/* * Copyright 2022 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/shaders/gradients/SkGradientBaseShader.h" #include "include/core/SkAlphaType.h" #include "include/core/SkColor.h" #include "include/core/SkColorSpace.h" #include "include/core/SkColorType.h" #include "include/core/SkData.h" #include "include/core/SkImageInfo.h" #include "include/core/SkShader.h" #include "include/core/SkTileMode.h" #include "include/private/SkColorData.h" #include "include/private/base/SkFloatingPoint.h" #include "include/private/base/SkMalloc.h" #include "include/private/base/SkTArray.h" #include "include/private/base/SkTPin.h" #include "include/private/base/SkTo.h" #include "src/base/SkArenaAlloc.h" #include "src/base/SkFloatBits.h" #include "src/base/SkVx.h" #include "src/core/SkColorSpacePriv.h" #include "src/core/SkColorSpaceXformSteps.h" #include "src/core/SkConvertPixels.h" #include "src/core/SkEffectPriv.h" #include "src/core/SkPicturePriv.h" #include "src/core/SkRasterPipeline.h" #include "src/core/SkRasterPipelineOpContexts.h" #include "src/core/SkRasterPipelineOpList.h" #include "src/core/SkReadBuffer.h" #include "src/core/SkWriteBuffer.h" #include #include #include #include using namespace skia_private; enum GradientSerializationFlags { // Bits 29:31 used for various boolean flags kHasPosition_GSF = 0x80000000, kHasLegacyLocalMatrix_GSF = 0x40000000, kHasColorSpace_GSF = 0x20000000, // Bits 12:28 unused // Bits 8:11 for fTileMode kTileModeShift_GSF = 8, kTileModeMask_GSF = 0xF, // Bits 4:7 for fInterpolation.fColorSpace kInterpolationColorSpaceShift_GSF = 4, kInterpolationColorSpaceMask_GSF = 0xF, // Bits 1:3 for fInterpolation.fHueMethod kInterpolationHueMethodShift_GSF = 1, kInterpolationHueMethodMask_GSF = 0x7, // Bit 0 for fInterpolation.fInPremul kInterpolationInPremul_GSF = 0x1, }; SkGradientBaseShader::Descriptor::Descriptor() { sk_bzero(this, sizeof(*this)); fTileMode = SkTileMode::kClamp; } SkGradientBaseShader::Descriptor::~Descriptor() = default; void SkGradientBaseShader::flatten(SkWriteBuffer& buffer) const { uint32_t flags = 0; if (fPositions) { flags |= kHasPosition_GSF; } sk_sp colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr; if (colorSpaceData) { flags |= kHasColorSpace_GSF; } if (fInterpolation.fInPremul == Interpolation::InPremul::kYes) { flags |= kInterpolationInPremul_GSF; } SkASSERT(static_cast(fTileMode) <= kTileModeMask_GSF); flags |= ((uint32_t)fTileMode << kTileModeShift_GSF); SkASSERT(static_cast(fInterpolation.fColorSpace) <= kInterpolationColorSpaceMask_GSF); flags |= ((uint32_t)fInterpolation.fColorSpace << kInterpolationColorSpaceShift_GSF); SkASSERT(static_cast(fInterpolation.fHueMethod) <= kInterpolationHueMethodMask_GSF); flags |= ((uint32_t)fInterpolation.fHueMethod << kInterpolationHueMethodShift_GSF); buffer.writeUInt(flags); // If we injected implicit first/last stops at construction time, omit those when serializing: int colorCount = fColorCount; const SkColor4f* colors = fColors; const SkScalar* positions = fPositions; if (fFirstStopIsImplicit) { colorCount--; colors++; if (positions) { positions++; } } if (fLastStopIsImplicit) { colorCount--; } buffer.writeColor4fArray(colors, colorCount); if (colorSpaceData) { buffer.writeDataAsByteArray(colorSpaceData.get()); } if (positions) { buffer.writeScalarArray(positions, colorCount); } } template static bool validate_array(SkReadBuffer& buffer, size_t count, STArray* array) { if (!buffer.validateCanReadN(count)) { return false; } array->resize_back(count); return true; } bool SkGradientBaseShader::DescriptorScope::unflatten(SkReadBuffer& buffer, SkMatrix* legacyLocalMatrix) { // New gradient format. Includes floating point color, color space, densely packed flags uint32_t flags = buffer.readUInt(); fTileMode = (SkTileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF); fInterpolation.fColorSpace = (Interpolation::ColorSpace)( (flags >> kInterpolationColorSpaceShift_GSF) & kInterpolationColorSpaceMask_GSF); fInterpolation.fHueMethod = (Interpolation::HueMethod)( (flags >> kInterpolationHueMethodShift_GSF) & kInterpolationHueMethodMask_GSF); fInterpolation.fInPremul = (flags & kInterpolationInPremul_GSF) ? Interpolation::InPremul::kYes : Interpolation::InPremul::kNo; fColorCount = buffer.getArrayCount(); if (!(validate_array(buffer, fColorCount, &fColorStorage) && buffer.readColor4fArray(fColorStorage.begin(), fColorCount))) { return false; } fColors = fColorStorage.begin(); if (SkToBool(flags & kHasColorSpace_GSF)) { sk_sp data = buffer.readByteArrayAsData(); fColorSpace = data ? SkColorSpace::Deserialize(data->data(), data->size()) : nullptr; } else { fColorSpace = nullptr; } if (SkToBool(flags & kHasPosition_GSF)) { if (!