/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/sksl/codegen/SkSLMetalCodeGenerator.h" #include "include/core/SkSpan.h" #include "include/core/SkTypes.h" #include "include/private/base/SkTArray.h" #include "include/private/base/SkTo.h" #include "src/base/SkEnumBitMask.h" #include "src/base/SkScopeExit.h" #include "src/core/SkTHash.h" #include "src/core/SkTraceEvent.h" #include "src/sksl/SkSLAnalysis.h" #include "src/sksl/SkSLBuiltinTypes.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLContext.h" #include "src/sksl/SkSLDefines.h" #include "src/sksl/SkSLErrorReporter.h" #include "src/sksl/SkSLIntrinsicList.h" #include "src/sksl/SkSLMemoryLayout.h" #include "src/sksl/SkSLOperator.h" #include "src/sksl/SkSLOutputStream.h" #include "src/sksl/SkSLPosition.h" #include "src/sksl/SkSLProgramSettings.h" #include "src/sksl/SkSLString.h" #include "src/sksl/SkSLStringStream.h" #include "src/sksl/SkSLUtil.h" #include "src/sksl/analysis/SkSLProgramVisitor.h" #include "src/sksl/codegen/SkSLCodeGenTypes.h" #include "src/sksl/codegen/SkSLCodeGenerator.h" #include "src/sksl/ir/SkSLBinaryExpression.h" #include "src/sksl/ir/SkSLBlock.h" #include "src/sksl/ir/SkSLConstructor.h" #include "src/sksl/ir/SkSLConstructorArrayCast.h" #include "src/sksl/ir/SkSLConstructorCompound.h" #include "src/sksl/ir/SkSLConstructorMatrixResize.h" #include "src/sksl/ir/SkSLDoStatement.h" #include "src/sksl/ir/SkSLExpression.h" #include "src/sksl/ir/SkSLExpressionStatement.h" #include "src/sksl/ir/SkSLExtension.h" #include "src/sksl/ir/SkSLFieldAccess.h" #include "src/sksl/ir/SkSLForStatement.h" #include "src/sksl/ir/SkSLFunctionCall.h" #include "src/sksl/ir/SkSLFunctionDeclaration.h" #include "src/sksl/ir/SkSLFunctionDefinition.h" #include "src/sksl/ir/SkSLFunctionPrototype.h" #include "src/sksl/ir/SkSLIRHelpers.h" #include "src/sksl/ir/SkSLIRNode.h" #include "src/sksl/ir/SkSLIfStatement.h" #include "src/sksl/ir/SkSLIndexExpression.h" #include "src/sksl/ir/SkSLInterfaceBlock.h" #include "src/sksl/ir/SkSLLayout.h" #include "src/sksl/ir/SkSLLiteral.h" #include "src/sksl/ir/SkSLModifierFlags.h" #include "src/sksl/ir/SkSLNop.h" #include "src/sksl/ir/SkSLPostfixExpression.h" #include "src/sksl/ir/SkSLPrefixExpression.h" #include "src/sksl/ir/SkSLProgram.h" #include "src/sksl/ir/SkSLProgramElement.h" #include "src/sksl/ir/SkSLReturnStatement.h" #include "src/sksl/ir/SkSLSetting.h" #include "src/sksl/ir/SkSLStatement.h" #include "src/sksl/ir/SkSLStructDefinition.h" #include "src/sksl/ir/SkSLSwitchCase.h" #include "src/sksl/ir/SkSLSwitchStatement.h" #include "src/sksl/ir/SkSLSwizzle.h" #include "src/sksl/ir/SkSLTernaryExpression.h" #include "src/sksl/ir/SkSLType.h" #include "src/sksl/ir/SkSLVarDeclarations.h" #include "src/sksl/ir/SkSLVariable.h" #include "src/sksl/ir/SkSLVariableReference.h" #include "src/sksl/spirv.h" #include #include #include #include #include #include #include #include #include #include #include using namespace skia_private; namespace SkSL { class MetalCodeGenerator : public CodeGenerator { public: MetalCodeGenerator(const Context* context, const ShaderCaps* caps, const Program* program, OutputStream* out, PrettyPrint pp) : CodeGenerator(context, caps, program, out) , fReservedWords({"atan2", "rsqrt", "rint", "dfdx", "dfdy", "vertex", "fragment"}) , fLineEnding("\n") , fPrettyPrint(pp) {} bool generateCode() override; protected: using Precedence = OperatorPrecedence; using Requirements = int; static constexpr Requirements kNo_Requirements = 0; static constexpr Requirements kInputs_Requirement = 1 << 0; static constexpr Requirements kOutputs_Requirement = 1 << 1; static constexpr Requirements kUniforms_Requirement = 1 << 2; static constexpr Requirements kGlobals_Requirement = 1 << 3; static constexpr Requirements kFragCoord_Requirement = 1 << 4; static constexpr Requirements kSampleMaskIn_Requirement = 1 << 5; static constexpr Requirements kVertexID_Requirement = 1 << 6; static constexpr Requirements kInstanceID_Requirement = 1 << 7; static constexpr Requirements kThreadgroups_Requirement = 1 << 8; class GlobalStructVisitor; void visitGlobalStruct(GlobalStructVisitor* visitor); class ThreadgroupStructVisitor; void visitThreadgroupStruct(ThreadgroupStructVisitor* visitor); void write(std::string_view s); void writeLine(std::string_view s = std::string_view()); void finishLine(); void writeHeader(); void writeSampler2DPolyfill(); void writeUniformStruct(); void writeInterpolatedAttributes(const Variable& var); void writeInputStruct(); void writeOutputStruct(); void writeInterfaceBlocks(); void writeStructDefinitions(); void writeConstantVariables(); void writeFields(SkSpan fields, Position pos); int size(const Type* type, bool isPacked) const; int alignment(const Type* type, bool isPacked) const; void writeGlobalStruct(); void writeGlobalInit(); void writeThreadgroupStruct(); void writeThreadgroupInit(); void writePrecisionModifier(); std::string typeName(const Type& type); void writeStructDefinition(const StructDefinition& s); void writeType(const Type& type); void writeExtension(const Extension& ext); void writeInterfaceBlock(const InterfaceBlock& intf); void writeFunctionRequirementParams(const FunctionDeclaration& f, const char*& separator); void writeFunctionRequirementArgs(const FunctionDeclaration& f, const char*& separator); bool writeFunctionDeclaration(const FunctionDeclaration& f); void writeFunction(const FunctionDefinition& f); void writeFunctionPrototype(const FunctionPrototype& f); void writeLayout(const Layout& layout); void writeModifiers(ModifierFlags flags); void writeVarInitializer(const Variable& var, const Expression& value); void writeName(std::string_view name); void writeVarDeclaration(const VarDeclaration& decl); void writeFragCoord(); void writeVariableReference(const VariableReference& ref); void writeExpression(const Expression& expr, Precedence parentPrecedence); void writeMinAbsHack(Expression& absExpr, Expression& otherExpr); std::string getInversePolyfill(const ExpressionArray& arguments); std::string getBitcastIntrinsic(const Type& outType); std::string getTempVariable(const Type& varType); void writeFunctionCall(const FunctionCall& c); bool matrixConstructHelperIsNeeded(const ConstructorCompound& c); std::string getMatrixConstructHelper(const AnyConstructor& c); void assembleMatrixFromMatrix(const Type& sourceMatrix, int columns, int rows); void assembleMatrixFromExpressions(const AnyConstructor& ctor, int columns, int rows); void writeMatrixCompMult(); void writeOuterProduct(); void writeMatrixTimesEqualHelper(const Type& left, const Type& right, const Type& result); void writeMatrixDivisionHelpers(const Type& type); void writeMatrixEqualityHelpers(const Type& left, const Type& right); std::string getVectorFromMat2x2ConstructorHelper(const Type& matrixType); void writeArrayEqualityHelpers(const Type& type); void writeStructEqualityHelpers(const Type& type); void writeEqualityHelpers(const Type& leftType, const Type& rightType); void writeArgumentList(const ExpressionArray& arguments); void writeSimpleIntrinsic(const FunctionCall& c); bool writeIntrinsicCall(const FunctionCall& c, IntrinsicKind kind); void writeConstructorCompound(const ConstructorCompound& c, Precedence parentPrecedence); void writeConstructorCompoundVector(const ConstructorCompound& c, Precedence parentPrecedence); void writeConstructorCompoundMatrix(const ConstructorCompound& c, Precedence parentPrecedence); void writeConstructorMatrixResize(const ConstructorMatrixResize& c, Precedence parentPrecedence); void writeAnyConstructor(const AnyConstructor& c, const char* leftBracket, const char* rightBracket, Precedence parentPrecedence); void writeCastConstructor(const AnyConstructor& c, const char* leftBracket, const char* rightBracket, Precedence parentPrecedence); void writeConstructorArrayCast(const ConstructorArrayCast& c, Precedence parentPrecedence); void writeFieldAccess(const FieldAccess& f); void writeSwizzle(const Swizzle& swizzle); // Returns `floatCxR(1.0, 1.0, 1.0, 1.0, ...)`. std::string splatMatrixOf1(const Type& type); // Splats a scalar expression across a matrix of arbitrary size. void writeNumberAsMatrix(const Expression& expr, const Type& matrixType); void writeBinaryExpressionElement(const Expression& expr, Operator op, const Expression& other, Precedence precedence); void writeBinaryExpression(const BinaryExpression& b, Precedence parentPrecedence); void writeTernaryExpression(const TernaryExpression& t, Precedence parentPrecedence); void writeIndexExpression(const IndexExpression& expr); void writeIndexInnerExpression(const Expression& expr); void writePrefixExpression(const PrefixExpression& p, Precedence parentPrecedence); void writePostfixExpression(const PostfixExpression& p, Precedence parentPrecedence); void writeLiteral(const Literal& f); void writeStatement(const Statement& s); void writeStatements(const StatementArray& statements); void writeBlock(const Block& b); void writeIfStatement(const IfStatement& stmt); void writeForStatement(const ForStatement& f); void writeDoStatement(const DoStatement& d); void writeExpressionStatement(const ExpressionStatement& s); void writeSwitchStatement(const SwitchStatement& s); void writeReturnStatementFromMain(); void writeReturnStatement(const ReturnStatement& r); void writeProgramElement(const ProgramElement& e); Requirements requirements(const FunctionDeclaration& f); Requirements requirements(const Statement* s); // For compute shader main functions, writes and initializes the _in and _out structs (the // instances, not the types themselves) void writeComputeMainInputs(); int getUniformBinding(const Layout& layout); int getUniformSet(const Layout& layout); void writeWithIndexSubstitution(const std::function& fn); skia_private::THashSet fReservedWords; skia_private::THashMap fInterfaceBlockNameMap; int fAnonInterfaceCount = 0; int fPaddingCount = 0; const char* fLineEnding; std::string fFunctionHeader; StringStream fExtraFunctions; StringStream fExtraFunctionPrototypes; int fVarCount = 0; int fIndentation = 0; bool fAtLineStart = false; // true if we have run into usages of dFdx / dFdy bool fFoundDerivatives = false; skia_private::THashMap fRequirements; skia_private::THashSet fHelpers; int fUniformBuffer = -1; std::string fRTFlipName; const FunctionDeclaration* fCurrentFunction = nullptr; int fSwizzleHelperCount = 0; static constexpr char kTextureSuffix[] = "_Tex"; static constexpr char kSamplerSuffix[] = "_Smplr"; // If we might use an index expression more than once, we need to capture the result in a // temporary variable to avoid double-evaluation. This should generally only occur when emitting // a function call, since we need to polyfill GLSL-style out-parameter support. (skia:14130) // The map holds . using IndexSubstitutionMap = skia_private::THashMap; // When fIndexSubstitution is null (usually), index-substitution does not need to be performed. struct IndexSubstitutionData { IndexSubstitutionMap fMap; StringStream fMainStream; StringStream fPrefixStream; bool fCreateSubstitutes = true; }; std::unique_ptr fIndexSubstitutionData; PrettyPrint fPrettyPrint; // Workaround/polyfill flags bool fWrittenInverse2 = false, fWrittenInverse3 = false, fWrittenInverse4 = false; bool fWrittenMatrixCompMult = false; bool fWrittenOuterProduct = false; }; static const char* operator_name(Operator op) { switch (op.kind()) { case Operator::Kind::LOGICALXOR: return " != "; default: return op.operatorName(); } } class MetalCodeGenerator::GlobalStructVisitor { public: virtual ~GlobalStructVisitor() = default; virtual void visitInterfaceBlock(const InterfaceBlock& block, std::string_view blockName) {} virtual void visitTexture(const Type& type, std::string_view name) {} virtual void visitSampler(const Type& type, std::string_view name) {} virtual void visitConstantVariable(const VarDeclaration& decl) {} virtual void visitNonconstantVariable(const Variable& var, const Expression* value) {} }; class MetalCodeGenerator::ThreadgroupStructVisitor { public: virtual ~ThreadgroupStructVisitor() = default; virtual void visitNonconstantVariable(const Variable& var) = 0; }; void MetalCodeGenerator::write(std::string_view s) { if (s.empty()) { return; } if (fAtLineStart && fPrettyPrint == PrettyPrint::kYes) { for (int i = 0; i < fIndentation; i++) { fOut->writeText(" "); } } fOut->writeText(std::string(s).c_str()); fAtLineStart = false; } void MetalCodeGenerator::writeLine(std::string_view s) { this->write(s); fOut->writeText(fLineEnding); fAtLineStart = true; } void MetalCodeGenerator::finishLine() { if (!fAtLineStart) { this->writeLine(); } } void MetalCodeGenerator::writeExtension(const Extension& ext) { this->writeLine("#extension " + std::string(ext.name()) + " : enable"); } std::string MetalCodeGenerator::typeName(const Type& raw) { // we need to know the modifiers for textures const Type& type = raw.resolve().scalarTypeForLiteral(); switch (type.typeKind()) { case Type::TypeKind::kArray: { std::string typeName = this->typeName(type.componentType()); if (type.isUnsizedArray()) { return String::printf("const device %s*", typeName.c_str()); } else { SkASSERTF(type.columns() > 0, "invalid array size: %s", type.description().c_str()); return String::printf("array<%s, %d>", typeName.c_str(), type.columns()); } } case Type::TypeKind::kVector: return this->typeName(type.componentType()) + std::to_string(type.columns()); case Type::TypeKind::kMatrix: return this->typeName(type.componentType()) + std::to_string(type.columns()) + "x" + std::to_string(type.rows()); case