/* * Copyright 2021 Google LLC. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/tessellate/Tessellation.h" #include "include/core/SkPath.h" #include "include/core/SkPathTypes.h" #include "include/core/SkRect.h" #include "include/private/base/SkFloatingPoint.h" #include "include/private/base/SkTArray.h" #include "src/base/SkUtils.h" #include "src/base/SkVx.h" #include "src/core/SkGeometry.h" #include "src/core/SkPathPriv.h" #include "src/gpu/tessellate/CullTest.h" #include "src/gpu/tessellate/WangsFormula.h" using namespace skia_private; namespace skgpu::tess { namespace { using float2 = skvx::float2; using float4 = skvx::float4; // This value only protects us against getting stuck in infinite recursion due to fp32 precision // issues. Mathematically, every curve should reduce to manageable visible sections in O(log N) // chops, where N is the the magnitude of its control points. // // But, to define a protective upper bound, a cubic can enter or exit the viewport as many as 6 // times. So we may need to refine the curve (via binary search chopping at T=.5) up to 6 times. // // Furthermore, chopping a cubic at T=.5 may only reduce its length by 1/8 (.5^3), so we may require // up to 6 chops in order to reduce the length by 1/2. constexpr static int kMaxChopsPerCurve = 128/*magnitude of +fp32_max - -fp32_max*/ * 6/*max number of chops to reduce the length by half*/ * 6/*max number of viewport boundary crosses*/; // Writes a new path, chopping as necessary so no verbs require more segments than // kMaxTessellationSegmentsPerCurve. Curves completely outside the viewport are flattened into // lines. class PathChopper { public: PathChopper(float tessellationPrecision, const SkMatrix& matrix, const SkRect& viewport) : fTessellationPrecision(tessellationPrecision) , fCullTest(viewport, matrix) , fVectorXform(matrix) { fPath.setIsVolatile(true); } SkPath path() const { return fPath; } void moveTo(SkPoint p) { fPath.moveTo(p); } void lineTo(const SkPoint p[2]) { fPath.lineTo(p[1]); } void close() { fPath.close(); } void quadTo(const SkPoint quad[3]) { SkASSERT(fPointStack.empty()); // Use a heap stack to recursively chop the quad into manageable, on-screen segments. fPointStack.push_back_n(3, quad); int numChops = 0; while (!fPointStack.empty()) { const SkPoint* p = fPointStack.end() - 3; if (!fCullTest.areVisible3(p)) { fPath.lineTo(p[2]); } else { float n4 = wangs_formula::quadratic_p4(fTessellationPrecision, p, fVectorXform); if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) { SkPoint chops[5]; SkChopQuadAtHalf(p, chops); fPointStack.pop_back_n(3); fPointStack.push_back_n(3, chops+2); fPointStack.push_back_n(3, chops); ++numChops; continue; } fPath.quadTo(p[1], p[2]); } fPointStack.pop_back_n(3); } } void conicTo(const SkPoint conic[3], float weight) { SkASSERT(fPointStack.empty()); SkASSERT(fWeightStack.empty()); // Use a heap stack to recursively chop the conic into manageable, on-screen segments. fPointStack.push_back_n(3, conic); fWeightStack.push_back(weight); int numChops = 0; while (!fPointStack.empty()) { const SkPoint* p = fPointStack.end() - 3; float w = fWeightStack.back(); if (!fCullTest.areVisible3(p)) { fPath.lineTo(p[2]); } else { float n2 = wangs_formula::conic_p2(fTessellationPrecision, p, w, fVectorXform); if (n2 > kMaxSegmentsPerCurve_p2 && numChops < kMaxChopsPerCurve) { SkConic chops[2]; if (!SkConic(p,w).chopAt(.5, chops)) { SkPoint