(validate_array(buffer, fColorCount, &fPositionStorage) && buffer.readScalarArray(fPositionStorage.begin(), fColorCount))) { return false; } fPositions = fPositionStorage.begin(); } else { fPositions = nullptr; } if (SkToBool(flags & kHasLegacyLocalMatrix_GSF)) { SkASSERT(buffer.isVersionLT(SkPicturePriv::Version::kNoShaderLocalMatrix)); buffer.readMatrix(legacyLocalMatrix); } else { *legacyLocalMatrix = SkMatrix::I(); } return buffer.isValid(); } //////////////////////////////////////////////////////////////////////////////////////////// SkGradientBaseShader::SkGradientBaseShader(const Descriptor& desc, const SkMatrix& ptsToUnit) : fPtsToUnit(ptsToUnit) , fColorSpace(desc.fColorSpace ? desc.fColorSpace : SkColorSpace::MakeSRGB()) , fFirstStopIsImplicit(false) , fLastStopIsImplicit(false) , fColorsAreOpaque(true) { fPtsToUnit.getType(); // Precache so reads are threadsafe. SkASSERT(desc.fColorCount > 1); fInterpolation = desc.fInterpolation; SkASSERT((unsigned)desc.fTileMode < kSkTileModeCount); fTileMode = desc.fTileMode; /* Note: we let the caller skip the first and/or last position. i.e. pos[0] = 0.3, pos[1] = 0.7 In these cases, we insert entries to ensure that the final data will be bracketed by [0, 1]. i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1 Thus colorCount (the caller's value, and fColorCount (our value) may differ by up to 2. In the above example: colorCount = 2 fColorCount = 4 */ fColorCount = desc.fColorCount; // Check if we need to add in start and/or end position/colors if (desc.fPositions) { fFirstStopIsImplicit = desc.fPositions[0] > 0; fLastStopIsImplicit = desc.fPositions[desc.fColorCount - 1] != SK_Scalar1; fColorCount += fFirstStopIsImplicit + fLastStopIsImplicit; } size_t storageSize = fColorCount * (sizeof(SkColor4f) + (desc.fPositions ? sizeof(SkScalar) : 0)); fColors = reinterpret_cast(fStorage.reset(storageSize)); fPositions = desc.fPositions ? reinterpret_cast(fColors + fColorCount) : nullptr; // Now copy over the colors, adding the duplicates at t=0 and t=1 as needed SkColor4f* colors = fColors; if (fFirstStopIsImplicit) { *colors++ = desc.fColors[0]; } for (int i = 0; i < desc.fColorCount; ++i) { colors[i] = desc.fColors[i]; fColorsAreOpaque = fColorsAreOpaque && (desc.fColors[i].fA == 1); } if (fLastStopIsImplicit) { colors += desc.fColorCount; *colors = desc.fColors[desc.fColorCount - 1]; } if (desc.fPositions) { SkScalar prev = 0; SkScalar* positions = fPositions; *positions++ = prev; // force the first pos to 0 int startIndex = fFirstStopIsImplicit ? 0 : 1; int count = desc.fColorCount + fLastStopIsImplicit; bool uniformStops = true; const SkScalar uniformStep = desc.fPositions[startIndex] - prev; for (int i = startIndex; i < count; i++) { // Pin the last value to 1.0, and make sure pos is monotonic. float curr = 1.0f; if (i != desc.fColorCount) { curr = SkTPin(desc.fPositions[i], prev, 1.0f); // If a value is clamped to 1.0 before the last stop, the last stop // actually isn't implicit if we thought it was. if (curr == 1.0f && fLastStopIsImplicit) { fLastStopIsImplicit = false; } } uniformStops &= SkScalarNearlyEqual(uniformStep, curr - prev); *positions++ = prev = curr; } if (uniformStops) { // If the stops are uniform, treat them as implicit. fPositions = nullptr; } else { // Remove duplicate stops with more than two of the same stop, // keeping the leftmost and rightmost stop colors. // i.e. 0, 0, 0, 0.2, 0.2, 0.3, 0.3, 0.3, 1, 1 // w/ clamp 0, 0, 0.2, 0.2, 0.3, 0.3, 1, 1 // w/o clamp 0, 0.2, 0.2, 0.3, 0.3, 1 int i = 0; int dedupedColorCount = 0; for (int j = 1; j <= fColorCount; j++) { // We can compare the current positions at i and j since once these fPosition // values are overwritten, our i and j pointers will be past the overwritten values. if (j == fColorCount || fPositions[i] != fPositions[j]) { bool dupStop = j - i > 1; // Ignore the leftmost stop (i) if it is a non-clamp tilemode with // a duplicate stop on t = 0. bool ignoreLeftmost = dupStop && fTileMode != SkTileMode::kClamp && fPositions[i] == 0; if (!ignoreLeftmost) { fPositions[dedupedColorCount] = fPositions[i]; fColors[dedupedColorCount] = fColors[i]; dedupedColorCount++; } // Include the rightmost stop (j-1) only if the stop has a duplicate, // ignoring the rightmost stop if it is a non-clamp tilemode with t = 1. bool ignoreRightmost = fTileMode != SkTileMode::kClamp && fPositions[j - 1] == 1; if (dupStop && !ignoreRightmost) { fPositions[dedupedColorCount] = fPositions[j - 1]; fColors[dedupedColorCount] = fColors[j - 1]; dedupedColorCount++; } i = j; } } fColorCount = dedupedColorCount; } } } SkGradientBaseShader::~SkGradientBaseShader() {} static void add_stop_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f Fs, SkPMColor4f Bs) { (ctx->fs[0])[stop] = Fs.fR; (ctx->fs[1])[stop] = Fs.fG; (ctx->fs[2])[stop] = Fs.fB; (ctx->fs[3])[stop] = Fs.fA; (ctx->bs[0])[stop] = Bs.fR; (ctx->bs[1])[stop] = Bs.fG; (ctx->bs[2])[stop] = Bs.fB; (ctx->bs[3])[stop] = Bs.fA; } static void add_const_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f color) { add_stop_color(ctx, stop, {0, 0, 0, 0}, color); } // Calculate a factor F and a bias B so that color = F*t + B when t is in range of // the stop. Assume that the distance between stops is 1/gapCount. static void init_stop_evenly(SkRasterPipeline_GradientCtx* ctx, float gapCount, size_t stop, SkPMColor4f c_l, SkPMColor4f c_r) { // Clankium's GCC 4.9 targeting ARMv7 is barfing when we use Sk4f math here, so go scalar... SkPMColor4f Fs = { (c_r.fR - c_l.fR) * gapCount, (c_r.fG - c_l.fG) * gapCount, (c_r.fB - c_l.fB) * gapCount, (c_r.fA - c_l.fA) * gapCount, }; SkPMColor4f Bs = { c_l.fR - Fs.fR * (stop / gapCount), c_l.fG - Fs.fG * (stop / gapCount), c_l.fB - Fs.fB * (stop / gapCount), c_l.fA - Fs.fA * (stop / gapCount), }; add_stop_color(ctx, stop, Fs, Bs); } // For each stop we calculate a bias B and a scale factor F, such that // for any t between stops n and n+1, the color we want is B[n] + F[n]*t. static void init_stop_pos(SkRasterPipeline_GradientCtx* ctx, size_t stop, float t_l, float c_scale, SkPMColor4f c_l, SkPMColor4f c_r) { // See note about Clankium's old compiler in init_stop_evenly(). SkPMColor4f Fs = { (c_r.fR - c_l.fR) * c_scale, (c_r.fG - c_l.fG) * c_scale, (c_r.fB - c_l.fB) * c_scale, (c_r.fA - c_l.fA) * c_scale, }; SkPMColor4f Bs = { c_l.fR - Fs.fR * t_l, c_l.fG - Fs.fG * t_l, c_l.fB - Fs.fB * t_l, c_l.fA - Fs.fA * t_l, }; ctx->ts[stop] = t_l; add_stop_color(ctx, stop, Fs, Bs); } void SkGradientBaseShader::AppendGradientFillStages(SkRasterPipeline* p, SkArenaAlloc* alloc, const SkPMColor4f* pmColors, const SkScalar* positions, int count) { // The two-stop case with stops at 0 and 1. if (count == 2 && positions == nullptr) { const SkPMColor4f c_l = pmColors[0], c_r = pmColors[1]; // See F and B below. auto ctx = alloc->make(); (skvx::float4::Load(c_r.vec()) - skvx::float4::Load(c_l.vec())).store(ctx->f); (skvx::float4::Load(c_l.vec())).store(ctx->b); p->append(SkRasterPipelineOp::evenly_spaced_2_stop_gradient, ctx); } else { auto* ctx = alloc->make(); // Note: In order to handle clamps in search, the search assumes a stop conceptully placed // at -inf. Therefore, the max number of stops is fColorCount+1. for (int i = 0; i < 4; i++) { // Allocate at least at for the AVX2 gather from a YMM register. ctx->fs[i] = alloc->makeArray(std::max(count + 1, 8)); ctx->bs[i] = alloc->makeArray(std::max(count + 1, 8)); } if (positions == nullptr) { // Handle evenly distributed stops. size_t stopCount = count; float gapCount = stopCount - 1; SkPMColor4f c_l = pmColors[0]; for (size_t i = 0; i < stopCount - 1; i++) { SkPMColor4f c_r = pmColors[i + 1]; init_stop_evenly(ctx, gapCount, i, c_l, c_r); c_l = c_r; } add_const_color(ctx, stopCount - 1, c_l); ctx->stopCount = stopCount; p->append(SkRasterPipelineOp::evenly_spaced_gradient, ctx); } else { // Handle arbitrary stops. ctx->ts = alloc->makeArray(count + 1); // Remove the default stops inserted by SkGradientBaseShader::SkGradientBaseShader // because they are naturally handled by the search method. int firstStop; int lastStop; if (count > 2) { firstStop = pmColors[0] != pmColors[1] ? 0 : 1; lastStop = pmColors[count - 2] != pmColors[count - 1] ? count - 1 : count - 2; } else { firstStop = 0; lastStop = 1; } size_t stopCount = 0; float t_l = positions[firstStop]; SkPMColor4f c_l = pmColors[firstStop]; add_const_color(ctx, stopCount++, c_l); // N.B. lastStop is the index of the last stop, not one after. for (int i = firstStop; i < lastStop; i++) { float t_r = positions[i + 1]; SkPMColor4f c_r = pmColors[i + 1]; SkASSERT(t_l <= t_r); if (t_l < t_r) { float c_scale = sk_ieee_float_divide(1, t_r - t_l); if (SkIsFinite(c_scale)) { init_stop_pos(ctx, stopCount, t_l, c_scale, c_l, c_r); stopCount += 1; } } t_l = t_r; c_l = c_r; } ctx->ts[stopCount] = t_l; add_const_color(ctx, stopCount++, c_l); ctx->stopCount = stopCount; p->append(SkRasterPipelineOp::gradient, ctx); } } } void SkGradientBaseShader::AppendInterpolatedToDstStages(SkRasterPipeline* p, SkArenaAlloc* alloc, bool colorsAreOpaque, const Interpolation& interpolation, const SkColorSpace* intermediateColorSpace, const SkColorSpace* dstColorSpace) { using ColorSpace = Interpolation::ColorSpace; bool colorIsPremul = static_cast(interpolation.fInPremul); // If we interpolated premul colors in any of the special color spaces, we need to unpremul if (colorIsPremul && !colorsAreOpaque) { switch (interpolation.fColorSpace) { case ColorSpace::kLab: case ColorSpace::kOKLab: case ColorSpace::kOKLabGamutMap: p->append(SkRasterPipelineOp::unpremul); colorIsPremul = false; break; case ColorSpace::kLCH: case ColorSpace::kOKLCH: case ColorSpace::kOKLCHGamutMap: case ColorSpace::kHSL: case ColorSpace::kHWB: p->append(SkRasterPipelineOp::unpremul_polar); colorIsPremul = false; break; default: break; } } // Convert colors in exotic spaces back to their intermediate SkColorSpace switch (interpolation.fColorSpace) { case ColorSpace::kLab: p->append(SkRasterPipelineOp::css_lab_to_xyz); break; case ColorSpace::kOKLab: p->append(SkRasterPipelineOp::css_oklab_to_linear_srgb); break; case ColorSpace::kOKLabGamutMap: p->append(SkRasterPipelineOp::css_oklab_gamut_map_to_linear_srgb); break; case ColorSpace::kLCH: p->append(SkRasterPipelineOp::css_hcl_to_lab); p->append(SkRasterPipelineOp::css_lab_to_xyz); break; case ColorSpace::kOKLCH: p->append(SkRasterPipelineOp::css_hcl_to_lab); p->append(SkRasterPipelineOp::css_oklab_to_linear_srgb); break; case ColorSpace::kOKLCHGamutMap: p->append(SkRasterPipelineOp::css_hcl_to_lab); p->append(SkRasterPipelineOp::css_oklab_gamut_map_to_linear_srgb); break; case ColorSpace::kHSL: p->append(SkRasterPipelineOp::css_hsl_to_srgb); break; case ColorSpace::kHWB: p->append(SkRasterPipelineOp::css_hwb_to_srgb); break; default: break; } // Now transform from intermediate to destination color space. // See comments in GrGradientShader.cpp about the decisions here. if (!dstColorSpace) { dstColorSpace = sk_srgb_singleton(); } SkAlphaType intermediateAlphaType = colorIsPremul ? kPremul_SkAlphaType : kUnpremul_SkAlphaType; // TODO(skia:13108): Get dst alpha type correctly SkAlphaType dstAlphaType = kPremul_SkAlphaType; if (colorsAreOpaque) { intermediateAlphaType = dstAlphaType = kUnpremul_SkAlphaType; } alloc->make( intermediateColorSpace, intermediateAlphaType, dstColorSpace, dstAlphaType) ->apply(p); } bool SkGradientBaseShader::appendStages(const SkStageRec& rec, const SkShaders::MatrixRec& mRec) const { SkRasterPipeline* p = rec.fPipeline; SkArenaAlloc* alloc = rec.fAlloc; SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr; std::optional newMRec = mRec.apply(rec, fPtsToUnit); if (!newMRec.has_value()) { return false; } SkRasterPipeline_<256> postPipeline; this->appendGradientStages(alloc, p, &postPipeline); switch (fTileMode) { case SkTileMode::kMirror: p->append(SkRasterPipelineOp::mirror_x_1); break; case SkTileMode::kRepeat: p->append(SkRasterPipelineOp::repeat_x_1); break; case SkTileMode::kDecal: decal_ctx = alloc->make(); decal_ctx->limit_x = SkBits2Float(SkFloat2Bits(1.0f) + 1); // reuse mask + limit_x stage, or create a custom decal_1 that just stores the mask p->append(SkRasterPipelineOp::decal_x, decal_ctx); [[fallthrough]]; case SkTileMode::kClamp: if (!fPositions) { // We clamp only when the stops are evenly spaced. // If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1. // In that case, we must make sure we're using the general "gradient" stage, // which is the only stage that will correctly handle unclamped t. p->append(SkRasterPipelineOp::clamp_x_1); } break; } // Transform all of the colors to destination color space, possibly premultiplied SkColor4fXformer xformedColors(this, rec.fDstCS); AppendGradientFillStages(p, alloc, xformedColors.fColors.begin(), xformedColors.fPositions, xformedColors.fColors.size()); AppendInterpolatedToDstStages(p, alloc, fColorsAreOpaque, fInterpolation, xformedColors.fIntermediateColorSpace.get(), rec.fDstCS); if (decal_ctx) { p->append(SkRasterPipelineOp::check_decal_mask, decal_ctx); } p->extend(postPipeline); return true; } bool SkGradientBaseShader::isOpaque() const { return fColorsAreOpaque && (this->getTileMode() != SkTileMode::kDecal); } bool SkGradientBaseShader::onAsLuminanceColor(SkColor4f* lum) const { // We just compute an average color. There are several things we could do better: // 1) We already have a different average_gradient_color