Type::TypeKind::kSampler: if (type.dimensions() != SpvDim2D) { fContext.fErrors->error(Position(), "Unsupported texture dimensions"); } return "sampler2D"; case Type::TypeKind::kTexture: switch (type.textureAccess()) { case Type::TextureAccess::kSample: return "texture2d"; case Type::TextureAccess::kRead: return "texture2d"; case Type::TextureAccess::kWrite: return "texture2d"; case Type::TextureAccess::kReadWrite: return "texture2d"; default: break; } SkUNREACHABLE; case Type::TypeKind::kAtomic: // SkSL currently only supports the atomicUint type. SkASSERT(type.matches(*fContext.fTypes.fAtomicUInt)); return "atomic_uint"; default: return std::string(type.name()); } } void MetalCodeGenerator::writeStructDefinition(const StructDefinition& s) { const Type& type = s.type(); this->writeLine("struct " + type.displayName() + " {"); fIndentation++; this->writeFields(type.fields(), type.fPosition); fIndentation--; this->writeLine("};"); } void MetalCodeGenerator::writeType(const Type& type) { this->write(this->typeName(type)); } void MetalCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) { switch (expr.kind()) { case Expression::Kind::kBinary: this->writeBinaryExpression(expr.as(), parentPrecedence); break; case Expression::Kind::kConstructorArray: case Expression::Kind::kConstructorStruct: this->writeAnyConstructor(expr.asAnyConstructor(), "{", "}", parentPrecedence); break; case Expression::Kind::kConstructorArrayCast: this->writeConstructorArrayCast(expr.as(), parentPrecedence); break; case Expression::Kind::kConstructorCompound: this->writeConstructorCompound(expr.as(), parentPrecedence); break; case Expression::Kind::kConstructorDiagonalMatrix: case Expression::Kind::kConstructorSplat: this->writeAnyConstructor(expr.asAnyConstructor(), "(", ")", parentPrecedence); break; case Expression::Kind::kConstructorMatrixResize: this->writeConstructorMatrixResize(expr.as(), parentPrecedence); break; case Expression::Kind::kConstructorScalarCast: case Expression::Kind::kConstructorCompoundCast: this->writeCastConstructor(expr.asAnyConstructor(), "(", ")", parentPrecedence); break; case Expression::Kind::kEmpty: this->write("false"); break; case Expression::Kind::kFieldAccess: this->writeFieldAccess(expr.as()); break; case Expression::Kind::kLiteral: this->writeLiteral(expr.as()); break; case Expression::Kind::kFunctionCall: this->writeFunctionCall(expr.as()); break; case Expression::Kind::kPrefix: this->writePrefixExpression(expr.as(), parentPrecedence); break; case Expression::Kind::kPostfix: this->writePostfixExpression(expr.as(), parentPrecedence); break; case Expression::Kind::kSetting: this->writeExpression(*expr.as().toLiteral(fCaps), parentPrecedence); break; case Expression::Kind::kSwizzle: this->writeSwizzle(expr.as()); break; case Expression::Kind::kVariableReference: this->writeVariableReference(expr.as()); break; case Expression::Kind::kTernary: this->writeTernaryExpression(expr.as(), parentPrecedence); break; case Expression::Kind::kIndex: this->writeIndexExpression(expr.as()); break; default: SkDEBUGFAILF("unsupported expression: %s", expr.description().c_str()); break; } } // returns true if we should pass by reference instead of by value static bool pass_by_reference(const Type& type, ModifierFlags flags) { return (flags & ModifierFlag::kOut) && !type.isUnsizedArray(); } // returns true if we need to specify an address space modifier static bool needs_address_space(const Type& type, ModifierFlags modifiers) { return type.isUnsizedArray() || pass_by_reference(type, modifiers); } // returns true if the InterfaceBlock has the `buffer` modifier static bool is_buffer(const InterfaceBlock& block) { return block.var()->modifierFlags().isBuffer(); } // returns true if the InterfaceBlock has the `readonly` modifier static bool is_readonly(const InterfaceBlock& block) { return block.var()->modifierFlags().isReadOnly(); } std::string MetalCodeGenerator::getBitcastIntrinsic(const Type& outType) { return "as_type<" + outType.displayName() + ">"; } void MetalCodeGenerator::writeWithIndexSubstitution(const std::function& fn) { auto oldIndexSubstitutionData = std::make_unique(); fIndexSubstitutionData.swap(oldIndexSubstitutionData); // Invoke our helper function, with output going into our temporary stream. { AutoOutputStream outputToMainStream(this, &fIndexSubstitutionData->fMainStream); fn(); } if (fIndexSubstitutionData->fPrefixStream.bytesWritten() == 0) { // Emit the main stream into the program as-is. write_stringstream(fIndexSubstitutionData->fMainStream, *fOut); } else { // Emit the prefix stream and main stream into the program as a sequence-expression. // (Each prefix-expression must end with a comma.) this->write("("); write_stringstream(fIndexSubstitutionData->fPrefixStream, *fOut); write_stringstream(fIndexSubstitutionData->fMainStream, *fOut); this->write(")"); } fIndexSubstitutionData.swap(oldIndexSubstitutionData); } void MetalCodeGenerator::writeFunctionCall(const FunctionCall& c) { const FunctionDeclaration& function = c.function(); // Many intrinsics need to be rewritten in Metal. if (function.isIntrinsic()) { if (this->writeIntrinsicCall(c, function.intrinsicKind())) { return; } } // Look for out parameters. SkSL guarantees GLSL's out-param semantics, and we need to emulate // it if an out-param is encountered. (Specifically, out-parameters in GLSL are only written // back to the original variable at the end of the function call; also, swizzles are supported, // whereas Metal doesn't allow a swizzle to be passed to a `floatN&`.) const ExpressionArray& arguments = c.arguments(); SkSpan parameters = function.parameters(); SkASSERT(SkToSizeT(arguments.size()) == parameters.size()); bool foundOutParam = false; STArray<16, std::string> scratchVarName; scratchVarName.push_back_n(arguments.size(), std::string()); for (int index = 0; index < arguments.size(); ++index) { // If this is an out parameter... if (parameters[index]->modifierFlags() & ModifierFlag::kOut) { // Assignability was verified at IRGeneration time, so this should always succeed. [[maybe_unused]] Analysis::AssignmentInfo info; SkASSERT(Analysis::IsAssignable(*arguments[index], &info)); scratchVarName[index] = this->getTempVariable(arguments[index]->type()); foundOutParam = true; } } if (foundOutParam) { // Out parameters need to be written back to at the end of the function. To do this, we // generate a comma-separated sequence expression that copies the out-param expressions into // our temporary variables, calls the original function--storing its result into a scratch // variable--and then writes the temp variables back into the original out params using the // original out-param expressions. This would look something like: // // ((_skResult = func((_skTemp = myOutParam.x), 123)), (myOutParam.x = _skTemp), _skResult) // ^ ^ ^ ^ // return value passes copy of argument copies back into argument return value // // While these expressions are complex, they allow us to maintain the proper sequencing that // is necessary for out-parameters, as well as allowing us to support things like swizzles // and array indices which Metal references cannot natively handle. // We will be emitting inout expressions twice, so it's important to enable index // substitution in case we encounter any side-effecting indexes. this->writeWithIndexSubstitution([&] { this->write("(("); // ((_skResult = std::string scratchResultName; if (!function.returnType().isVoid()) { scratchResultName = this->getTempVariable(c.type()); this->write(scratchResultName); this->write(" = "); } // ((_skResult = func( this->write(function.mangledName()); this->write("("); // ((_skResult = func((_skTemp = myOutParam.x), 123 const char* separator = ""; this->writeFunctionRequirementArgs(function, separator); for (int i = 0; i < arguments.size(); ++i) { this->write(separator); separator = ", "; if (parameters[i]->modifierFlags() & ModifierFlag::kOut) { SkASSERT(!scratchVarName[i].empty()); if (parameters[i]->modifierFlags() & ModifierFlag::kIn) { // `inout` parameters initialize the scratch variable with the passed-in // argument's value. this->write("("); this->write(scratchVarName[i]); this->write(" = "); this->writeExpression(*arguments[i], Precedence::kAssignment); this->write(")"); } else { // `out` parameters pass a reference to the uninitialized scratch variable. this->write(scratchVarName[i]); } } else { // Regular parameters are passed as-is. this->writeExpression(*arguments[i], Precedence::kSequence); } } // ((_skResult = func((_skTemp = myOutParam.x), 123)) this->write("))"); // ((_skResult = func((_skTemp = myOutParam.x), 123)), (myOutParam.x = _skTemp) for (int i = 0; i < arguments.size(); ++i) { if (!scratchVarName[i].empty()) { this->write(", ("); this->writeExpression(*arguments[i], Precedence::kAssignment); this->write(" = "); this->write(scratchVarName[i]); this->write(")"); } } // ((_skResult = func((_skTemp = myOutParam.x), 123)), (myOutParam.x = _skTemp), // _skResult if (!scratchResultName.empty()) { this->write(", "); this->write(scratchResultName); } // ((_skResult = func((_skTemp = myOutParam.x), 123)), (myOutParam.x = _skTemp), // _skResult) this->write(")"); }); } else { // Emit the function call as-is, only prepending the required arguments. this->write(function.mangledName()); this->write("("); const char* separator = ""; this->writeFunctionRequirementArgs(function, separator); for (int i = 0; i < arguments.size(); ++i) { SkASSERT(scratchVarName[i].empty()); this->write(separator); separator = ", "; this->writeExpression(*arguments[i], Precedence::kSequence); } this->write(")"); } } static constexpr char kInverse2x2[] = R"( template matrix mat2_inverse(matrix m) { return matrix(m[1].y, -m[0].y, -m[1].x, m[0].x) * (1/determinant(m)); } )"; static constexpr char kInverse3x3[] = R"( template matrix mat3_inverse(matrix m) { T a00 = m[0].x, a01 = m[0].y, a02 = m[0].z, a10 = m[1].x, a11 = m[1].y, a12 = m[1].z, a20 = m[2].x, a21 = m[2].y, a22 = m[2].z, b01 = a22*a11 - a12*a21, b11 = -a22*a10 + a12*a20, b21 = a21*a10 - a11*a20, det = a00*b01 + a01*b11 + a02*b21; return matrix( b01, (-a22*a01 + a02*a21), ( a12*a01 - a02*a11), b11, ( a22*a00 - a02*a20), (-a12*a00 + a02*a10), b21, (-a21*a00 + a01*a20), ( a11*a00 - a01*a10)) * (1/det); } )"; static constexpr char kInverse4x4[] = R"( template matrix mat4_inverse(matrix m) { T a00 = m[0].x, a01 = m[0].y, a02 = m[0].z, a03 = m[0].w, a10 = m[1].x, a11 = m[1].y, a12 = m[1].z, a13 = m[1].w, a20 = m[2].x, a21 = m[2].y, a22 = m[2].z, a23 = m[2].w, a30 = m[3].x, a31 = m[3].y, a32 = m[3].z, a33 = m[3].w, b00 = a00*a11 - a01*a10, b01 = a00*a12 - a02*a10, b02 = a00*a13 - a03*a10, b03 = a01*a12 - a02*a11, b04 = a01*a13 - a03*a11, b05 = a02*a13 - a03*a12, b06 = a20*a31 - a21*a30, b07 = a20*a32 - a22*a30, b08 = a20*a33 - a23*a30, b09 = a21*a32 - a22*a31, b10 = a21*a33 - a23*a31, b11 = a22*a33 - a23*a32, det = b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06; return matrix( a11*b11 - a12*b10 + a13*b09, a02*b10 - a01*b11 - a03*b09, a31*b05 - a32*b04 + a33*b03, a22*b04 - a21*b05 - a23*b03, a12*b08 - a10*b11 - a13*b07, a00*b11 - a02*b08 + a03*b07, a32*b02 - a30*b05 - a33*b01, a20*b05 - a22*b02 + a23*b01, a10*b10 - a11*b08 + a13*b06, a01*b08 - a00*b10 - a03*b06, a30*b04 - a31*b02 + a33*b00, a21*b02 - a20*b04 - a23*b00, a11*b07 - a10*b09 - a12*b06, a00*b09 - a01*b07 + a02*b06, a31*b01 - a30*b03 - a32*b00, a20*b03 - a21*b01 + a22*b00) * (1/det); } )"; std::string MetalCodeGenerator::getInversePolyfill(const ExpressionArray& arguments) { // Only use polyfills for a function taking a single-argument square matrix. SkASSERT(arguments.size() == 1); const Type& type = arguments.front()->type(); if (type.isMatrix() && type.rows() == type.columns()) { switch (type.rows()) { case 2: if (!fWrittenInverse2) { fWrittenInverse2 = true; fExtraFunctions.writeText(kInverse2x2); } return "mat2_inverse"; case 3: if (!fWrittenInverse3) { fWrittenInverse3 = true; fExtraFunctions.writeText(kInverse3x3); } return "mat3_inverse"; case 4: if (!fWrittenInverse4) { fWrittenInverse4 = true; fExtraFunctions.writeText(kInverse4x4); } return "mat4_inverse"; } } SkDEBUGFAILF("no polyfill for inverse(%s)", type.description().c_str()); return "inverse"; } void MetalCodeGenerator::writeMatrixCompMult() { static constexpr char kMatrixCompMult[] = R"( template matrix matrixCompMult(matrix a, const matrix b) { for (int c = 0; c < C; ++c) { a[c] *= b[c]; } return a; } )"; if (!fWrittenMatrixCompMult) { fWrittenMatrixCompMult = true; fExtraFunctions.writeText(kMatrixCompMult); } } void MetalCodeGenerator::writeOuterProduct() { static constexpr char kOuterProduct[] = R"( template matrix outerProduct(const vec a, const vec b) { matrix m; for (int c = 0; c < C; ++c) { m[c] = a * b[c]; } return m; } )"; if (!fWrittenOuterProduct) { fWrittenOuterProduct = true; fExtraFunctions.writeText(kOuterProduct); } } std::string MetalCodeGenerator::getTempVariable(const Type& type) { std::string tempVar = "_skTemp" + std::to_string(fVarCount++); this->fFunctionHeader += " " + this->typeName(type) + " " + tempVar + ";\n"; return tempVar; } void MetalCodeGenerator::writeSimpleIntrinsic(const FunctionCall& c) { // Write out an intrinsic function call exactly as-is. No muss no fuss. this->write(c.function().name()); this->writeArgumentList(c.arguments()); } void MetalCodeGenerator::writeArgumentList(const ExpressionArray& arguments) { this->write("("); const char* separator = ""; for (const std::unique_ptr& arg : arguments) { this->write(separator); separator = ", "; this->writeExpression(*arg, Precedence::kSequence); } this->write(")"); } bool MetalCodeGenerator::writeIntrinsicCall(const FunctionCall& c, IntrinsicKind kind) { const ExpressionArray& arguments = c.arguments(); switch (kind) { case k_textureRead_IntrinsicKind: { this->writeExpression(*arguments[0], Precedence::kExpression); this->write(".read("); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(")"); return true; } case k_textureWrite_IntrinsicKind: { this->writeExpression(*arguments[0], Precedence::kExpression); this->write(".write("); this->writeExpression(*arguments[2], Precedence::kSequence); this->write(", "); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(")"); return true; } case k_textureWidth_IntrinsicKind: { this->writeExpression(*arguments[0], Precedence::kExpression); this->write(".get_width()"); return true; } case k_textureHeight_IntrinsicKind: { this->writeExpression(*arguments[0], Precedence::kExpression); this->write(".get_height()"); return true; } case k_mod_IntrinsicKind: { // fmod(x, y) in metal calculates x - y * trunc(x / y) instead of x - y * floor(x / y) std::string tmpX = this->getTempVariable(arguments[0]->type()); std::string tmpY = this->getTempVariable(arguments[1]->type()); this->write("(" + tmpX + " = "); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(", " + tmpY + " = "); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(", " + tmpX + " - " + tmpY + " * floor(" + tmpX + " / " + tmpY + "))"); return true; } case k_pow_IntrinsicKind: { // The Metal equivalent to GLSL's pow() is powr(). Metal's pow() allows negative base // values, which is presumably more expensive to compute. this->write("powr("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(", "); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(")"); return true; } // GLSL declares scalar versions of most geometric intrinsics, but these don't exist in MSL case k_distance_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { this->write("abs("); this->writeExpression(*arguments[0], Precedence::kAdditive); this->write(" - "); this->writeExpression(*arguments[1], Precedence::kAdditive); this->write(")"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_dot_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { this->write("("); this->writeExpression(*arguments[0], Precedence::kMultiplicative); this->write(" * "); this->writeExpression(*arguments[1], Precedence::kMultiplicative); this->write(")"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_faceforward_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { // ((((Nref) * (I) < 0) ? 1 : -1) * (N)) this->write("(((("); this->writeExpression(*arguments[2], Precedence::kSequence); this->write(") * ("); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(") < 0) ? 1 : -1) * ("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write("))"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_length_IntrinsicKind: { this->write(arguments[0]->type().columns() == 1 ? "abs(" : "length("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_normalize_IntrinsicKind: { this->write(arguments[0]->type().columns() == 1 ? "sign(" : "normalize("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_packUnorm2x16_IntrinsicKind: { this->write("pack_float_to_unorm2x16("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_unpackUnorm2x16_IntrinsicKind: { this->write("unpack_unorm2x16_to_float("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_packSnorm2x16_IntrinsicKind: { this->write("pack_float_to_snorm2x16("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_unpackSnorm2x16_IntrinsicKind: { this->write("unpack_snorm2x16_to_float("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_packUnorm4x8_IntrinsicKind: { this->write("pack_float_to_unorm4x8("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_unpackUnorm4x8_IntrinsicKind: { this->write("unpack_unorm4x8_to_float("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_packSnorm4x8_IntrinsicKind: { this->write("pack_float_to_snorm4x8("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_unpackSnorm4x8_IntrinsicKind: { this->write("unpack_snorm4x8_to_float("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_packHalf2x16_IntrinsicKind: { this->write("as_type(half2("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write("))"); return true; } case k_unpackHalf2x16_IntrinsicKind: { this->write("float2(as_type("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write("))"); return true; } case k_floatBitsToInt_IntrinsicKind: case k_floatBitsToUint_IntrinsicKind: case k_intBitsToFloat_IntrinsicKind: case k_uintBitsToFloat_IntrinsicKind: { this->write(this->getBitcastIntrinsic(c.type())); this->write("("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_degrees_IntrinsicKind: { this->write("(("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(") * 57.2957795)"); return true; } case k_radians_IntrinsicKind: { this->write("(("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(") * 0.0174532925)"); return true; } case k_dFdx_IntrinsicKind: { this->write("dfdx"); this->writeArgumentList(c.arguments()); return true; } case k_dFdy_IntrinsicKind: { if (!fRTFlipName.empty()) { this->write("(" + fRTFlipName + ".y * dfdy"); } else { this->write("(dfdy"); } this->writeArgumentList(c.arguments()); this->write(")"); return true; } case k_inverse_IntrinsicKind: { this->write(this->getInversePolyfill(arguments)); this->writeArgumentList(c.arguments()); return true; } case k_inversesqrt_IntrinsicKind: { this->write("rsqrt"); this->writeArgumentList(c.arguments()); return true; } case k_atan_IntrinsicKind: { this->write(c.arguments().size() == 2 ? "atan2" : "atan"); this->writeArgumentList(c.arguments()); return true; } case k_reflect_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { // We need to synthesize `I - 2 * N * I * N`. std::string tmpI = this->getTempVariable(arguments[0]->type()); std::string tmpN = this->getTempVariable(arguments[1]->type()); // (_skTempI = ... this->write("(" + tmpI + " = "); this->writeExpression(*arguments[0], Precedence::kSequence); // , _skTempN = ... this->write(", " + tmpN + " = "); this->writeExpression(*arguments[1], Precedence::kSequence); // , _skTempI - 2 * _skTempN * _skTempI * _skTempN) this->write(", " + tmpI + " - 2 * " + tmpN + " * " + tmpI + " * " + tmpN + ")"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_refract_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { // Metal does implement refract for vectors; rather than reimplementing refract from // scratch, we can replace the call with `refract(float2(I,0), float2(N,0), eta).x`. this->write("(refract(float2("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(", 0), float2("); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(", 0), "); this->writeExpression(*arguments[2], Precedence::kSequence); this->write(").x)"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_roundEven_IntrinsicKind: { this->write("rint"); this->writeArgumentList(c.arguments()); return true; } case k_bitCount_IntrinsicKind: { this->write("popcount("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_findLSB_IntrinsicKind: { // Create a temp variable to store the expression, to avoid double-evaluating it. std::string skTemp = this->getTempVariable(arguments[0]->type()); std::string exprType = this->typeName(arguments[0]->type()); // ctz returns numbits(type) on zero inputs; GLSL documents it as generating -1 instead. // Use select to detect zero inputs and force a -1 result. // (_skTemp1 = (.....), select(ctz(_skTemp1), int4(-1), _skTemp1 == int4(0))) this->write("("); this->write(skTemp); this->write(" = ("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write("), select(ctz("); this->write(skTemp); this->write("), "); this->write(exprType); this->write("(-1), "); this->write(skTemp); this->write(" == "); this->write(exprType); this->write("(0)))"); return true; } case k_findMSB_IntrinsicKind: { // Create a temp variable to store the expression, to avoid double-evaluating it. std::string skTemp1 = this->getTempVariable(arguments[0]->type()); std::string exprType = this->typeName(arguments[0]->type()); // GLSL findMSB is actually quite different from Metal's clz: // - For signed negative numbers, it returns the first zero bit, not the first one bit! // - For an empty input (0/~0 depending on sign), findMSB gives -1; clz is numbits(type) // (_skTemp1 = (.....), this->write("("); this->write(skTemp1); this->write(" = ("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write("), "); // Signed input types might be negative; we need another helper variable to negate the // input (since we can only find one bits, not zero bits). std::string skTemp2; if (arguments[0]->type().isSigned()) { // ... _skTemp2 = (select(_skTemp1, ~_skTemp1, _skTemp1 < 0)), skTemp2 = this->getTempVariable(arguments[0]->type()); this->write(skTemp2); this->write(" = (select("); this->write(skTemp1); this->write(", ~"); this->write(skTemp1); this->write(", "); this->write(skTemp1); this->write(" < 0)), "); } else { skTemp2 = skTemp1; } // ... select(int4(clz(_skTemp2)), int4(-1), _skTemp2 == int4(0))) this->write("select("); this->write(this->typeName(c.type())); this->write("(clz("); this->write(skTemp2); this->write(")), "); this->write(this->typeName(c.type())); this->write("(-1), "); this->write(skTemp2); this->write(" == "); this->write(exprType); this->write("(0)))"); return true; } case k_sign_IntrinsicKind: { if (arguments[0]->type().componentType().isInteger()) { // Create a temp variable to store the expression, to avoid double-evaluating it. std::string skTemp = this->getTempVariable(arguments[0]->type()); std::string exprType = this->typeName(arguments[0]->type()); // (_skTemp = (.....), this->write("("); this->write(skTemp); this->write(" = ("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write("), "); // ... select(select(int4(0), int4(-1), _skTemp < 0), int4(1), _skTemp > 0)) this->write("select(select("); this->write(exprType); this->write("(0), "); this->write(exprType); this->write("(-1), "); this->write(skTemp); this->write(" < 0), "); this->write(exprType); this->write("(1), "); this->write(skTemp); this->write(" > 0))"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_matrixCompMult_IntrinsicKind: { this->writeMatrixCompMult(); this->writeSimpleIntrinsic(c); return true; } case k_outerProduct_IntrinsicKind: { this->writeOuterProduct(); this->writeSimpleIntrinsic(c); return true; } case k_mix_IntrinsicKind: { SkASSERT(c.arguments().size() == 3); if (arguments[2]->type().componentType().isBoolean()) { // The Boolean forms of GLSL mix() use the select() intrinsic in Metal. this->write("select"); this->writeArgumentList(c.arguments()); return true; } // The basic form of mix() is supported by Metal as-is. this->writeSimpleIntrinsic(c); return true; } case k_equal_IntrinsicKind: case k_greaterThan_IntrinsicKind: case k_greaterThanEqual_IntrinsicKind: case k_lessThan_IntrinsicKind: case k_lessThanEqual_IntrinsicKind: case k_notEqual_IntrinsicKind: { this->write("("); this->writeExpression(*c.arguments()[0], Precedence::kRelational); switch (kind) { case k_equal_IntrinsicKind: this->write(" == "); break; case k_notEqual_IntrinsicKind: this->write(" != "); break; case k_lessThan_IntrinsicKind: this->write(" < "); break; case k_lessThanEqual_IntrinsicKind: this->write(" <= "); break; case k_greaterThan_IntrinsicKind: this->write(" > "); break; case k_greaterThanEqual_IntrinsicKind: this->write(" >= "); break; default: SK_ABORT("unsupported comparison intrinsic kind"); } this->writeExpression(*c.arguments()[1], Precedence::kRelational); this->write(")"); return true; } case k_storageBarrier_IntrinsicKind: this->write("threadgroup_barrier(mem_flags::mem_device)"); return true; case k_workgroupBarrier_IntrinsicKind: this->write("threadgroup_barrier(mem_flags::mem_threadgroup)"); return true; case k_atomicAdd_IntrinsicKind: this->write("atomic_fetch_add_explicit(&"); this->writeExpression(*c.arguments()[0], Precedence::kSequence); this->write(", "); this->writeExpression(*c.arguments()[1], Precedence::kSequence); this->write(", memory_order_relaxed)"); return true; case k_atomicLoad_IntrinsicKind: this->write("atomic_load_explicit(&"); this->writeExpression(*c.arguments()[0], Precedence::kSequence); this->write(", memory_order_relaxed)"); return true; case k_atomicStore_IntrinsicKind: this->write("atomic_store_explicit(&"); this->writeExpression(*c.arguments()[0], Precedence::kSequence); this->write(", "); this->writeExpression(*c.arguments()[1], Precedence::kSequence); this->write(", memory_order_relaxed)"); return true; default: return false; } } // Assembles a matrix of type floatRxC by resizing another matrix named `x0`. // Cells that don't exist in the source matrix will be populated with identity-matrix values. void MetalCodeGenerator::assembleMatrixFromMatrix(const Type& sourceMatrix, int columns, int rows) { SkASSERT(rows <= 4); SkASSERT(columns <= 4); std::string matrixType = this->typeName(sourceMatrix.componentType()); const char* separator = ""; for (int c = 0; c < columns; ++c) { fExtraFunctions.printf("%s%s%d(", separator, matrixType.c_str(), rows); separator = "), "; // Determine how many values to take from the source matrix for this row. int swizzleLength = 0; if (c < sourceMatrix.columns()) { swizzleLength = std::min<>(rows, sourceMatrix.rows()); } // Emit all the values from the source matrix row. bool firstItem; switch (swizzleLength) { case 0: firstItem = true; break; case 