line[2] = {p[0], p[2]}; this->lineTo(line); continue; } fPointStack.pop_back_n(3); fWeightStack.pop_back(); fPointStack.push_back_n(3, chops[1].fPts); fWeightStack.push_back(chops[1].fW); fPointStack.push_back_n(3, chops[0].fPts); fWeightStack.push_back(chops[0].fW); ++numChops; continue; } fPath.conicTo(p[1], p[2], w); } fPointStack.pop_back_n(3); fWeightStack.pop_back(); } SkASSERT(fWeightStack.empty()); } void cubicTo(const SkPoint cubic[4]) { SkASSERT(fPointStack.empty()); // Use a heap stack to recursively chop the cubic into manageable, on-screen segments. fPointStack.push_back_n(4, cubic); int numChops = 0; while (!fPointStack.empty()) { SkPoint* p = fPointStack.end() - 4; if (!fCullTest.areVisible4(p)) { fPath.lineTo(p[3]); } else { float n4 = wangs_formula::cubic_p4(fTessellationPrecision, p, fVectorXform); if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) { SkPoint chops[7]; SkChopCubicAtHalf(p, chops); fPointStack.pop_back_n(4); fPointStack.push_back_n(4, chops+3); fPointStack.push_back_n(4, chops); ++numChops; continue; } fPath.cubicTo(p[1], p[2], p[3]); } fPointStack.pop_back_n(4); } } private: const float fTessellationPrecision; const CullTest fCullTest; const wangs_formula::VectorXform fVectorXform; SkPath fPath; // Used for stack-based recursion (instead of using the runtime stack). STArray<8, SkPoint> fPointStack; STArray<2, float> fWeightStack; }; } // namespace SkPath PreChopPathCurves(float tessellationPrecision, const SkPath& path, const SkMatrix& matrix, const SkRect& viewport) { // If the viewport is exceptionally large, we could end up blowing out memory with an unbounded // number of of chops. Therefore, we require that the viewport is manageable enough that a fully // contained curve can be tessellated in kMaxTessellationSegmentsPerCurve or fewer. (Any larger // and that amount of pixels wouldn't fit in memory anyway.) SkASSERT(wangs_formula::worst_case_cubic( tessellationPrecision, viewport.width(), viewport.height()) <= kMaxSegmentsPerCurve); PathChopper chopper(tessellationPrecision, matrix, viewport); for (auto [verb, p, w] : SkPathPriv::Iterate(path)) { switch (verb) { case SkPathVerb::kMove: chopper.moveTo(p[0]); break; case SkPathVerb::kLine: chopper.lineTo(p); break; case SkPathVerb::kQuad: chopper.quadTo(p); break; case SkPathVerb::kConic: chopper.conicTo(p, *w); break; case SkPathVerb::kCubic: chopper.cubicTo(p); break; case SkPathVerb::kClose: chopper.close(); break; } } // Must preserve the input path's fill type (see crbug.com/1472747) SkPath chopped = chopper.path(); chopped.setFillType(path.getFillType()); return chopped; } int FindCubicConvex180Chops(const SkPoint pts[], float T[2], bool* areCusps) { SkASSERT(pts); SkASSERT(T); SkASSERT(areCusps); // If a chop falls within a distance of "kEpsilon" from 0 or 1, throw it out. Tangents become // unstable when we chop too close to the boundary. This works out because the tessellation // shaders don't allow more than 2^10 parametric segments, and they snap the beginning and // ending edges at 0 and 1. So if we overstep an inflection or point of 180-degree rotation by a // fraction of a tessellation segment, it just gets snapped. constexpr static float kEpsilon = 1.f / (1 << 11); // Floating-point representation of "1 - 2*kEpsilon". constexpr static uint32_t kIEEE_one_minus_2_epsilon = (127 << 23) - 2 * (1 << (24 - 11)); // Unfortunately we don't have a way to static_assert this, but we can runtime assert that the // kIEEE_one_minus_2_epsilon bits are correct. SkASSERT(sk_bit_cast(kIEEE_one_minus_2_epsilon) == 1 - 2*kEpsilon); float2 p0 = sk_bit_cast(pts[0]); float2 p1 = sk_bit_cast(pts[1]); float2 p2 = sk_bit_cast(pts[2]); float2 p3 = sk_bit_cast(pts[3]); // Find the cubic's power basis coefficients. These define the bezier curve as: // // |T^3| // Cubic(T) = x,y = |A 3B 3C| * |T^2| + P0 // |. . .