helper later in this file, that weights // contribution by the relative size of each band. // 2) Colors should be converted to some standard color space! These could be in any space. // 3) Do we want to average in the source space, sRGB, or some linear space? SkColor4f color{0, 0, 0, 1}; for (int i = 0; i < fColorCount; ++i) { color.fR += fColors[i].fR; color.fG += fColors[i].fG; color.fB += fColors[i].fB; } const float scale = 1.0f / fColorCount; color.fR *= scale; color.fG *= scale; color.fB *= scale; *lum = color; return true; } static sk_sp intermediate_color_space(SkGradientShader::Interpolation::ColorSpace cs, SkColorSpace* dst) { using ColorSpace = SkGradientShader::Interpolation::ColorSpace; switch (cs) { case ColorSpace::kDestination: return sk_ref_sp(dst); // css-color-4 allows XYZD50 and XYZD65. For gradients, those are redundant. Interpolating // in any linear RGB space, (regardless of white point), gives the same answer. case ColorSpace::kSRGBLinear: return SkColorSpace::MakeSRGBLinear(); case ColorSpace::kSRGB: case ColorSpace::kHSL: case ColorSpace::kHWB: return SkColorSpace::MakeSRGB(); case ColorSpace::kLab: case ColorSpace::kLCH: // Conversion to Lab (and LCH) starts with XYZD50 return SkColorSpace::MakeRGB(SkNamedTransferFn::kLinear, SkNamedGamut::kXYZ); case ColorSpace::kOKLab: case ColorSpace::kOKLabGamutMap: case ColorSpace::kOKLCH: case ColorSpace::kOKLCHGamutMap: // The "standard" conversion to these spaces starts with XYZD65. That requires extra // effort to conjure. The author also has reference code for going directly from linear // sRGB, so we use that. // TODO(skia:13108): Even better would be to have an LMS color space, because the first // part of the conversion is a matrix multiply, which could be absorbed into the // color space xform. return SkColorSpace::MakeSRGBLinear(); } SkUNREACHABLE; } using ConvertColorProc = SkPMColor4f(*)(SkPMColor4f, bool*); using PremulColorProc = SkPMColor4f(*)(SkPMColor4f); static SkPMColor4f srgb_to_hsl(SkPMColor4f rgb, bool* hueIsPowerless) { float mx = std::max({rgb.fR, rgb.fG, rgb.fB}); float mn = std::min({rgb.fR, rgb.fG, rgb.fB}); float hue = 0, sat = 0, light = (mn + mx) / 2; float d = mx - mn; if (d != 0) { sat = (light == 0 || light == 1) ? 0 : (mx - light) / std::min(light, 1 - light); if (mx == rgb.fR) { hue = (rgb.fG - rgb.fB) / d + (rgb.fG < rgb.fB ? 6 : 0); } else if (mx == rgb.fG) { hue = (rgb.fB - rgb.fR) / d + 2; } else { hue = (rgb.fR - rgb.fG) / d + 4; } hue *= 60; } if (sat == 0) { *hueIsPowerless = true; } return {hue, sat * 100, light * 100, rgb.fA}; } static SkPMColor4f srgb_to_hwb(SkPMColor4f rgb, bool* hueIsPowerless) { SkPMColor4f hsl = srgb_to_hsl(rgb, hueIsPowerless); float white = std::min({rgb.fR, rgb.fG, rgb.fB}); float black = 1 - std::max({rgb.fR, rgb.fG, rgb.fB}); return {hsl.fR, white * 100, black * 100, rgb.fA}; } static SkPMColor4f xyzd50_to_lab(SkPMColor4f xyz, bool* /*hueIsPowerless*/) { constexpr float D50[3] = {0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f}; constexpr float e = 216.0f / 24389; constexpr float k = 24389.0f / 27; SkPMColor4f f; for (int i = 0; i < 3; ++i) { float v = xyz[i] / D50[i]; f[i] = (v > e) ? std::cbrtf(v) : (k * v + 16) / 116; } return {(116 * f[1]) - 16, 500 * (f[0] - f[1]), 200 * (f[1] - f[2]), xyz.fA}; } // The color space is technically LCH, but we produce HCL, so that all polar spaces have hue in the // first component. This simplifies the hue handling for HueMethod and premul/unpremul. static SkPMColor4f xyzd50_to_hcl(SkPMColor4f xyz, bool* hueIsPowerless) { SkPMColor4f Lab = xyzd50_to_lab(xyz, hueIsPowerless); float hue = sk_float_radians_to_degrees(atan2f(Lab[2], Lab[1])); float chroma = sqrtf(Lab[1] * Lab[1] + Lab[2] * Lab[2]); // The LCH math produces small-ish (but not tiny) chroma values for achromatic colors: constexpr float kMaxChromaForPowerlessHue = 1e-2f; if (chroma <= kMaxChromaForPowerlessHue) { *hueIsPowerless = true; } return {hue >= 0 ? hue : hue + 360, chroma, Lab[0], xyz.fA}; } // https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab static SkPMColor4f lin_srgb_to_oklab(SkPMColor4f rgb, bool* /*hueIsPowerless*/) { float l = 0.4122214708f * rgb.fR + 0.5363325363f * rgb.fG + 0.0514459929f * rgb.fB; float m = 0.2119034982f * rgb.fR + 0.6806995451f * rgb.fG + 0.1073969566f * rgb.fB; float s = 0.0883024619f * rgb.fR + 0.2817188376f * rgb.fG + 0.6299787005f * rgb.fB; l = std::cbrtf(l); m = std::cbrtf(m); s = std::cbrtf(s); return {0.2104542553f * l + 0.7936177850f * m - 0.0040720468f * s, 