1: firstItem = false; fExtraFunctions.printf("x0[%d].x", c); break; case 2: firstItem = false; fExtraFunctions.printf("x0[%d].xy", c); break; case 3: firstItem = false; fExtraFunctions.printf("x0[%d].xyz", c); break; case 4: firstItem = false; fExtraFunctions.printf("x0[%d].xyzw", c); break; default: SkUNREACHABLE; } // Emit the placeholder identity-matrix cells. for (int r = swizzleLength; r < rows; ++r) { fExtraFunctions.printf("%s%s", firstItem ? "" : ", ", (r == c) ? "1.0" : "0.0"); firstItem = false; } } fExtraFunctions.writeText(")"); } // Assembles a matrix of type floatCxR by concatenating an arbitrary mix of values, named `x0`, // `x1`, etc. An error is written if the expression list don't contain exactly C*R scalars. void MetalCodeGenerator::assembleMatrixFromExpressions(const AnyConstructor& ctor, int columns, int rows) { SkASSERT(rows <= 4); SkASSERT(columns <= 4); std::string matrixType = this->typeName(ctor.type().componentType()); size_t argIndex = 0; int argPosition = 0; auto args = ctor.argumentSpan(); static constexpr char kSwizzle[] = "xyzw"; const char* separator = ""; for (int c = 0; c < columns; ++c) { fExtraFunctions.printf("%s%s%d(", separator, matrixType.c_str(), rows); separator = "), "; const char* columnSeparator = ""; for (int r = 0; r < rows;) { fExtraFunctions.writeText(columnSeparator); columnSeparator = ", "; if (argIndex < args.size()) { const Type& argType = args[argIndex]->type(); switch (argType.typeKind()) { case Type::TypeKind::kScalar: { fExtraFunctions.printf("x%zu", argIndex); ++r; ++argPosition; break; } case Type::TypeKind::kVector: { fExtraFunctions.printf("x%zu.", argIndex); do { fExtraFunctions.write8(kSwizzle[argPosition]); ++r; ++argPosition; } while (r < rows && argPosition < argType.columns()); break; } case Type::TypeKind::kMatrix: { fExtraFunctions.printf("x%zu[%d].", argIndex, argPosition / argType.rows()); do { fExtraFunctions.write8(kSwizzle[argPosition]); ++r; ++argPosition; } while (r < rows && (argPosition % argType.rows()) != 0); break; } default: { SkDEBUGFAIL("incorrect type of argument for matrix constructor"); fExtraFunctions.writeText(""); break; } } if (argPosition >= argType.columns() * argType.rows()) { ++argIndex; argPosition = 0; } } else { SkDEBUGFAIL("not enough arguments for matrix constructor"); fExtraFunctions.writeText(""); } } } if (argPosition != 0 || argIndex != args.size()) { SkDEBUGFAIL("incorrect number of arguments for matrix constructor"); fExtraFunctions.writeText(", "); } fExtraFunctions.writeText(")"); } // Generates a constructor for 'matrix' which reorganizes the input arguments into the proper shape. // Keeps track of previously generated constructors so that we won't generate more than one // constructor for any given permutation of input argument types. Returns the name of the // generated constructor method. std::string MetalCodeGenerator::getMatrixConstructHelper(const AnyConstructor& c) { const Type& type = c.type(); int columns = type.columns(); int rows = type.rows(); auto args = c.argumentSpan(); std::string typeName = this->typeName(type); // Create the helper-method name and use it as our lookup key. std::string name = String::printf("%s_from", typeName.c_str()); for (const std::unique_ptr& expr : args) { String::appendf(&name, "_%s", this->typeName(expr->type()).c_str()); } // If a helper-method has not been synthesized yet, create it now. if (!fHelpers.contains(name)) { fHelpers.add(name); // Unlike GLSL, Metal requires that matrices are initialized with exactly R vectors of C // components apiece. (In Metal 2.0, you can also supply R*C scalars, but you still cannot // supply a mixture of scalars and vectors.) fExtraFunctions.printf("%s %s(", typeName.c_str(), name.c_str()); size_t argIndex = 0; const char* argSeparator = ""; for (const std::unique_ptr& expr : args) { fExtraFunctions.printf("%s%s x%zu", argSeparator, this->typeName(expr->type()).c_str(), argIndex++); argSeparator = ", "; } fExtraFunctions.printf(") {\n return %s(", typeName.c_str()); if (args.size() == 1 && args.front()->type().isMatrix()) { this->assembleMatrixFromMatrix(args.front()->type(), columns, rows); } else { this->assembleMatrixFromExpressions(c, columns, rows); } fExtraFunctions.writeText(");\n}\n"); } return name; } bool MetalCodeGenerator::matrixConstructHelperIsNeeded(const ConstructorCompound& c) { SkASSERT(c.type().isMatrix()); // GLSL is fairly free-form about inputs to its matrix constructors, but Metal is not; it // expects exactly R vectors of C components apiece. (Metal 2.0 also allows a list of R*C // scalars.) Some cases are simple to translate and so we handle those inline--e.g. a list of // scalars can be constructed trivially. In more complex cases, we generate a helper function // that converts our inputs into a properly-shaped matrix. // A matrix construct helper method is always used if any input argument is a matrix. // Helper methods are also necessary when any argument would span multiple rows. For instance: // // float2 x = (1, 2); // float3x2(x, 3, 4, 5, 6) = | 1 3 5 | = no helper needed; conversion can be done inline // | 2 4 6 | // // float2 x = (2, 3); // float3x2(1, x, 4, 5, 6) = | 1 3 5 | = x spans multiple rows; a helper method will be used // | 2 4 6 | // // float4 x = (1, 2, 3, 4); // float2x2(x) = | 1 3 | = x spans multiple rows; a helper method will be used // | 2 4 | // int position = 0; for (const std::unique_ptr& expr : c.arguments()) { // If an input argument is a matrix, we need a helper function. if (expr->type().isMatrix()) { return true; } position += expr->type().columns(); if (position > c.type().rows()) { // An input argument would span multiple rows; a helper function is required. return true; } if (position == c.type().rows()) { // We've advanced to the end of a row. Wrap to the start of the next row. position = 0; } } return false; } void MetalCodeGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c, Precedence parentPrecedence) { // Matrix-resize via casting doesn't natively exist in Metal at all, so we always need to use a // matrix-construct helper here. this->write(this->getMatrixConstructHelper(c)); this->write("("); this->writeExpression(*c.argument(), Precedence::kSequence); this->write(")"); } void MetalCodeGenerator::writeConstructorCompound(const ConstructorCompound& c, Precedence parentPrecedence) { if (c.type().isVector()) { this->writeConstructorCompoundVector(c, parentPrecedence); } else if (c.type().isMatrix()) { this->writeConstructorCompoundMatrix(c, parentPrecedence); } else { fContext.fErrors->error(c.fPosition, "unsupported compound constructor"); } } void MetalCodeGenerator::writeConstructorArrayCast(const ConstructorArrayCast& c, Precedence parentPrecedence) { const Type& inType = c.argument()->type().componentType(); const Type& outType = c.type().componentType(); std::string inTypeName = this->typeName(inType); std::string outTypeName = this->typeName(outType); std::string name = "array_of_" + outTypeName + "_from_" + inTypeName; if (!fHelpers.contains(name)) { fHelpers.add(name); fExtraFunctions.printf(R"( template array<%s, N> %s(thread const array<%s, N>& x) { array<%s, N> result; for (int i = 0; i < N; ++i) { result[i] = %s(x[i]); } return result; } )", outTypeName.c_str(), name.c_str(), inTypeName.c_str(), outTypeName.c_str(), outTypeName.c_str()); } this->write(name); this->write("("); this->writeExpression(*c.argument(), Precedence::kSequence); this->write(")"); } std::string MetalCodeGenerator::getVectorFromMat2x2ConstructorHelper(const Type& matrixType) { SkASSERT(matrixType.isMatrix()); SkASSERT(matrixType.rows() == 2); SkASSERT(matrixType.columns() == 2); std::string baseType = this->typeName(matrixType.componentType()); std::string name = String::printf("%s4_from_%s2x2", baseType.c_str(), baseType.c_str()); if (!fHelpers.contains(name)) { fHelpers.add(name); fExtraFunctions.printf(R"( %s4 %s(%s2x2 x) { return %s4(x[0].xy, x[1].xy); } )", baseType.c_str(), name.c_str(), baseType.c_str(), baseType.c_str()); } return name; } void MetalCodeGenerator::writeConstructorCompoundVector(const ConstructorCompound& c, Precedence parentPrecedence) { SkASSERT(c.type().isVector()); // Metal supports constructing vectors from a mix of scalars and vectors, but not matrices. // GLSL supports vec4(mat2x2), so we detect that case here and emit a helper function. if (c.type().columns() == 4 && c.argumentSpan().size() == 1) { const Expression& expr = *c.argumentSpan().front(); if (expr.type().isMatrix()) { this->write(this->getVectorFromMat2x2ConstructorHelper(expr.type())); this->write("("); this->writeExpression(expr, Precedence::kSequence); this->write(")"); return; } } this->writeAnyConstructor(c, "(", ")", parentPrecedence); } void MetalCodeGenerator::writeConstructorCompoundMatrix(const ConstructorCompound& c, Precedence parentPrecedence) { SkASSERT(c.type().isMatrix()); // Emit and invoke a matrix-constructor helper method if one is necessary. if (this->matrixConstructHelperIsNeeded(c)) { this->write(this->getMatrixConstructHelper(c)); this->write("("); const char* separator = ""; for (const std::unique_ptr& expr : c.arguments()) { this->write(separator); separator = ", "; this->writeExpression(*expr, Precedence::kSequence); } this->write(")"); return; } // Metal doesn't allow creating matrices by passing in scalars and vectors in a jumble; it // requires your scalars to be grouped up into columns. Because `matrixConstructHelperIsNeeded` // returned false, we know that none of our scalars/vectors "wrap" across across a column, so we // can group our inputs up and synthesize a constructor for each column. const Type& matrixType = c.type(); const Type& columnType = matrixType.columnType(fContext); this->writeType(matrixType); this->write("("); const char* separator = ""; int scalarCount = 0; for (const std::unique_ptr& arg : c.arguments()) { this->write(separator); separator = ", "; if (arg->type().columns() < matrixType.rows()) { // Write a `floatN(` constructor to group scalars and smaller vectors together. if (!scalarCount) { this->writeType(columnType); this->write("("); } scalarCount += arg->type().columns(); } this->writeExpression(*arg, Precedence::kSequence); if (scalarCount && scalarCount == matrixType.rows()) { // Close our `floatN(...` constructor block from above. this->write(")"); scalarCount = 0; } } this->write(")"); } void MetalCodeGenerator::writeAnyConstructor(const AnyConstructor& c, const char* leftBracket, const char* rightBracket, Precedence parentPrecedence) { this->writeType(c.type()); this->write(leftBracket); const char* separator = ""; for (const std::unique_ptr& arg : c.argumentSpan()) { this->write(separator); separator = ", "; this->writeExpression(*arg, Precedence::kSequence); } this->write(rightBracket); } void MetalCodeGenerator::writeCastConstructor(const AnyConstructor& c, const char* leftBracket, const char* rightBracket, Precedence parentPrecedence) { return this->writeAnyConstructor(c, leftBracket, rightBracket, parentPrecedence); } void MetalCodeGenerator::writeFragCoord() { if (!fRTFlipName.empty()) { this->write("float4(_fragCoord.x, "); this->write(fRTFlipName.c_str()); this->write(".x + "); this->write(fRTFlipName.c_str()); this->write(".y * _fragCoord.y, 0.0, _fragCoord.w)"); } else { this->write("float4(_fragCoord.x, _fragCoord.y, 0.0, _fragCoord.w)"); } } static bool is_compute_builtin(const Variable& var) { switch (var.layout().fBuiltin) { case SK_NUMWORKGROUPS_BUILTIN: case SK_WORKGROUPID_BUILTIN: case SK_LOCALINVOCATIONID_BUILTIN: case SK_GLOBALINVOCATIONID_BUILTIN: case SK_LOCALINVOCATIONINDEX_BUILTIN: return true; default: break; } return false; } // true if the var is part of the Inputs struct static bool is_input(const Variable& var) { SkASSERT(var.storage() == VariableStorage::kGlobal); return var.modifierFlags() & ModifierFlag::kIn && (var.layout().fBuiltin == -1 || is_compute_builtin(var)) && var.type().typeKind() != Type::TypeKind::kTexture; } // true if the var is part of the Outputs struct static bool is_output(const Variable& var) { SkASSERT(var.storage() == VariableStorage::kGlobal); // inout vars get written into the Inputs struct, so we exclude them from Outputs return (var.modifierFlags() & ModifierFlag::kOut) && !(var.modifierFlags() & ModifierFlag::kIn) && var.layout().fBuiltin == -1 && var.type().typeKind() != Type::TypeKind::kTexture; } // true if the var is part of the Uniforms struct static bool is_uniforms(const Variable& var) { SkASSERT(var.storage() == VariableStorage::kGlobal); return var.modifierFlags().isUniform() && var.type().typeKind() != Type::TypeKind::kSampler; } // true if the var is part of the Threadgroups struct static bool is_threadgroup(const Variable& var) { SkASSERT(var.storage() == VariableStorage::kGlobal); return var.modifierFlags().isWorkgroup(); } // true if the var is part of the Globals struct static bool is_in_globals(const Variable& var) { SkASSERT(var.storage() == VariableStorage::kGlobal); return !var.modifierFlags().isConst(); } void MetalCodeGenerator::writeVariableReference(const VariableReference& ref) { switch (ref.variable()->layout().fBuiltin) { case SK_FRAGCOLOR_BUILTIN: this->write("_out.sk_FragColor"); break; case SK_SAMPLEMASK_BUILTIN: this->write("_out.sk_SampleMask"); break; case SK_SECONDARYFRAGCOLOR_BUILTIN: if (fCaps.fDualSourceBlendingSupport) { this->write("_out.sk_SecondaryFragColor"); } else { fContext.fErrors->error(ref.position(), "'sk_SecondaryFragColor' not supported"); } break; case SK_FRAGCOORD_BUILTIN: this->writeFragCoord(); break; case SK_SAMPLEMASKIN_BUILTIN: this->write("sk_SampleMaskIn"); break; case SK_VERTEXID_BUILTIN: this->write("sk_VertexID"); break; case SK_INSTANCEID_BUILTIN: this->write("sk_InstanceID"); break; case SK_CLOCKWISE_BUILTIN: // We'd set the front facing winding in the MTLRenderCommandEncoder to be counter // clockwise to match Skia convention. if (!fRTFlipName.empty()) { this->write("(" + fRTFlipName + ".y < 0 ? _frontFacing : !