| |T | // // And the tangent direction (scaled by a uniform 1/3) will be: // // |T^2| // Tangent_Direction(T) = dx,dy = |A 2B C| * |T | // |. . .| |1 | // float2 C = p1 - p0; float2 D = p2 - p1; float2 E = p3 - p0; float2 B = D - C; float2 A = -3*D + E; // Now find the cubic's inflection function. There are inflections where F' x F'' == 0. // We formulate this as a quadratic equation: F' x F'' == aT^2 + bT + c == 0. // See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf // NOTE: We only need the roots, so a uniform scale factor does not affect the solution. float a = cross(A,B); float b = cross(A,C); float c = cross(B,C); float b_over_minus_2 = -.5f * b; float discr_over_4 = b_over_minus_2*b_over_minus_2 - a*c; // If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two roots are within // kEpsilon of one another (in parametric space). This is close enough for our purposes to // consider them a single cusp. float cuspThreshold = a * (kEpsilon/2); cuspThreshold *= cuspThreshold; if (discr_over_4 < -cuspThreshold) { // The curve does not inflect or cusp. This means it might rotate more than 180 degrees // instead. Chop were rotation == 180 deg. (This is the 2nd root where the tangent is // parallel to tan0.) // // Tangent_Direction(T) x tan0 == 0 // (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0 // (A x C)T^2 + (2B x C)T + (C x C) == 0 [[because tan0 == P1 - P0 == C]] // bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]] // T = [0, -2c/b] // // NOTE: if C == 0, then C != tan0. But this is fine because the curve is definitely // convex-180 if any points are colocated, and T[0] will equal NaN which returns 0 chops. *areCusps = false; float root = sk_ieee_float_divide(c, b_over_minus_2); // Is "root" inside the range [kEpsilon, 1 - kEpsilon)? if (sk_bit_cast(root - kEpsilon) < kIEEE_one_minus_2_epsilon) { T[0] = root; return 1; } return 0; } *areCusps = (discr_over_4 <= cuspThreshold); if (*areCusps) { // The two roots are close enough that we can consider them a single cusp. if (a != 0 || b_over_minus_2 != 0 || c != 0) { // Pick the average of both roots. float root = sk_ieee_float_divide(b_over_minus_2, a); // Is "root" inside the range [kEpsilon, 1 - kEpsilon)? if (sk_bit_cast(root - kEpsilon) < kIEEE_one_minus_2_epsilon) { T[0] = root; return 1; } return 0; } // The curve is a flat line. The standard inflection function doesn't detect cusps from flat // lines. Find cusps by searching instead for points where the tangent is perpendicular to // tan0. This will find any cusp point. // // dot(tan0, Tangent_Direction(T)) == 0 // // |T^2| // tan0 * |A 2B C| * |T | == 0 // |. . .| |1 | // float2 tan0 = skvx::if_then_else(C != 0, C, p2 - p0); a = dot(tan0, A); b_over_minus_2 = -dot(tan0, B); c = dot(tan0, C); discr_over_4 = std::max(b_over_minus_2*b_over_minus_2 - a*c, 0.f); } // Solve our quadratic equation to find where to chop. See the quadratic formula from // Numerical Recipes in C. float q = sqrtf(discr_over_4); q = copysignf(q, b_over_minus_2); q = q + b_over_minus_2; float2 roots = float2{q,c} / float2{a,q}; auto inside = (roots > kEpsilon) & (roots < (1 - kEpsilon)); if (inside[0]) { if (inside[1] && roots[0] != roots[1]) { if (roots[0] > roots[1]) { roots = skvx::shuffle<1,0>(roots); // Sort. } roots.store(T); return 2; } T[0] = roots[0]; return 1; } if (inside[1]) { T[0] = roots[1]; return 1; } return 0; } } // namespace skgpu::tess