1.9779984951f * l - 2.4285922050f * m + 0.4505937099f * s, 0.0259040371f * l + 0.7827717662f * m - 0.8086757660f * s, rgb.fA}; } // The color space is technically OkLCH, but we produce HCL, so that all polar spaces have hue in // the first component. This simplifies the hue handling for HueMethod and premul/unpremul. static SkPMColor4f lin_srgb_to_okhcl(SkPMColor4f rgb, bool* hueIsPowerless) { SkPMColor4f OKLab = lin_srgb_to_oklab(rgb, hueIsPowerless); float hue = sk_float_radians_to_degrees(atan2f(OKLab[2], OKLab[1])); float chroma = sqrtf(OKLab[1] * OKLab[1] + OKLab[2] * OKLab[2]); // The OKLCH math produces very small chroma values for achromatic colors: constexpr float kMaxChromaForPowerlessHue = 1e-6f; if (chroma <= kMaxChromaForPowerlessHue) { *hueIsPowerless = true; } return {hue >= 0 ? hue : hue + 360, chroma, OKLab[0], rgb.fA}; } static SkPMColor4f premul_polar(SkPMColor4f hsl) { return {hsl.fR, hsl.fG * hsl.fA, hsl.fB * hsl.fA, hsl.fA}; } static SkPMColor4f premul_rgb(SkPMColor4f rgb) { return {rgb.fR * rgb.fA, rgb.fG * rgb.fA, rgb.fB * rgb.fA, rgb.fA}; } static bool color_space_is_polar(SkGradientShader::Interpolation::ColorSpace cs) { using ColorSpace = SkGradientShader::Interpolation::ColorSpace; switch (cs) { case ColorSpace::kLCH: case ColorSpace::kOKLCH: case ColorSpace::kHSL: case ColorSpace::kHWB: return true; default: return false; } } // Given `colors` in `src` color space, an interpolation space, and a `dst` color space, // we are doing several things. First, some definitions: // // The interpolation color space is "special" if it can't be represented as an SkColorSpace. This // applies to any color space that isn't an RGB space, like Lab or HSL. These need special handling // because we have to run bespoke code to do the conversion (before interpolation here, and after // interpolation in the backend shader/pipeline). // // The interpolation color space is "polar" if it involves hue (HSL, HWB, LCH, Oklch). These need // special handling, becuase hue is never premultiplied, and because HueMethod comes into play. // // 1) Pick an `intermediate` SkColorSpace. If the interpolation color space is not "special", // (kDestination, kSRGB, etc... ), then `intermediate` is exact. Otherwise, `intermediate` is the // RGB space that prepares us to do the final conversion. For example, conversion to Lab starts // with XYZD50, so `intermediate` will be XYZD50 if we're actually interpolating in Lab. // 2) Transform all colors to the `intermediate` color space, leaving them unpremultiplied. // 3) If the interpolation color space is "special", transform the colors to that space. // 4) If the interpolation color space is "polar", adjust the angles to respect HueMethod. // 5) If premul interpolation is requested, apply that. For "polar" interpolated colors, don't // premultiply hue, only the other two channels. Note that there are four polar spaces. // Two have hue as the first component, and two have it as the third component. To reduce // complexity, we always store hue in the first component, swapping it with luminance for // LCH and Oklch. The backend code (eg, shaders) needs to know about this. SkColor4fXformer::SkColor4fXformer(const SkGradientBaseShader* shader, SkColorSpace* dst, bool forceExplicitPositions) { using ColorSpace = SkGradientShader::Interpolation::ColorSpace; using HueMethod = SkGradientShader::Interpolation::HueMethod; int colorCount = shader->fColorCount; const SkGradientShader::Interpolation interpolation = shader->fInterpolation; // 0) Copy the shader's position pointer. Certain interpolation modes might force us to add // new stops, in which case we'll allocate & edit the positions. fPositions = shader->fPositions; // 1) Determine the color space of our intermediate colors. fIntermediateColorSpace = intermediate_color_space(interpolation.fColorSpace, dst); // 2) Convert all colors to the intermediate color space auto info = SkImageInfo::Make(colorCount, 1, kRGBA_F32_SkColorType, kUnpremul_SkAlphaType); auto dstInfo = info.makeColorSpace(fIntermediateColorSpace); auto srcInfo = info.makeColorSpace(shader->fColorSpace); fColors.reset(colorCount); SkAssertResult(SkConvertPixels(dstInfo, fColors.begin(), info.minRowBytes(), srcInfo, shader->fColors, info.minRowBytes())); // 3) Transform to the interpolation color space (if it's special) ConvertColorProc convertFn = nullptr; switch (interpolation.fColorSpace) { case ColorSpace::kHSL: convertFn = srgb_to_hsl; break; case ColorSpace::kHWB: convertFn = srgb_to_hwb; break; case