_frontFacing)"); } else { this->write("_frontFacing"); } break; case SK_LASTFRAGCOLOR_BUILTIN: if (fCaps.fFBFetchColorName) { this->write(fCaps.fFBFetchColorName); } else { fContext.fErrors->error(ref.position(), "'sk_LastFragColor' not supported"); } break; default: const Variable& var = *ref.variable(); if (var.storage() == Variable::Storage::kGlobal) { if (is_input(var)) { this->write("_in."); } else if (is_output(var)) { this->write("_out."); } else if (is_uniforms(var)) { this->write("_uniforms."); } else if (is_threadgroup(var)) { this->write("_threadgroups."); } else if (is_in_globals(var)) { this->write("_globals."); } } this->writeName(var.mangledName()); } } void MetalCodeGenerator::writeIndexInnerExpression(const Expression& expr) { if (fIndexSubstitutionData) { // If this expression already exists in the index-substitution map, use the substitute. if (const std::string* existing = fIndexSubstitutionData->fMap.find(&expr)) { this->write(*existing); return; } // If this expression is non-trivial, we will need to create a scratch variable and store // its value there. if (fIndexSubstitutionData->fCreateSubstitutes && !Analysis::IsTrivialExpression(expr)) { // Create a substitute variable and emit it into the main stream. std::string scratchVar = this->getTempVariable(expr.type()); this->write(scratchVar); // Initialize the substitute variable in the prefix-stream. AutoOutputStream outputToPrefixStream(this, &fIndexSubstitutionData->fPrefixStream); this->write(scratchVar); this->write(" = "); this->writeExpression(expr, Precedence::kAssignment); this->write(", "); // Remember the substitute variable in our map. fIndexSubstitutionData->fMap.set(&expr, std::move(scratchVar)); return; } } // We don't require index-substitution; just emit the expression normally. this->writeExpression(expr, Precedence::kExpression); } void MetalCodeGenerator::writeIndexExpression(const IndexExpression& expr) { // Metal does not seem to handle assignment into `vec.zyx[i]` properly--it compiles, but the // results are wrong. We rewrite the expression as `vec[uint3(2,1,0)[i]]` instead. (Filed with // Apple as FB12055941.) if (expr.base()->is() && expr.base()->as().components().size() > 1) { const Swizzle& swizzle = expr.base()->as(); this->writeExpression(*swizzle.base(), Precedence::kPostfix); this->write("[uint" + std::to_string(swizzle.components().size()) + "("); auto separator = SkSL::String::Separator(); for (int8_t component : swizzle.components()) { this->write(separator()); this->write(std::to_string(component)); } this->write(")["); this->writeIndexInnerExpression(*expr.index()); this->write("]]"); } else { this->writeExpression(*expr.base(), Precedence::kPostfix); this->write("["); this->writeIndexInnerExpression(*expr.index()); this->write("]"); } } void MetalCodeGenerator::writeFieldAccess(const FieldAccess& f) { const Field* field = &f.base()->type().fields()[f.fieldIndex()]; if (FieldAccess::OwnerKind::kDefault == f.ownerKind()) { this->writeExpression(*f.base(), Precedence::kPostfix); this->write("."); } switch (field->fLayout.fBuiltin) { case SK_POSITION_BUILTIN: this->write("_out.sk_Position"); break; case SK_POINTSIZE_BUILTIN: this->write("_out.sk_PointSize"); break; default: if (FieldAccess::OwnerKind::kAnonymousInterfaceBlock == f.ownerKind()) { this->write("_globals."); this->write(fInterfaceBlockNameMap[&f.base()->type()]); this->write("->"); } this->writeName(field->fName); } } void MetalCodeGenerator::writeSwizzle(const Swizzle& swizzle) { this->writeExpression(*swizzle.base(), Precedence::kPostfix); this->write("."); this->write(Swizzle::MaskString(swizzle.components())); } void MetalCodeGenerator::writeMatrixTimesEqualHelper(const Type& left, const Type& right, const Type& result) { SkASSERT(left.isMatrix()); SkASSERT(right.isMatrix()); SkASSERT(result.isMatrix()); std::string key = "Matrix *= " + this->typeName(left) + ":" + this->typeName(right); if (!fHelpers.contains(key)) { fHelpers.add(key); fExtraFunctions.printf("thread %s& operator*=(thread %s& left, thread const %s& right) {\n" " left = left * right;\n" " return left;\n" "}\n", this->typeName(result).c_str(), this->typeName(left).c_str(), this->typeName(right).c_str()); } } void MetalCodeGenerator::writeMatrixEqualityHelpers(const Type& left, const Type& right) { SkASSERT(left.isMatrix()); SkASSERT(right.isMatrix()); SkASSERT(left.rows() == right.rows()); SkASSERT(left.columns() == right.columns()); std::string key = "Matrix == " + this->typeName(left) + ":" + this->typeName(right); if (!fHelpers.contains(key)) { fHelpers.add(key); fExtraFunctionPrototypes.printf(R"( thread bool operator==(const %s left, const %s right); thread bool operator!=(const %s left, const %s right); )", this->typeName(left).c_str(), this->typeName(right).c_str(), this->typeName(left).c_str(), this->typeName(right).c_str()); fExtraFunctions.printf( "thread bool operator==(const %s left, const %s right) {\n" " return ", this->typeName(left).c_str(), this->typeName(right).c_str()); const char* separator = ""; for (int index=0; indextypeName(left).c_str(), this->typeName(right).c_str()); } } void MetalCodeGenerator::writeMatrixDivisionHelpers(const Type& type) { SkASSERT(type.isMatrix()); std::string key = "Matrix / " + this->typeName(type); if (!fHelpers.contains(key)) { fHelpers.add(key); std::string typeName = this->typeName(type); fExtraFunctions.printf( "thread %s operator/(const %s left, const %s right) {\n" " return %s(", typeName.c_str(), typeName.c_str(), typeName.c_str(), typeName.c_str()); const char* separator = ""; for (int index=0; indexwriteEqualityHelpers(type.componentType(), type.componentType()); std::string key = "ArrayEquality []"; if (!fHelpers.contains(key)) { fHelpers.add(key); fExtraFunctionPrototypes.writeText(R"( template bool operator==(const array_ref left, const array_ref right); template bool operator!=(const array_ref left, const array_ref right); )"); fExtraFunctions.writeText(R"( template bool operator==(const array_ref left, const array_ref right) { if (left.size() != right.size()) { return false; } for (size_t index = 0; index < left.size(); ++index) { if (!all(left[index] == right[index])) { return false; } } return true; } template bool operator!=(const array_ref left, const array_ref right) { return !(left == right); } )"); } } void MetalCodeGenerator::writeStructEqualityHelpers(const Type& type) { SkASSERT(type.isStruct()); std::string key = "StructEquality " + this->typeName(type); if (!fHelpers.contains(key)) { fHelpers.add(key); // If one of the struct's fields needs a helper as well, we need to emit that one first. for (const Field& field : type.fields()) { this->writeEqualityHelpers(*field.fType, *field.fType); } // Write operator== and operator!= for this struct, since those are assumed to exist in SkSL // and GLSL but do not exist by default in Metal. fExtraFunctionPrototypes.printf(R"( thread bool operator==(thread const %s& left, thread const %s& right); thread bool operator!=(thread const %s& left, thread const %s& right); )", this->typeName(type).c_str(), this->typeName(type).c_str(), this->typeName(type).c_str(), this->typeName(type).c_str()); fExtraFunctions.printf( "thread bool operator==(thread const %s& left, thread const %s& right) {\n" " return ", this->typeName(type).c_str(), this->typeName(type).c_str()); const char* separator = ""; for (const Field& field : type.fields()) { if (field.fType->isArray()) { fExtraFunctions.printf( "%s(make_array_ref(left.%.*s) == make_array_ref(right.%.*s))", separator, (int)field.fName.size(), field.fName.data(), (int)field.fName.size(), field.fName.data()); } else { fExtraFunctions.printf("%sall(left.%.*s == right.%.*s)", separator, (int)field.fName.size(), field.fName.data(), (int)field.fName.size(), field.fName.data()); } separator = " &&\n "; } fExtraFunctions.printf( ";\n" "}\n" "thread bool operator!=(thread const %s& left, thread const %s& right) {\n" " return !(left == right);\n" "}\n", this->typeName(type).c_str(), this->typeName(type).c_str()); } } void MetalCodeGenerator::writeEqualityHelpers(const Type& leftType, const Type& rightType) { if (leftType.isArray() && rightType.isArray()) { this->writeArrayEqualityHelpers(leftType); return; } if (leftType.isStruct() && rightType.isStruct()) { this->writeStructEqualityHelpers(leftType); return; } if (leftType.isMatrix() && rightType.isMatrix()) { this->writeMatrixEqualityHelpers(leftType, rightType); return; } } std::string MetalCodeGenerator::splatMatrixOf1(const Type& type) { std::string str = this->typeName(type) + '('; auto separator = SkSL::String::Separator(); for (int index = type.slotCount(); index--;) { str += separator(); str += "1.0"; } return str + ')'; } void MetalCodeGenerator::writeNumberAsMatrix(const Expression& expr, const Type& matrixType) { SkASSERT(expr.type().isNumber()); SkASSERT(matrixType.isMatrix()); // Componentwise multiply the scalar against a matrix of the desired size which contains all 1s. this->write("("); this->write(this->splatMatrixOf1(matrixType)); this->write(" * "); this->writeExpression(expr, Precedence::kMultiplicative); this->write(")"); } void MetalCodeGenerator::writeBinaryExpressionElement(const Expression& expr, Operator op, const Expression& other, Precedence precedence) { bool needMatrixSplatOnScalar = other.type().isMatrix() && expr.type().isNumber() && op.isValidForMatrixOrVector() && op.removeAssignment().kind() != Operator::Kind::STAR; if (needMatrixSplatOnScalar) { this->writeNumberAsMatrix(expr, other.type()); } else if (op.isEquality() && expr.type().isArray()) { this->write("make_array_ref("); this->writeExpression(expr, precedence); this->write(")"); } else { this->writeExpression(expr, precedence); } } void MetalCodeGenerator::writeBinaryExpression(const BinaryExpression& b, Precedence parentPrecedence) { const Expression& left = *b.left(); const Expression& right = *b.right(); const Type& leftType = left.type(); const Type& rightType = right.type(); Operator op = b.getOperator(); Precedence precedence = op.getBinaryPrecedence(); bool needParens = precedence >= parentPrecedence; switch (op.kind()) { case Operator::Kind::EQEQ: this->writeEqualityHelpers(leftType, rightType); if (leftType.isVector()) { this->write("all"); needParens = true; } break; case Operator::Kind::NEQ: this->writeEqualityHelpers(leftType, rightType); if (leftType.isVector()) { this->write("any"); needParens = true; } break; default: break; } if (leftType.isMatrix() && rightType.isMatrix() && op.kind() == Operator::Kind::STAREQ) { this->writeMatrixTimesEqualHelper(leftType, rightType, b.type()); } if (op.removeAssignment().kind() == Operator::Kind::SLASH && ((leftType.isMatrix() && rightType.isMatrix()) || (leftType.isScalar() && rightType.isMatrix()) || (leftType.isMatrix() && rightType.isScalar()))) { this->writeMatrixDivisionHelpers(leftType.isMatrix() ? leftType : rightType); } if (needParens) { this->write("("); } // Some expressions need to be rewritten from `lhs *= rhs` to `lhs = lhs * rhs`, e.g.: // float4 x = float4(1); // x.xy *= float2x2(...); // will report the error "non-const reference cannot bind to vector element." if (op.isCompoundAssignment() && left.kind() == Expression::Kind::kSwizzle) { // We need to do the rewrite. This could be dangerous if the lhs contains an index // expression with a side effect (such as `array[Func()]`), so we enable index-substitution // here for the LHS; any index-expression with side effects will be evaluated into a scratch // variable. this->writeWithIndexSubstitution([&] { this->writeExpression(left, precedence); this->write(" = "); this->writeExpression(left, Precedence::kAssignment); this->write(operator_name(op.removeAssignment())); // We never want to create index-expression substitutes on the RHS of the expression; // the RHS is only emitted one time. fIndexSubstitutionData->fCreateSubstitutes = false; this->writeBinaryExpressionElement(right, op, left, op.removeAssignment().getBinaryPrecedence()); }); } else { // We don't need any rewrite; emit the binary expression as-is. this->writeBinaryExpressionElement(left, op, right, precedence); this->write(operator_name(op)); this->writeBinaryExpressionElement(right, op, left, precedence); } if (needParens) { this->write(")"); } } void MetalCodeGenerator::writeTernaryExpression(const TernaryExpression& t, Precedence parentPrecedence) { if (Precedence::kTernary >= parentPrecedence) { this->write("("); } this->writeExpression(*t.test(), Precedence::kTernary); this->write(" ? "); this->writeExpression(*t.ifTrue(), Precedence::kTernary); this->write(" : "); this->writeExpression(*t.ifFalse(), Precedence::kTernary); if (Precedence::kTernary >= parentPrecedence) { this->write(")"); } } void MetalCodeGenerator::writePrefixExpression(const PrefixExpression& p, Precedence parentPrecedence) { const Operator op = p.getOperator(); switch (op.kind()) { case Operator::Kind::PLUS: // According to the MSL specification, the arithmetic unary operators (+ and –) do not // act upon matrix-typed operands. We treat the unary "+" as a no-op for all operands. this->writeExpression(*p.operand(), Precedence::kPrefix); return; case Operator::Kind::MINUS: // Transform the unary `-` on a matrix type to a multiplication by -1. if (p.operand()->type().isMatrix()) { this->write(p.type().componentType().highPrecision() ? "(-1.0 * " : "(-1.0h * "); this->writeExpression(*p.operand(), Precedence::kMultiplicative); this->write(")"); return; } break; case Operator::Kind::PLUSPLUS: case Operator::Kind::MINUSMINUS: if (p.operand()->type().isMatrix()) { // Transform `++x` or `--x` on a matrix type to `mat += T(1.0, ...)