/* * Copyright 2021 Google LLC. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/tessellate/GrTessellationShader.h" #include "src/gpu/Swizzle.h" #include "src/gpu/ganesh/GrDstProxyView.h" #include "src/gpu/ganesh/GrPipeline.h" #include "src/gpu/ganesh/GrSurfaceProxyView.h" #include "src/gpu/tessellate/WangsFormula.h" #include enum class GrAAType : unsigned int; const GrPipeline* GrTessellationShader::MakePipeline(const ProgramArgs& args, GrAAType aaType, GrAppliedClip&& appliedClip, GrProcessorSet&& processors) { GrPipeline::InitArgs pipelineArgs; pipelineArgs.fCaps = args.fCaps; pipelineArgs.fDstProxyView = *args.fDstProxyView; pipelineArgs.fWriteSwizzle = args.fWriteView.swizzle(); return args.fArena->make(pipelineArgs, std::move(processors), std::move(appliedClip)); } const char* GrTessellationShader::WangsFormulaSkSL() { static_assert(skgpu::wangs_formula::length_term<3>(1) == 0.75); static_assert(skgpu::wangs_formula::length_term_p2<3>(1) == 0.5625); return // Returns the length squared of the largest forward difference from Wang's cubic formula. "float wangs_formula_max_fdiff_p2(float2 p0, float2 p1, float2 p2, float2 p3," "float2x2 matrix) {" "float2 d0 = matrix * (fma(float2(-2), p1, p2) + p0);" "float2 d1 = matrix * (fma(float2(-2), p2, p3) + p1);" "return max(dot(d0,d0), dot(d1,d1));" "}" "float wangs_formula_cubic(float _precision_, float2 p0, float2 p1, float2 p2, float2 p3," "float2x2 matrix) {" "float m = wangs_formula_max_fdiff_p2(p0, p1, p2, p3, matrix);" "return max(ceil(sqrt(0.75 * _precision_ * sqrt(m))), 1.0);" "}" "float wangs_formula_cubic_log2(float _precision_, float2 p0, float2 p1, float2 p2, float2 p3," "float2x2 matrix) {" "float m = wangs_formula_max_fdiff_p2(p0, p1, p2, p3, matrix);" "return ceil(log2(max(0.5625 * _precision_ * _precision_ * m, 1.0)) * .25);" "}" "float wangs_formula_conic_p2(float _precision_, float2 p0, float2 p1, float2 p2, float w) {" // Translate the bounding box center to the origin. "float2 C = (min(min(p0, p1), p2) + max(max(p0, p1), p2)) * 0.5;" "p0 -= C;" "p1 -= C;" "p2 -= C;" // Compute max length. "float m = sqrt(max(max(dot(p0,p0), dot(p1,p1)), dot(p2,p2)));" // Compute forward differences. "float2 dp = fma(float2(-2.0 * w), p1, p0) + p2;" "float dw = abs(fma(-2.0, w, 2.0));" // Compute numerator and denominator for parametric step size of linearization. Here, the // epsilon referenced from the cited paper is 1/precision. "float rp_minus_1 = max(0.0, fma(m, _precision_, -1.0));" "float numer = length(dp) * _precision_ + rp_minus_1 * dw;" "float denom = 4 * min(w, 1.0);" "return numer/denom;" "}" "float wangs_formula_conic(float _precision_, float2 p0, float2 p1, float2 p2, float w) {" "float n2 = wangs_formula_conic_p2(_precision_, p0, p1, p2, w);" "return max(ceil(sqrt(n2)), 1.0);" "}" "float wangs_formula_conic_log2(float _precision_, float2 p0, float2 p1, float2 p2, float w) {" "float n2 = wangs_formula_conic_p2(_precision_, p0, p1, p2, w);" "return ceil(log2(max(n2, 1.0)) * .5);" "}" ; }