ColorSpace::kLab: convertFn = xyzd50_to_lab; break; case ColorSpace::kLCH: convertFn = xyzd50_to_hcl; break; case ColorSpace::kOKLab: convertFn = lin_srgb_to_oklab; break; case ColorSpace::kOKLabGamutMap: convertFn = lin_srgb_to_oklab; break; case ColorSpace::kOKLCH: convertFn = lin_srgb_to_okhcl; break; case ColorSpace::kOKLCHGamutMap: convertFn = lin_srgb_to_okhcl; break; default: break; } skia_private::STArray<4, bool> hueIsPowerless; bool anyPowerlessHue = false; hueIsPowerless.push_back_n(colorCount, false); if (convertFn) { for (int i = 0; i < colorCount; ++i) { fColors[i] = convertFn(fColors[i], hueIsPowerless.data() + i); anyPowerlessHue = anyPowerlessHue || hueIsPowerless[i]; } } if (anyPowerlessHue) { // In theory, if we knew we were just going to adjust the existing colors (without adding // new ones), we could do it all in-place. To keep things simple, we always generate the // new colors in separate storage. ColorStorage newColors; PositionStorage newPositions; for (int i = 0; i < colorCount; ++i) { const SkPMColor4f& curColor = fColors[i]; float curPos = shader->getPos(i); if (!hueIsPowerless[i]) { newColors.push_back(curColor); newPositions.push_back(curPos); continue; } auto colorWithHueFrom = [](const SkPMColor4f& color, const SkPMColor4f& hueColor) { // If we have any powerless hue, then all colors are already in (some) polar space, // and they all store their hue in the red channel. return SkPMColor4f{hueColor.fR, color.fG, color.fB, color.fA}; }; // In each case, we might be copying a powerless (invalid) hue from the neighbor, but // that should be fine, as it will match that neighbor perfectly, and any hue is ok. if (i != 0) { newPositions.push_back(curPos); newColors.push_back(colorWithHueFrom(curColor, fColors[i - 1])); } if (i != colorCount - 1) { newPositions.push_back(curPos); newColors.push_back(colorWithHueFrom(curColor, fColors[i + 1])); } } fColors.swap(newColors); fPositionStorage.swap(newPositions); fPositions = fPositionStorage.data(); colorCount = fColors.size(); } // 4) For polar colors, adjust hue values to respect the hue method. We're using a trick here... // The specification looks at adjacent colors, and adjusts one or the other. Because we store // the stops in uniforms (and our backend conversions normalize the hue angle), we can // instead always apply the adjustment to the *second* color. That lets us keep a running // total, and do a single pass across all the colors to respect the requested hue method, // without needing to do any extra work per-pixel. if (color_space_is_polar(interpolation.fColorSpace)) { float delta = 0; for (int i = 0; i < colorCount - 1; ++i) { float h1 = fColors[i].fR; float& h2 = fColors[i + 1].fR; h2 += delta; switch (interpolation.fHueMethod) { case HueMethod::kShorter: if (h2 - h1 > 180) { h2 -= 360; // i.e. h1 += 360 delta -= 360; } else if (h2 - h1 < -180) { h2 += 360; delta += 360; } break; case HueMethod::kLonger: if ((i == 0 && shader->fFirstStopIsImplicit) || (i == colorCount - 2 && shader->fLastStopIsImplicit)) { // Do nothing. We don't want to introduce a full revolution for these stops // Full rationale at skbug.com/13941 } else if (0 < h2 - h1 && h2 - h1 < 180) { h2 -= 360; // i.e. h1 += 360 delta -= 360; } else if (-180 < h2 - h1 && h2 - h1 <= 0) { h2 += 360; delta += 360; } break; case HueMethod::kIncreasing: if (h2 < h1) { h2 += 360; delta += 360; } break; case HueMethod::kDecreasing: if (h1 < h2) { h2 -= 360; // i.e. h1 += 360; delta -= 360; } break; } } } // 5) Apply premultiplication PremulColorProc premulFn = nullptr; if (static_cast(interpolation.fInPremul)) { switch (interpolation.fColorSpace) { case ColorSpace::kHSL: case ColorSpace::kHWB: case ColorSpace::kLCH: case ColorSpace::kOKLCH: premulFn = premul_polar; break; default: premulFn = premul_rgb; break; } } if (premulFn) { for (int i = 0; i < colorCount; ++i) { fColors[i] = premulFn(fColors[i]); } } // Ganesh requires that the positions be explicit (rather than implicitly evenly spaced) if (forceExplicitPositions && !fPositions) { fPositionStorage.reserve_exact(colorCount); float posScale = 1.0f / (colorCount - 1); for (int i = 0; i < colorCount; i++) { fPositionStorage.push_back(i * posScale); } fPositions = fPositionStorage.data(); } } SkColorConverter::SkColorConverter(const SkColor* colors, int count) { const float ONE_OVER_255 = 1.f / 255; for (int i = 0; i < count; ++i) { fColors4f.push_back({SkColorGetR(colors[i]) * ONE_OVER_255, SkColorGetG(colors[i]) * ONE_OVER_255, SkColorGetB(colors[i]) * ONE_OVER_255, SkColorGetA(colors[i]) * ONE_OVER_255}); } } void