` or // `mat -= T(1.0, ...)`. this->write("("); this->writeExpression(*p.operand(), Precedence::kAssignment); this->write(op.kind() == Operator::Kind::PLUSPLUS ? " += " : " -= "); this->write(this->splatMatrixOf1(p.operand()->type())); this->write(")"); return; } break; default: break; } if (Precedence::kPrefix >= parentPrecedence) { this->write("("); } this->write(op.tightOperatorName()); this->writeExpression(*p.operand(), Precedence::kPrefix); if (Precedence::kPrefix >= parentPrecedence) { this->write(")"); } } void MetalCodeGenerator::writePostfixExpression(const PostfixExpression& p, Precedence parentPrecedence) { const Operator op = p.getOperator(); switch (op.kind()) { case Operator::Kind::PLUSPLUS: case Operator::Kind::MINUSMINUS: if (p.operand()->type().isMatrix()) { // We need to transform `x++` or `x--` into `+=` and `-=` on a matrix. // Unfortunately, that requires making a temporary copy of the old value and // emitting a sequence expression: `((temp = mat), (mat += T(1.0, ...)), temp)`. std::string tempMatrix = this->getTempVariable(p.operand()->type()); this->write("(("); this->write(tempMatrix); this->write(" = "); this->writeExpression(*p.operand(), Precedence::kAssignment); this->write("), ("); this->writeExpression(*p.operand(), Precedence::kAssignment); this->write(op.kind() == Operator::Kind::PLUSPLUS ? " += " : " -= "); this->write(this->splatMatrixOf1(p.operand()->type())); this->write("), "); this->write(tempMatrix); this->write(")"); return; } break; default: break; } if (Precedence::kPostfix >= parentPrecedence) { this->write("("); } this->writeExpression(*p.operand(), Precedence::kPostfix); this->write(op.tightOperatorName()); if (Precedence::kPostfix >= parentPrecedence) { this->write(")"); } } void MetalCodeGenerator::writeLiteral(const Literal& l) { const Type& type = l.type(); if (type.isFloat()) { this->write(l.description(OperatorPrecedence::kExpression)); if (!l.type().highPrecision()) { this->write("h"); } return; } if (type.isInteger()) { if (type.matches(*fContext.fTypes.fUInt)) { this->write(std::to_string(l.intValue() & 0xffffffff)); this->write("u"); } else if (type.matches(*fContext.fTypes.fUShort)) { this->write(std::to_string(l.intValue() & 0xffff)); this->write("u"); } else { this->write(std::to_string(l.intValue())); } return; } SkASSERT(type.isBoolean()); this->write(l.description(OperatorPrecedence::kExpression)); } void MetalCodeGenerator::writeFunctionRequirementArgs(const FunctionDeclaration& f, const char*& separator) { Requirements requirements = this->requirements(f); if (requirements & kInputs_Requirement) { this->write(separator); this->write("_in"); separator = ", "; } if (requirements & kOutputs_Requirement) { this->write(separator); this->write("_out"); separator = ", "; } if (requirements & kUniforms_Requirement) { this->write(separator); this->write("_uniforms"); separator = ", "; } if (requirements & kGlobals_Requirement) { this->write(separator); this->write("_globals"); separator = ", "; } if (requirements & kFragCoord_Requirement) { this->write(separator); this->write("_fragCoord"); separator = ", "; } if (requirements & kSampleMaskIn_Requirement) { this->write(separator); this->write("sk_SampleMaskIn"); separator = ", "; } if (requirements & kVertexID_Requirement) { this->write(separator); this->write("sk_VertexID"); separator = ", "; } if (requirements & kInstanceID_Requirement) { this->write(separator); this->write("sk_InstanceID"); separator = ", "; } if (requirements & kThreadgroups_Requirement) { this->write(separator); this->write("_threadgroups"); separator = ", "; } } void MetalCodeGenerator::writeFunctionRequirementParams(const FunctionDeclaration& f, const char*& separator) { Requirements requirements = this->requirements(f); if (requirements & kInputs_Requirement) { this->write(separator); this->write("Inputs _in"); separator = ", "; } if (requirements & kOutputs_Requirement) { this->write(separator); this->write("thread Outputs& _out"); separator = ", "; } if (requirements & kUniforms_Requirement) { this->write(separator); this->write("Uniforms _uniforms"); separator = ", "; } if (requirements & kGlobals_Requirement) { this->write(separator); this->write("thread Globals& _globals"); separator = ", "; } if (requirements & kFragCoord_Requirement) { this->write(separator); this->write("float4 _fragCoord"); separator = ", "; } if (requirements & kSampleMaskIn_Requirement) { this->write(separator); this->write("uint sk_SampleMaskIn"); separator = ", "; } if (requirements & kVertexID_Requirement) { this->write(separator); this->write("uint sk_VertexID"); separator = ", "; } if (requirements & kInstanceID_Requirement) { this->write(separator); this->write("uint sk_InstanceID"); separator = ", "; } if (requirements & kThreadgroups_Requirement) { this->write(separator); this->write("threadgroup Threadgroups& _threadgroups"); separator = ", "; } } int MetalCodeGenerator::getUniformBinding(const Layout& layout) { return (layout.fBinding >= 0) ? layout.fBinding : fProgram.fConfig->fSettings.fDefaultUniformBinding; } int MetalCodeGenerator::getUniformSet(const Layout& layout) { return (layout.fSet >= 0) ? layout.fSet : fProgram.fConfig->fSettings.fDefaultUniformSet; } bool MetalCodeGenerator::writeFunctionDeclaration(const FunctionDeclaration& f) { fRTFlipName = (fProgram.fInterface.fRTFlipUniform != Program::Interface::kRTFlip_None) ? "_globals._anonInterface0->" SKSL_RTFLIP_NAME : ""; const char* separator = ""; if (f.isMain()) { if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) { this->write("fragment Outputs fragmentMain("); } else if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) { this->write("vertex Outputs vertexMain("); } else if (ProgramConfig::IsCompute(fProgram.fConfig->fKind)) { this->write("kernel void computeMain("); } else { fContext.fErrors->error(Position(), "unsupported kind of program"); return false; } if (!ProgramConfig::IsCompute(fProgram.fConfig->fKind)) { this->write("Inputs _in [[stage_in]]"); separator = ", "; } if (-1 != fUniformBuffer) { this->write(separator); this->write("constant Uniforms& _uniforms [[buffer(" + std::to_string(fUniformBuffer) + ")]]"); separator = ", "; } for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const GlobalVarDeclaration& decls = e->as(); const VarDeclaration& decl = decls.varDeclaration(); const Variable* var = decl.var(); const SkSL::Type::TypeKind varKind = var->type().typeKind(); if (varKind == Type::TypeKind::kSampler || varKind == Type::TypeKind::kTexture) { if (var->type().dimensions() != SpvDim2D) { // Not yet implemented--Skia currently only uses 2D textures. fContext.fErrors->error(decls.fPosition, "Unsupported texture dimensions"); return false; } int binding = getUniformBinding(var->layout()); this->write(separator); separator = ", "; if (varKind == Type::TypeKind::kSampler) { this->writeType(var->type().textureType()); this->write(" "); this->writeName(var->mangledName()); this->write(kTextureSuffix); this->write(" [[texture("); this->write(std::to_string(binding)); this->write(")]], sampler "); this->writeName(var->mangledName()); this->write(kSamplerSuffix); this->write(" [[sampler("); this->write(std::to_string(binding)); this->write(")]]"); } else { SkASSERT(varKind == Type::TypeKind::kTexture); this->writeType(var->type()); this->write(" "); this->writeName(var->mangledName()); this->write(" [[texture("); this->write(std::to_string(binding)); this->write(")]]"); } } else if (ProgramConfig::IsCompute(fProgram.fConfig->fKind)) { std::string_view attr; switch (var->layout().fBuiltin) { case SK_NUMWORKGROUPS_BUILTIN: attr = " [[threadgroups_per_grid]]"; break; case SK_WORKGROUPID_BUILTIN: attr = " [[threadgroup_position_in_grid]]"; break; case SK_LOCALINVOCATIONID_BUILTIN: attr = " [[thread_position_in_threadgroup]]"; break; case SK_GLOBALINVOCATIONID_BUILTIN: attr = " [[thread_position_in_grid]]"; break; case SK_LOCALINVOCATIONINDEX_BUILTIN: attr = " [[thread_index_in_threadgroup]]"; break; default: break; } if (!attr.empty()) { this->write(separator); this->writeType(var->type()); this->write(" "); this->write(var->name()); this->write(attr); separator = ", "; } } } else if (e->is()) { const InterfaceBlock& intf = e->as(); if (intf.typeName() == "sk_PerVertex") { continue; } this->write(separator); if (is_readonly(intf)) { this->write("const "); } this->write(is_buffer(intf) ? "device " : "constant "); this->writeType(intf.var()->type()); this->write("& " ); this->write(fInterfaceBlockNameMap[&intf.var()->type()]); this->write(" [[buffer("); this->write(std::to_string(this->getUniformBinding(intf.var()->layout()))); this->write(")]]"); separator = ", "; } } if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) { if (fProgram.fInterface.fRTFlipUniform != Program::Interface::kRTFlip_None && fInterfaceBlockNameMap.empty()) { this->write(separator); this->write("constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(1)]]"); fRTFlipName = "_anonInterface0." SKSL_RTFLIP_NAME; separator = ", "; } this->write(separator); this->write("bool _frontFacing [[front_facing]], float4 _fragCoord [[position]]"); if (this->requirements(f) & kSampleMaskIn_Requirement) { this->write(", uint sk_SampleMaskIn [[sample_mask]]"); } if (fProgram.fInterface.fUseLastFragColor && fCaps.fFBFetchColorName) { this->write(", half4 " + std::string(fCaps.fFBFetchColorName) + " [[color(0)]]\n"); } separator = ", "; } else if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) { this->write(separator); this->write("uint sk_VertexID [[vertex_id]], uint sk_InstanceID [[instance_id]]"); separator = ", "; } } else { this->writeType(f.returnType()); this->write(" "); this->writeName(f.mangledName()); this->write("("); this->writeFunctionRequirementParams(f, separator); } for (const Variable* param : f.parameters()) { // This is a workaround for our test files. They use the runtime effect signature, so main // takes a coords parameter. We detect these at IR generation time, and we omit them from // the declaration here, so the function is valid Metal. (Well, valid as long as the // coordinates aren't actually referenced.) if (f.isMain() && param == f.getMainCoordsParameter()) { continue; } this->write(separator); separator = ", "; this->writeModifiers(param->modifierFlags()); this->writeType(param->type()); if (pass_by_reference(param->type(), param->modifierFlags())) { this->write("&"); } this->write(" "); this->writeName(param->mangledName()); } this->write(")"); return true; } void MetalCodeGenerator::writeFunctionPrototype(const FunctionPrototype& f) { this->writeFunctionDeclaration(f.declaration()); this->writeLine(";"); } static bool is_block_ending_with_return(const Statement* stmt) { // This function detects (potentially nested) blocks that end in a return statement. if (!stmt->is()) { return false; } const StatementArray& block = stmt->as().children(); for (int index = block.size(); index--; ) { stmt = block[index].get(); if (stmt->is()) { return true; } if (stmt->is()) { return is_block_ending_with_return(stmt); } if (!stmt->is()) { break; } } return false; } void MetalCodeGenerator::writeComputeMainInputs() { // Compute shaders only have input variables (e.g. sk_GlobalInvocationID) and access program // inputs/outputs via the Globals and Uniforms structs. We collect the allowed "in" parameters // into an Input struct here, since the rest of the code expects the normal _in / _out pattern. this->write("Inputs _in = { "); const char* separator = ""; for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const GlobalVarDeclaration& decls = e->as(); const Variable* var = decls.varDeclaration().var(); if (is_input(*var)) { this->write(separator); separator = ", "; this->writeName(var->mangledName()); } } } this->writeLine(" };"); } void MetalCodeGenerator::writeFunction(const FunctionDefinition& f) { SkASSERT(!fProgram.fConfig->fSettings.fFragColorIsInOut); if (!this->writeFunctionDeclaration(f.declaration())) { return; } fCurrentFunction = &f.declaration(); SkScopeExit clearCurrentFunction([&] { fCurrentFunction = nullptr; }); this->writeLine(" {"); if (f.declaration().isMain()) { fIndentation++; this->writeGlobalInit(); if (ProgramConfig::IsCompute(fProgram.fConfig->fKind)) { this->writeThreadgroupInit(); this->writeComputeMainInputs(); } else { this->writeLine("Outputs _out;"); this->writeLine("(void)_out;"); } fIndentation--; } fFunctionHeader.clear(); StringStream buffer; { AutoOutputStream outputToBuffer(this, &buffer); fIndentation++; for (const std::unique_ptr& stmt : f.body()->as().children()) { if (!stmt->isEmpty()) { this->writeStatement(*stmt); this->finishLine(); } } if (f.declaration().isMain()) { // If the main function doesn't end with a return, we need to synthesize one here. if (!is_block_ending_with_return(f.body().get())) { this->writeReturnStatementFromMain(); this->finishLine(); } } fIndentation--; this->writeLine("}"); } this->write(fFunctionHeader); this->write(buffer.str()); } void