY + fTangent.fY * d0; SkScalar y1 = fPts[0].fY + fTangent.fY * d1; SkPoint pts[4]; pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo path->addPoly(pts, std::size(pts), false); } private: SkPoint fPts[2]; SkVector fTangent; SkVector fNormal; SkScalar fPathLength; }; bool SkDashPath::InternalFilter(SkPath* dst, const SkPath& src, SkStrokeRec* rec, const SkRect* cullRect, const SkScalar aIntervals[], int32_t count, SkScalar initialDashLength, int32_t initialDashIndex, SkScalar intervalLength, SkScalar startPhase, StrokeRecApplication strokeRecApplication) { // we must always have an even number of intervals SkASSERT(is_even(count)); // we do nothing if the src wants to be filled SkStrokeRec::Style style = rec->getStyle(); if (SkStrokeRec::kFill_Style == style || SkStrokeRec::kStrokeAndFill_Style == style) { return false; } const SkScalar* intervals = aIntervals; SkScalar dashCount = 0; int segCount = 0; SkPath cullPathStorage; const SkPath* srcPtr = &src; if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) { // if rect is closed, starts in a dash, and ends in a dash, add the initial join // potentially a better fix is described here: bug.skia.org/7445 if (src.isRect(nullptr) && src.isLastContourClosed() && is_even(initialDashIndex)) { SkScalar pathLength = SkPathMeasure(src, false, rec->getResScale()).getLength(); SkScalar endPhase = SkScalarMod(pathLength + startPhase, intervalLength); int index = 0; while (endPhase > intervals[index]) { endPhase -= intervals[index++]; SkASSERT(index <= count); if (index == count) { // We have run out of intervals. endPhase "should" never get to this point, // but it could if the subtracts underflowed. Hence we will pin it as if it // perfectly ran through the intervals. // See crbug.com/875494 (and skbug.com/8274) endPhase = 0; break; } } // if dash ends inside "on", or ends at beginning of "off" if (is_even(index) == (endPhase > 0)) { SkPoint midPoint = src.getPoint(0); // get vector at end of rect int last = src.countPoints() - 1; while (midPoint == src.getPoint(last)) { --last; SkASSERT(last >= 0); } // get vector at start of rect int next = 1; while (midPoint == src.getPoint(next)) { ++next; SkASSERT(next < last); } SkVector v = midPoint - src.getPoint(last); const SkScalar kTinyOffset = SK_ScalarNearlyZero; // scale vector to make start of tiny right angle v *= kTinyOffset; cullPathStorage.moveTo(midPoint - v); cullPathStorage.lineTo(midPoint); v = midPoint - src.getPoint(next); // scale vector to make end of tiny right angle v *= kTinyOffset; cullPathStorage.lineTo(midPoint - v); } } srcPtr = &cullPathStorage; } SpecialLineRec lineRec; bool specialLine = (StrokeRecApplication::kAllow == strokeRecApplication) && lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength); SkPathMeasure meas(*srcPtr, false, rec->getResScale()); do { bool skipFirstSegment = meas.isClosed(); bool addedSegment = false; SkScalar length = meas.getLength(); int index = initialDashIndex; // Since the path length / dash length ratio may be arbitrarily large, we can exert // significant memory pressure while attempting to build the filtered path. To avoid this, // we simply give up dashing beyond a certain threshold. // // The original bug report (http://crbug.com/165432) is based on a path yielding more than // 90 million dash segments and crashing the memory allocator. A limit of 1 million // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the // maximum dash memory overhead at roughly 17MB per path. dashCount += length * (count >> 1) / intervalLength; if (dashCount > kMaxDashCount) { dst->reset(); return false; } // Using double precision to avoid looping indefinitely due to single precision rounding // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest. double distance = 0; double dlen = initialDashLength; while (distance < length) { SkASSERT(dlen >= 0); addedSegment = false; if (is_even(index) && !skipFirstSegment) { addedSegment = true; ++segCount; if (specialLine) { lineRec.addSegment(SkDoubleToScalar(distance), SkDoubleToScalar(distance + dlen), dst); } else { meas.getSegment(SkDoubleToScalar(distance), SkDoubleToScalar(distance + dlen), dst, true); } } distance += dlen; // clear this so we only respect it the first time around skipFirstSegment = false; // wrap around our intervals array if necessary index += 1; SkASSERT(index <= count); if (index == count) { index = 0; } // fetch our next dlen dlen = intervals[index]; } // extend if we ended on a segment and we need to join up with the (skipped) initial segment if (meas.isClosed() && is_even(initialDashIndex) && initialDashLength >= 0) { meas.getSegment(0, initialDashLength, dst, !addedSegment); ++segCount; } } while (meas.nextContour()); // TODO: do we still need this? if (segCount > 1) { SkPathPriv::SetConvexity(*dst, SkPathConvexity::kConcave); } return true; } bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec, const SkRect* cullRect, const SkPathEffectBase::DashInfo& info) { if (!ValidDashPath(info.fPhase, info.fIntervals, info.fCount)) { return false; } SkScalar initialDashLength = 0; int32_t initialDashIndex = 0; SkScalar intervalLength = 0; CalcDashParameters(info.fPhase, info.fIntervals, info.fCount, &initialDashLength, &initialDashIndex, &intervalLength); return InternalFilter(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength, initialDashIndex, intervalLength, info.fPhase); } bool SkDashPath::ValidDashPath(SkScalar phase, const SkScalar intervals[], int32_t count) { if (count < 2 || !SkIsAlign2(count)) { return false; } SkScalar length = 0; for (int i = 0; i < count; i++) { if (intervals[i] < 0) { return false; } length += intervals[i]; } // watch out for values that might make us go out of bounds return length > 0 && SkIsFinite(phase, length); }