SkGradientBaseShader::commonAsAGradient(GradientInfo* info) const { if (info) { if (info->fColorCount >= fColorCount) { if (info->fColors) { for (int i = 0; i < fColorCount; ++i) { info->fColors[i] = this->getLegacyColor(i); } } if (info->fColorOffsets) { for (int i = 0; i < fColorCount; ++i) { info->fColorOffsets[i] = this->getPos(i); } } } info->fColorCount = fColorCount; info->fTileMode = fTileMode; info->fGradientFlags = this->interpolateInPremul() ? SkGradientShader::kInterpolateColorsInPremul_Flag : 0; } } // Return true if these parameters are valid/legal/safe to construct a gradient // bool SkGradientBaseShader::ValidGradient(const SkColor4f colors[], int count, SkTileMode tileMode, const Interpolation& interpolation) { return nullptr != colors && count >= 1 && (unsigned)tileMode < kSkTileModeCount && (unsigned)interpolation.fColorSpace < Interpolation::kColorSpaceCount && (unsigned)interpolation.fHueMethod < Interpolation::kHueMethodCount; } SkGradientBaseShader::Descriptor::Descriptor(const SkColor4f colors[], sk_sp colorSpace, const SkScalar positions[], int colorCount, SkTileMode mode, const Interpolation& interpolation) : fColors(colors) , fColorSpace(std::move(colorSpace)) , fPositions(positions) , fColorCount(colorCount) , fTileMode(mode) , fInterpolation(interpolation) { SkASSERT(fColorCount > 1); } static SkColor4f average_gradient_color(const SkColor4f colors[], const SkScalar pos[], int colorCount) { // The gradient is a piecewise linear interpolation between colors. For a given interval, // the integral between the two endpoints is 0.5 * (ci + cj) * (pj - pi), which provides that // intervals average color. The overall average color is thus the sum of each piece. The thing // to keep in mind is that the provided gradient definition may implicitly use p=0 and p=1. skvx::float4 blend(0.0f); for (int i = 0; i < colorCount - 1; ++i) { // Calculate the average color for the interval between pos(i) and pos(i+1) auto c0 = skvx::float4::Load(&colors[i]); auto c1 = skvx::float4::Load(&colors[i + 1]); // when pos == null, there are colorCount uniformly distributed stops, going from 0 to 1, // so pos[i + 1] - pos[i] = 1/(colorCount-1) SkScalar w; if (pos) { // Match position fixing in SkGradientShader's constructor, clamping positions outside // [0, 1] and forcing the sequence to be monotonic SkScalar p0 = SkTPin(pos[i], 0.f, 1.f); SkScalar p1 = SkTPin(pos[i + 1], p0, 1.f); w = p1 - p0; // And account for any implicit intervals at the start or end of the positions if (i == 0) { if (p0 > 0.0f) { // The first color is fixed between p = 0 to pos[0], so 0.5*(ci + cj)*(pj - pi) // becomes 0.5*(c + c)*(pj - 0) = c * pj auto c = skvx::float4::Load(&colors[0]); blend += p0 * c; } } if (i == colorCount - 2) { if (p1 < 1.f) { // The last color is fixed between pos[n-1] to p = 1, so 0.5*(ci + cj)*(pj - pi) // becomes 0.5*(c + c)*(1 - pi) = c * (1 - pi) auto c = skvx::float4::Load(&colors[colorCount - 1]); blend += (1.f - p1) * c; } } } else { w = 1.f / (colorCount - 1); } blend += 0.5f * w * (c1 + c0); } SkColor4f avg; blend.store(&avg); return avg; } // Except for special circumstances of clamped gradients, every gradient shape--when degenerate-- // can be mapped to the same fallbacks. The specific shape factories must account for special // clamped conditions separately, this will always return the last color for clamped gradients. sk_sp SkGradientBaseShader::MakeDegenerateGradient(const SkColor4f colors[], const SkScalar pos[], int colorCount, sk_sp colorSpace, SkTileMode mode) { switch (mode) { case SkTileMode::kDecal: // normally this would reject the area outside of the interpolation region, so since // inside region is empty when the radii are equal, the entire draw region is empty return SkShaders::Empty(); case SkTileMode::kRepeat: case SkTileMode::kMirror: // repeat and mirror are treated the same: the border colors are never visible, // but approximate the final color as infinite repetitions of the colors, so // it can be represented as the average color of the gradient. return SkShaders::Color(average_gradient_color(colors, pos, colorCount), std::move(colorSpace)); case SkTileMode::kClamp: // Depending on how the gradient shape degenerates, there may be a more specialized // fallback representation for the factories to use, but this is a reasonable default. return SkShaders::Color(colors[colorCount - 1], std::move(colorSpace)); } SkDEBUGFAIL("Should not be reached"); return nullptr; }