MetalCodeGenerator::writeModifiers(ModifierFlags flags) { if (ProgramConfig::IsCompute(fProgram.fConfig->fKind) && (flags & (ModifierFlag::kIn | ModifierFlag::kOut))) { this->write("device "); } else if (flags & ModifierFlag::kOut) { this->write("thread "); } if (flags.isConst()) { this->write("const "); } } void MetalCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) { if (intf.typeName() == "sk_PerVertex") { return; } const Type* structType = &intf.var()->type().componentType(); this->writeModifiers(intf.var()->modifierFlags()); this->write("struct "); this->writeType(*structType); this->writeLine(" {"); fIndentation++; this->writeFields(structType->fields(), structType->fPosition); if (fProgram.fInterface.fRTFlipUniform != Program::Interface::kRTFlip_None) { this->writeLine("float2 " SKSL_RTFLIP_NAME ";"); } fIndentation--; this->write("}"); if (!intf.instanceName().empty()) { this->write(" "); this->write(intf.instanceName()); if (intf.arraySize() > 0) { this->write("["); this->write(std::to_string(intf.arraySize())); this->write("]"); } fInterfaceBlockNameMap.set(&intf.var()->type(), std::string(intf.instanceName())); } else { fInterfaceBlockNameMap.set(&intf.var()->type(), "_anonInterface" + std::to_string(fAnonInterfaceCount++)); } this->writeLine(";"); } void MetalCodeGenerator::writeFields(SkSpan fields, Position parentPos) { MemoryLayout memoryLayout(MemoryLayout::Standard::kMetal); int currentOffset = 0; for (const Field& field : fields) { int fieldOffset = field.fLayout.fOffset; const Type* fieldType = field.fType; if (!memoryLayout.isSupported(*fieldType)) { fContext.fErrors->error(parentPos, "type '" + std::string(fieldType->name()) + "' is not permitted here"); return; } if (fieldOffset != -1) { if (currentOffset > fieldOffset) { fContext.fErrors->error(field.fPosition, "offset of field '" + std::string(field.fName) + "' must be at least " + std::to_string(currentOffset)); return; } else if (currentOffset < fieldOffset) { this->write("char pad"); this->write(std::to_string(fPaddingCount++)); this->write("["); this->write(std::to_string(fieldOffset - currentOffset)); this->writeLine("];"); currentOffset = fieldOffset; } int alignment = memoryLayout.alignment(*fieldType); if (fieldOffset % alignment) { fContext.fErrors->error(field.fPosition, "offset of field '" + std::string(field.fName) + "' must be a multiple of " + std::to_string(alignment)); return; } } if (fieldType->isUnsizedArray()) { // An unsized array always appears as the last member of a storage block. We declare // it as a one-element array and allow dereferencing past the capacity. // TODO(armansito): This is because C++ does not support flexible array members like C99 // does. This generally works but it can lead to UB as compilers are free to insert // padding past the first element of the array. An alternative approach is to declare // the struct without the unsized array member and replace variable references with a // buffer offset calculation based on sizeof(). this->writeModifiers(field.fModifierFlags); this->writeType(fieldType->componentType()); this->write(" "); this->writeName(field.fName); this->write("[1]"); } else { size_t fieldSize = memoryLayout.size(*fieldType); if (fieldSize > static_cast(std::numeric_limits::max() - currentOffset)) { fContext.fErrors->error(parentPos, "field offset overflow"); return; } currentOffset += fieldSize; this->writeModifiers(field.fModifierFlags); this->writeType(*fieldType); this->write(" "); this->writeName(field.fName); } this->writeLine(";"); } } void MetalCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) { this->writeExpression(value, Precedence::kExpression); } void MetalCodeGenerator::writeName(std::string_view name) { if (fReservedWords.contains(name)) { this->write("_"); // adding underscore before name to avoid conflict with reserved words } this->write(name); } void MetalCodeGenerator::writeVarDeclaration(const VarDeclaration& varDecl) { this->writeModifiers(varDecl.var()->modifierFlags()); this->writeType(varDecl.var()->type()); this->write(" "); this->writeName(varDecl.var()->mangledName()); if (varDecl.value()) { this->write(" = "); this->writeVarInitializer(*varDecl.var(), *varDecl.value()); } this->write(";"); } void MetalCodeGenerator::writeStatement(const Statement& s) { switch (s.kind()) { case Statement::Kind::kBlock: this->writeBlock(s.as()); break; case Statement::Kind::kExpression: this->writeExpressionStatement(s.as()); break; case Statement::Kind::kReturn: this->writeReturnStatement(s.as()); break; case Statement::Kind::kVarDeclaration: this->writeVarDeclaration(s.as()); break; case Statement::Kind::kIf: this->writeIfStatement(s.as()); break; case Statement::Kind::kFor: this->writeForStatement(s.as()); break; case Statement::Kind::kDo: this->writeDoStatement(s.as()); break; case Statement::Kind::kSwitch: this->writeSwitchStatement(s.as()); break; case Statement::Kind::kBreak: this->write("break;"); break; case Statement::Kind::kContinue: this->write("continue;"); break; case Statement::Kind::kDiscard: this->write("discard_fragment();"); break; case Statement::Kind::kNop: this->write(";"); break; default: SkDEBUGFAILF("unsupported statement: %s", s.description().c_str()); break; } } void MetalCodeGenerator::writeBlock(const Block& b) { // Write scope markers if this block is a scope, or if the block is empty (since we need to emit // something here to make the code valid). bool isScope = b.isScope() || b.isEmpty(); if (isScope) { this->writeLine("{"); fIndentation++; } for (const std::unique_ptr& stmt : b.children()) { if (!stmt->isEmpty()) { this->writeStatement(*stmt); this->finishLine(); } } if (isScope) { fIndentation--; this->write("}"); } } void MetalCodeGenerator::writeIfStatement(const IfStatement& stmt) { this->write("if ("); this->writeExpression(*stmt.test(), Precedence::kExpression); this->write(") "); this->writeStatement(*stmt.ifTrue()); if (stmt.ifFalse()) { this->write(" else "); this->writeStatement(*stmt.ifFalse()); } } void MetalCodeGenerator::writeForStatement(const ForStatement& f) { // Emit loops of the form 'for(;test;)' as 'while(test)', which is probably how they started if (!f.initializer() && f.test() && !f.next()) { this->write("while ("); this->writeExpression(*f.test(), Precedence::kExpression); this->write(") "); this->writeStatement(*f.statement()); return; } this->write("for ("); if (f.initializer() && !f.initializer()->isEmpty()) { this->writeStatement(*f.initializer()); } else { this->write("; "); } if (f.test()) { this->writeExpression(*f.test(), Precedence::kExpression); } this->write("; "); if (f.next()) { this->writeExpression(*f.next(), Precedence::kExpression); } this->write(") "); this->writeStatement(*f.statement()); } void MetalCodeGenerator::writeDoStatement(const DoStatement& d) { this->write("do "); this->writeStatement(*d.statement()); this->write(" while ("); this->writeExpression(*d.test(), Precedence::kExpression); this->write(");"); } void MetalCodeGenerator::writeExpressionStatement(const ExpressionStatement& s) { if (fProgram.fConfig->fSettings.fOptimize && !Analysis::HasSideEffects(*s.expression())) { // Don't emit dead expressions. return; } this->writeExpression(*s.expression(), Precedence::kStatement); this->write(";"); } void MetalCodeGenerator::writeSwitchStatement(const SwitchStatement& s) { this->write("switch ("); this->writeExpression(*s.value(), Precedence::kExpression); this->writeLine(") {"); fIndentation++; for (const std::unique_ptr& stmt : s.cases()) { const SwitchCase& c = stmt->as(); if (c.isDefault()) { this->writeLine("default:"); } else { this->write("case "); this->write(std::to_string(c.value())); this->writeLine(":"); } if (!c.statement()->isEmpty()) { fIndentation++; this->writeStatement(*c.statement()); this->finishLine(); fIndentation--; } } fIndentation--; this->write("}"); } void MetalCodeGenerator::writeReturnStatementFromMain() { // main functions in Metal return a magic _out parameter that doesn't exist in SkSL. if (ProgramConfig::IsVertex(fProgram.fConfig->fKind) || ProgramConfig::IsFragment(fProgram.fConfig->fKind)) { this->write("return _out;"); } else if (ProgramConfig::IsCompute(fProgram.fConfig->fKind)) { this->write("return;"); } else { SkDEBUGFAIL("unsupported kind of program"); } } void MetalCodeGenerator::writeReturnStatement(const ReturnStatement& r) { if (fCurrentFunction && fCurrentFunction->isMain()) { if (r.expression()) { if (r.expression()->type().matches(*fContext.fTypes.fHalf4)) { this->write("_out.sk_FragColor = "); this->writeExpression(*r.expression(), Precedence::kExpression); this->writeLine(";"); } else { fContext.fErrors->error(r.fPosition, "Metal does not support returning '" + r.expression()->type().description() + "' from main()"); } } this->writeReturnStatementFromMain(); return; } this->write("return"); if (r.expression()) { this->write(" "); this->writeExpression(*r.expression(), Precedence::kExpression); } this->write(";"); } void MetalCodeGenerator::writeHeader() { this->writeLine("#include "); this->writeLine("#include "); this->writeLine("#ifdef __clang__"); this->writeLine("#pragma clang diagnostic ignored \"-Wall\""); this->writeLine("#endif"); this->writeLine("using namespace metal;"); } void MetalCodeGenerator::writeSampler2DPolyfill() { class : public GlobalStructVisitor { public: void visitSampler(const Type&, std::string_view) override { if (fWrotePolyfill) { return; } fWrotePolyfill = true; std::string polyfill = SkSL::String::printf(R"( struct sampler2D { texture2d tex; sampler smp; }; half4 sample(sampler2D i, float2 p, float b=%g) { return i.tex.sample(i.smp, p, bias(b)); } half4 sample(sampler2D i, float3 p, float b=%g) { return i.tex.sample(i.smp, p.xy / p.z, bias(b)); } half4 sampleLod(sampler2D i, float2 p, float lod) { return i.tex.sample(i.smp, p, level(lod)); } half4 sampleLod(sampler2D i, float3 p, float lod) { return i.tex.sample(i.smp, p.xy / p.z, level(lod)); } half4 sampleGrad(sampler2D i, float2 p, float2 dPdx, float2 dPdy) { return i.tex.sample(i.smp, p, gradient2d(dPdx, dPdy)); } )", fTextureBias, fTextureBias); fCodeGen->write(polyfill.c_str()); } MetalCodeGenerator* fCodeGen = nullptr; float fTextureBias = 0.0f; bool fWrotePolyfill = false; } visitor; visitor.fCodeGen = this; visitor.fTextureBias = fProgram.fConfig->fSettings.fSharpenTextures ? kSharpenTexturesBias : 0.0f; this->visitGlobalStruct(&visitor); } void MetalCodeGenerator::writeUniformStruct() { for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const GlobalVarDeclaration& decls = e->as(); const Variable& var = *decls.varDeclaration().var(); if (var.modifierFlags().isUniform()) { SkASSERT(var.type().typeKind() != Type::TypeKind::kSampler && var.type().typeKind() != Type::TypeKind::kTexture); int uniformSet = this->getUniformSet(var.layout()); // Make sure that the program's uniform-set value is consistent throughout. if (-1 == fUniformBuffer) { this->write("struct Uniforms {\n"); fUniformBuffer = uniformSet; } else if (uniformSet != fUniformBuffer) { fContext.fErrors->error(decls.fPosition, "Metal backend requires all uniforms to have the same " "'layout(set=...)'"); } this->write(" "); this->writeType(var.type()); this->write(" "); this->writeName(var.mangledName()); this->write(";\n"); } } } if (-1 != fUniformBuffer) { this->write("};\n"); } } void MetalCodeGenerator::writeInterpolatedAttributes(const Variable& var) { SkASSERT((is_output(var) && ProgramConfig::IsVertex(fProgram.fConfig->fKind)) || (is_input(var) && ProgramConfig::IsFragment(fProgram.fConfig->fKind))); // Always include the location this->write(" [[user(locn"); this->write(std::to_string(var.layout().fLocation)); this->write(")"); if (var.modifierFlags().isFlat()) { this->write(" flat"); } else if (var.modifierFlags().isNoPerspective()) { this->write(" center_no_perspective"); } // else default behavior is center_perspective this->write("]]"); } void MetalCodeGenerator::writeInputStruct() { this->write("struct Inputs {\n"); for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const GlobalVarDeclaration& decls = e->as(); const Variable& var = *decls.varDeclaration().var(); if (is_input(var)) { this->write(" "); if (ProgramConfig::IsCompute(fProgram.fConfig->fKind) && needs_address_space(var.type(), var.modifierFlags())) { // TODO: address space support this->write("device "); } this->writeType(var.type()); if (pass_by_reference(var.type(), var.modifierFlags())) { this->write("&"); } this->write(" "); this->writeName(var.mangledName()); if (-1 != var.layout().fLocation) { if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) { this->write(" [[attribute(" + std::to_string(var.layout().fLocation) + ")]]"); } else if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) { // Write attributes for the fragment input that are consistent with // what's annotated on the vertex output. this->writeInterpolatedAttributes(var); } } this->write(";\n"); } } } this->write("};\n"); } void MetalCodeGenerator::writeOutputStruct() { this->write("struct Outputs {\n"); if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) { this->write(" float4 sk_Position [[position]];\n"); } else if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) { this->write(" half4 sk_FragColor [[color(0)]];\n"); if (fProgram.fInterface.fOutputSecondaryColor) { this->write(" half4 sk_SecondaryFragColor [[color(0), index(1)]];\n"); } } for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const GlobalVarDeclaration& decls = e->as(); const Variable& var = *decls.varDeclaration().var(); if (var.layout().fBuiltin == SK_SAMPLEMASK_BUILTIN) { this->write(" uint sk_SampleMask [[sample_mask]];\n"); continue; } if (is_output(var)) { this->write(" "); if (ProgramConfig::IsCompute(fProgram.fConfig->fKind) && needs_address_space(var.type(), var.modifierFlags())) { // TODO: address space support this->write("device "); } this->writeType(var.type()); if (ProgramConfig::IsCompute(fProgram.fConfig->fKind) && pass_by_reference(var.type(), var.modifierFlags())) { this->write("&"); } this->write(" "); this->writeName(var.mangledName()); int location = var.layout().fLocation; if (!ProgramConfig::IsCompute(fProgram.fConfig->fKind) && location < 0 && var.type().typeKind() != Type::TypeKind::kTexture) { fContext.fErrors->error(var.fPosition, "Metal out variables must have 'layout(location=...)'"); } else if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) { // Write attributes for the vertex output that are consistent with what's // annotated on the fragment input. this->writeInterpolatedAttributes(var); } else if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) { this->write(" [[color(" + std::to_string(location) + ")"); int colorIndex = var.layout().fIndex; if (colorIndex) { this->write(", index(" + std::to_string(colorIndex) + ")"); } this->write("]]"); } this->write(";\n"); } } } if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) { this->write(" float sk_PointSize [[point_size]];\n"); } this->write("};\n"); } void MetalCodeGenerator::writeInterfaceBlocks() { bool wroteInterfaceBlock = false; for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { this->writeInterfaceBlock(e->as()); wroteInterfaceBlock = true; } } if (!wroteInterfaceBlock && fProgram.fInterface.fRTFlipUniform != Program::Interface::kRTFlip_None) { this->writeLine("struct sksl_synthetic_uniforms {"); this->writeLine(" float2 " SKSL_RTFLIP_NAME ";"); this->writeLine("};"); } } void MetalCodeGenerator::writeStructDefinitions() { for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { this->writeStructDefinition(e->as()); } } } void MetalCodeGenerator::writeConstantVariables() { class : public GlobalStructVisitor { public: void visitConstantVariable(const VarDeclaration& decl) override { fCodeGen->write("constant "); fCodeGen->writeVarDeclaration(decl); fCodeGen->finishLine(); } MetalCodeGenerator* fCodeGen = nullptr; } visitor; visitor.fCodeGen = this; this->visitGlobalStruct(&visitor); } void MetalCodeGenerator::visitGlobalStruct(GlobalStructVisitor* visitor) { for (const ProgramElement* element : fProgram.elements()) { if (element->is()) { const auto* ib = &element->as(); if (ib->typeName() != "sk_PerVertex") { visitor->visitInterfaceBlock(*ib, fInterfaceBlockNameMap[&ib->var()->type()]); } continue; } if (!element->is()) { continue; } const GlobalVarDeclaration& global = element->as(); const VarDeclaration& decl = global.varDeclaration(); const Variable& var = *decl.var(); if (decl.baseType().typeKind() == Type::TypeKind::kSampler) { visitor->visitSampler(var.type(), var.mangledName()); continue; } if (decl.baseType().typeKind() == Type::TypeKind::kTexture) { visitor->visitTexture(var.type(), var.mangledName()); continue; } if (!(var.modifierFlags() & ~ModifierFlag::kConst) && var.layout().fBuiltin == -1) { if (is_in_globals(var)) { // Visit a regular global variable. visitor->visitNonconstantVariable(var, decl.value().get()); } else { // Visit a constant-expression variable. SkASSERT(var.modifierFlags().isConst()); visitor->visitConstantVariable(decl); } } } } void MetalCodeGenerator::writeGlobalStruct() { class : public GlobalStructVisitor { public: void visitInterfaceBlock(const InterfaceBlock& block, std::string_view blockName) override { this->addElement(); fCodeGen->write(" "); if (is_readonly(block)) { fCodeGen->write("const "); } fCodeGen->write(is_buffer(block) ? "device " : "constant "); fCodeGen->write(block.typeName()); fCodeGen->write("* "); fCodeGen->writeName(blockName); fCodeGen->write(";\n"); } void visitTexture(const Type& type, std::string_view name) override { this->addElement(); fCodeGen->write(" "); fCodeGen->writeType(type); fCodeGen->write(" "); fCodeGen->writeName(name); fCodeGen->write(";\n"); } void visitSampler(const Type&, std::string_view name) override { this->addElement(); fCodeGen->write(" sampler2D "); fCodeGen->writeName(name); fCodeGen->write(";\n"); } void visitConstantVariable(const VarDeclaration& decl) override { // Constants aren't added to the global struct. } void visitNonconstantVariable(const Variable& var, const Expression* value) override { this->addElement(); fCodeGen->write(" "); fCodeGen->writeModifiers(var.modifierFlags()); fCodeGen->writeType(var.type()); fCodeGen->write(" "); fCodeGen->writeName(var.mangledName()); fCodeGen->write(";\n"); } void addElement() { if (fFirst) { fCodeGen->write("struct Globals {\n"); fFirst = false; } } void finish() { if (!fFirst) { fCodeGen->writeLine("};"); fFirst = true; } } MetalCodeGenerator* fCodeGen = nullptr; bool fFirst = true; } visitor; visitor.fCodeGen = this; this->visitGlobalStruct(&visitor); visitor.finish(); } void MetalCodeGenerator::writeGlobalInit() { class : public GlobalStructVisitor { public: void visitInterfaceBlock(const InterfaceBlock& blockType, std::string_view blockName) override { this->addElement(); fCodeGen->write("&"); fCodeGen->writeName(blockName); } void visitTexture(const Type&, std::string_view name) override { this->addElement(); fCodeGen->writeName(name); } void visitSampler(const Type&, std::string_view name) override { this->addElement(); fCodeGen->write("{"); fCodeGen->writeName(name); fCodeGen->write(kTextureSuffix); fCodeGen->write(", "); fCodeGen->writeName(name); fCodeGen->write(kSamplerSuffix); fCodeGen->write("}"); } void visitConstantVariable(const VarDeclaration& decl) override { // Constant-expression variables aren't put in the global struct. } void visitNonconstantVariable(const Variable& var, const Expression* value) override { this->addElement(); if (value) { fCodeGen->writeVarInitializer(var, *value); } else { fCodeGen->write("{}"); } } void addElement() { if (fFirst) { fCodeGen->write("Globals _globals{"); fFirst = false; } else { fCodeGen->write(", "); } } void finish() { if (!fFirst) { fCodeGen->writeLine("};"); fCodeGen->writeLine("(void)_globals;"); } } MetalCodeGenerator* fCodeGen = nullptr; bool fFirst = true; } visitor; visitor.fCodeGen = this; this->visitGlobalStruct(&visitor); visitor.finish(); } void MetalCodeGenerator::visitThreadgroupStruct(ThreadgroupStructVisitor* visitor) { for (const ProgramElement* element : fProgram.elements()) { if (!element->is()) { continue; } const GlobalVarDeclaration& global = element->as(); const VarDeclaration& decl = global.varDeclaration(); const Variable& var = *decl.var(); if (var.modifierFlags().isWorkgroup()) { SkASSERT(!decl.value()); SkASSERT(!var.modifierFlags().isConst()); visitor->visitNonconstantVariable(var); } } } void MetalCodeGenerator::writeThreadgroupStruct() { class : public ThreadgroupStructVisitor { public: void visitNonconstantVariable(const Variable& var) override { this->addElement(); fCodeGen->write(" "); fCodeGen->writeModifiers(var.modifierFlags()); fCodeGen->writeType(var.type()); fCodeGen->write(" "); fCodeGen->writeName(var.mangledName()); fCodeGen->write(";\n"); } void addElement() { if (fFirst) { fCodeGen->write("struct Threadgroups {\n"); fFirst = false; } } void finish() { if (!fFirst) { fCodeGen->writeLine("};"); fFirst = true; } } MetalCodeGenerator* fCodeGen = nullptr; bool fFirst = true; } visitor; visitor.fCodeGen = this; this->visitThreadgroupStruct(&visitor); visitor.finish(); } void MetalCodeGenerator::writeThreadgroupInit() { class : public ThreadgroupStructVisitor { public: void visitNonconstantVariable(const Variable& var) override { this->addElement(); fCodeGen->write("{}"); } void addElement() { if (fFirst) { fCodeGen->write("threadgroup Threadgroups _threadgroups{"); fFirst = false; } else { fCodeGen->write(", "); } } void finish() { if (!fFirst) { fCodeGen->writeLine("};"); fCodeGen->writeLine("(void)_threadgroups;"); } } MetalCodeGenerator* fCodeGen = nullptr; bool fFirst = true; } visitor; visitor.fCodeGen = this; this->visitThreadgroupStruct(&visitor); visitor.finish(); } void MetalCodeGenerator::writeProgramElement(const ProgramElement& e) { switch (e.kind()) { case ProgramElement::Kind::kExtension: break; case ProgramElement::Kind::kGlobalVar: break; case ProgramElement::Kind::kInterfaceBlock: // Handled in writeInterfaceBlocks; do nothing. break; case ProgramElement::Kind::kStructDefinition: // Handled in writeStructDefinitions; do nothing. break; case ProgramElement::Kind::kFunction: this->writeFunction(e.as()); break; case ProgramElement::Kind::kFunctionPrototype: this->writeFunctionPrototype(e.as()); break; case ProgramElement::Kind::kModifiers: // Not necessary in Metal; do nothing. break; default: SkDEBUGFAILF("unsupported program element: %s\n", e.description().c_str()); break; } } MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Statement* s) { class RequirementsVisitor : public ProgramVisitor { public: using ProgramVisitor::visitStatement; bool visitExpression(const Expression& e) override { switch (e.kind()) { case Expression::Kind::kFunctionCall: { const FunctionCall& f = e.as(); fRequirements |= fCodeGen->requirements(f.function()); break; } case Expression::Kind::kFieldAccess: { const FieldAccess& f = e.as(); if (f.ownerKind() == FieldAccess::OwnerKind::kAnonymousInterfaceBlock) { fRequirements |= kGlobals_Requirement; return false; // don't recurse into the base variable } break; } case Expression::Kind::kVariableReference: { const Variable& var = *e.as().variable(); if (var.layout().fBuiltin == SK_FRAGCOORD_BUILTIN) { fRequirements |= kGlobals_Requirement | kFragCoord_Requirement; } else if (var.layout().fBuiltin == SK_SAMPLEMASKIN_BUILTIN) { fRequirements |= kSampleMaskIn_Requirement; } else if (var.layout().fBuiltin == SK_SAMPLEMASK_BUILTIN) { fRequirements |= kOutputs_Requirement; } else if (var.layout().fBuiltin == SK_VERTEXID_BUILTIN) { fRequirements |= kVertexID_Requirement; } else if (var.layout().fBuiltin == SK_INSTANCEID_BUILTIN) { fRequirements |= kInstanceID_Requirement; } else if (var.storage() == Variable::Storage::kGlobal) { if (is_input(var)) { fRequirements |= kInputs_Requirement; } else if (is_output(var)) { fRequirements |= kOutputs_Requirement; } else if (is_uniforms(var)) { fRequirements |= kUniforms_Requirement; } else if (is_threadgroup(var)) { fRequirements |= kThreadgroups_Requirement; } else if (is_in_globals(var)) { fRequirements |= kGlobals_Requirement; } } break; } default: break; } return ProgramVisitor::visitExpression(e); } MetalCodeGenerator* fCodeGen; Requirements fRequirements = kNo_Requirements; }; RequirementsVisitor visitor; if (s) { visitor.fCodeGen = this; visitor.visitStatement(*s); } return visitor.fRequirements; } MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const FunctionDeclaration& f) { Requirements* found = fRequirements.find(&f); if (!found) { fRequirements.set(&f, kNo_Requirements); for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const FunctionDefinition& def = e->as(); if (&def.declaration() == &f) { Requirements reqs = this->requirements(def.body().get()); fRequirements.set(&f, reqs); return reqs; } } } // We never found a definition for this declared function, but it's legal to prototype a // function without ever giving a definition, as long as you don't call it. return kNo_Requirements; } return *found; } bool MetalCodeGenerator::generateCode() { StringStream header; { AutoOutputStream outputToHeader(this, &header, &fIndentation); this->writeHeader(); this->writeConstantVariables(); this->writeSampler2DPolyfill(); this->writeStructDefinitions(); this->writeUniformStruct(); this->writeInputStruct(); if (!ProgramConfig::IsCompute(fProgram.fConfig->fKind)) { this->writeOutputStruct(); } this->writeInterfaceBlocks(); this->writeGlobalStruct(); this->writeThreadgroupStruct(); // Emit prototypes for every built-in function; these aren't always added in perfect order. for (const ProgramElement* e : fProgram.fSharedElements) { if (e->is()) { this->writeFunctionDeclaration(e->as().declaration()); this->writeLine(";"); } } } StringStream body; { AutoOutputStream outputToBody(this, &body, &fIndentation); for (const ProgramElement* e : fProgram.elements()) { this->writeProgramElement(*e); } } write_stringstream(header, *fOut); write_stringstream(fExtraFunctionPrototypes, *fOut); write_stringstream(fExtraFunctions, *fOut); write_stringstream(body, *fOut); return fContext.fErrors->errorCount() == 0; } bool ToMetal(Program& program, const ShaderCaps* caps, OutputStream& out, PrettyPrint pp) { TRACE_EVENT0("skia.shaders", "SkSL::ToMetal"); SkASSERT(caps != nullptr); program.fContext->fErrors->setSource(*program.fSource); MetalCodeGenerator cg(program.fContext.get(), caps, &program, &out, pp); bool result = cg.generateCode(); program.fContext->fErrors->setSource(std::string_view()); return result; } bool ToMetal(Program& program, const ShaderCaps* caps, OutputStream& out) { #if defined(SK_DEBUG) constexpr PrettyPrint defaultPrintOpts = PrettyPrint::kYes; #else constexpr PrettyPrint defaultPrintOpts = PrettyPrint::kNo; #endif return ToMetal(program, caps, out, defaultPrintOpts); } bool ToMetal(Program& program, const ShaderCaps* caps, std::string* out) { StringStream buffer; if (!ToMetal(program, caps, buffer)) { return false; } *out = buffer.str(); return true; } } // namespace SkSL