/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/ops/StrokeRectOp.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkString.h" #include "include/core/SkStrokeRec.h" #include "include/gpu/ganesh/GrRecordingContext.h" #include "include/private/SkColorData.h" #include "include/private/base/SkAlignedStorage.h" #include "include/private/base/SkAssert.h" #include "include/private/base/SkDebug.h" #include "include/private/base/SkOnce.h" #include "include/private/base/SkPoint_impl.h" #include "include/private/base/SkTArray.h" #include "include/private/gpu/ganesh/GrTypesPriv.h" #include "src/base/SkRandom.h" #include "src/core/SkMatrixPriv.h" #include "src/gpu/BufferWriter.h" #include "src/gpu/ResourceKey.h" #include "src/gpu/ganesh/GrAppliedClip.h" #include "src/gpu/ganesh/GrBuffer.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrDefaultGeoProcFactory.h" #include "src/gpu/ganesh/GrDrawOpTest.h" #include "src/gpu/ganesh/GrGeometryProcessor.h" #include "src/gpu/ganesh/GrMeshDrawTarget.h" #include "src/gpu/ganesh/GrOpFlushState.h" #include "src/gpu/ganesh/GrPaint.h" #include "src/gpu/ganesh/GrProcessorAnalysis.h" #include "src/gpu/ganesh/GrProcessorSet.h" #include "src/gpu/ganesh/GrProgramInfo.h" #include "src/gpu/ganesh/GrRecordingContextPriv.h" #include "src/gpu/ganesh/GrResourceProvider.h" #include "src/gpu/ganesh/GrSimpleMesh.h" #include "src/gpu/ganesh/GrTestUtils.h" #include "src/gpu/ganesh/geometry/GrQuad.h" #include "src/gpu/ganesh/ops/FillRectOp.h" #include "src/gpu/ganesh/ops/GrMeshDrawOp.h" #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper.h" #include #include #include #include #include class GrDstProxyView; class GrGpuBuffer; class GrSurfaceProxyView; class SkArenaAlloc; enum class GrXferBarrierFlags; namespace skgpu::ganesh { class SurfaceDrawContext; } using namespace skia_private; namespace skgpu::ganesh::StrokeRectOp { namespace { // This emits line primitives for hairlines, so only support hairlines if allowed by caps. Otherwise // we support all hairlines, bevels, and miters, but not round joins. Also, check whether the miter // limit makes a miter join effectively beveled. If the miter is effectively beveled, it is only // supported when using an AA stroke. inline bool allowed_stroke(const GrCaps* caps, const SkStrokeRec& stroke, GrAA aa, bool* isMiter) { SkASSERT(stroke.getStyle() == SkStrokeRec::kStroke_Style || stroke.getStyle() == SkStrokeRec::kHairline_Style); if (caps->avoidLineDraws() && stroke.isHairlineStyle()) { return false; } // For hairlines, make bevel and round joins appear the same as mitered ones. if (!stroke.getWidth()) { *isMiter = true; return true; } if (stroke.getJoin() == SkPaint::kBevel_Join) { *isMiter = false; return aa == GrAA::kYes; // bevel only supported with AA } if (stroke.getJoin() == SkPaint::kMiter_Join) { *isMiter = stroke.getMiter() >= SK_ScalarSqrt2; // Supported under non-AA only if it remains mitered return aa == GrAA::kYes || *isMiter; } return false; } /////////////////////////////////////////////////////////////////////////////////////////////////// // Non-AA Stroking /////////////////////////////////////////////////////////////////////////////////////////////////// /* create a triangle strip that strokes the specified rect. There are 8 unique vertices, but we repeat the last 2 to close up. Alternatively we could use an indices array, and then only send 8 verts, but not sure that would be faster. */ void init_nonaa_stroke_rect_strip(SkPoint verts[10], const SkRect& rect, SkScalar width) { const SkScalar rad = SkScalarHalf(width); verts[0].set(rect.fLeft + rad, rect.fTop + rad); verts[1].set(rect.fLeft - rad, rect.fTop - rad); verts[2].set(rect.fRight - rad, rect.fTop + rad); verts[3].set(rect.fRight + rad, rect.fTop - rad); verts[4].set(rect.fRight - rad, rect.fBottom - rad); verts[5].set(rect.fRight + rad, rect.fBottom + rad); verts[6].set(rect.fLeft + rad, rect.fBottom - rad); verts[7].set(rect.fLeft - rad, rect.fBottom + rad); verts[8] = verts[0]; verts[9] = verts[1]; // TODO: we should be catching this higher up the call stack and just draw a single // non-AA rect if (2*rad >= rect.width()) { verts[0].fX = verts[2].fX = verts[4].fX = verts[6].fX = verts[8].fX = rect.centerX(); } if (2*rad >= rect.height()) { verts[0].fY = verts[2].fY = verts[4].fY = verts[6].fY = verts[8].fY = rect.centerY(); } } class NonAAStrokeRectOp final : public GrMeshDrawOp { private: using Helper = GrSimpleMeshDrawOpHelper; public: DEFINE_OP_CLASS_ID const char* name() const override { return "NonAAStrokeRectOp"; } void visitProxies(const GrVisitProxyFunc& func) const override { if (fProgramInfo) { fProgramInfo->visitFPProxies(func); } else { fHelper.visitProxies(func); } } static GrOp::Owner Make(GrRecordingContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, const SkRect& rect, const SkStrokeRec& stroke, GrAAType aaType) { bool isMiter; if (!allowed_stroke(context->priv().caps(), stroke, GrAA::kNo, &isMiter)) { return nullptr; } Helper::InputFlags inputFlags = Helper::InputFlags::kNone; // Depending on sub-pixel coordinates and the particular GPU, we may lose a corner of // hairline rects. We jam all the vertices to pixel centers to avoid this, but not // when MSAA is enabled because it can cause ugly artifacts. if (stroke.getStyle() == SkStrokeRec::kHairline_Style && aaType != GrAAType::kMSAA) { inputFlags |= Helper::InputFlags::kSnapVerticesToPixelCenters; } return Helper::FactoryHelper(context, std::move(paint), inputFlags, viewMatrix, rect, stroke, aaType); } NonAAStrokeRectOp(GrProcessorSet* processorSet, const SkPMColor4f& color, Helper::InputFlags inputFlags, const SkMatrix& viewMatrix, const SkRect& rect, const SkStrokeRec& stroke, GrAAType aaType) : INHERITED(ClassID()) , fHelper(processorSet, aaType, inputFlags) { fColor = color; fViewMatrix = viewMatrix; fRect = rect; // Sort the rect for hairlines fRect.sort(); fStrokeWidth = stroke.getWidth(); SkScalar rad = SkScalarHalf(fStrokeWidth); SkRect bounds = rect; bounds.outset(rad, rad); // If our caller snaps to pixel centers then we have to round out the bounds if (inputFlags & Helper::InputFlags::kSnapVerticesToPixelCenters) { SkASSERT(!fStrokeWidth || aaType == GrAAType::kNone); viewMatrix.mapRect(&bounds); // We want to be consistent with how we snap non-aa lines. To match what we do in // GrGLSLVertexShaderBuilder, we first floor all the vertex values and then add half a // pixel to force us to pixel centers. bounds.setLTRB(SkScalarFloorToScalar(bounds.fLeft), SkScalarFloorToScalar(bounds.fTop), SkScalarFloorToScalar(bounds.fRight), SkScalarFloorToScalar(bounds.fBottom)); bounds.offset(0.5f, 0.5f); this->setBounds(bounds, HasAABloat::kNo, IsHairline::kNo); } else { HasAABloat aaBloat = (aaType == GrAAType::kNone) ? HasAABloat ::kNo : HasAABloat::kYes; this->setTransformedBounds(bounds, fViewMatrix, aaBloat, fStrokeWidth ? IsHairline::kNo : IsHairline::kYes); } } FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, GrClampType clampType) override { // This Op uses uniform (not vertex) color, so doesn't need to track wide color. return fHelper.finalizeProcessors(caps, clip, clampType, GrProcessorAnalysisCoverage::kNone, &fColor, nullptr); } private: GrProgramInfo* programInfo() override { return fProgramInfo; } void onCreateProgramInfo(const GrCaps* caps, SkArenaAlloc* arena, const GrSurfaceProxyView& writeView, bool usesMSAASurface, GrAppliedClip&& clip, const GrDstProxyView& dstProxyView, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp) override { GrGeometryProcessor* gp; { using namespace GrDefaultGeoProcFactory; Color color(fColor); LocalCoords::Type localCoordsType = fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type; gp = GrDefaultGeoProcFactory::Make(arena, color, Coverage::kSolid_Type, localCoordsType, fViewMatrix); } GrPrimitiveType primType = (fStrokeWidth > 0) ? GrPrimitiveType::kTriangleStrip : GrPrimitiveType::kLineStrip; fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, usesMSAASurface, std::move(clip), dstProxyView, gp, primType, renderPassXferBarriers, colorLoadOp); } void onPrepareDraws(GrMeshDrawTarget* target) override { if (!fProgramInfo) { this->createProgramInfo(target); } size_t kVertexStride = fProgramInfo->geomProc().vertexStride(); int vertexCount = kVertsPerHairlineRect; if (fStrokeWidth > 0) { vertexCount = kVertsPerStrokeRect; } sk_sp vertexBuffer; int firstVertex; void* verts = target->makeVertexSpace(kVertexStride, vertexCount, &vertexBuffer, &firstVertex); if (!verts) { SkDebugf("Could not allocate vertices\n"); return; } SkPoint* vertex = reinterpret_cast(verts); if (fStrokeWidth > 0) { init_nonaa_stroke_rect_strip(vertex, fRect, fStrokeWidth); } else { // hairline vertex[0].set(fRect.fLeft, fRect.fTop); vertex[1].set(fRect.fRight, fRect.fTop); vertex[2].set(fRect.fRight, fRect.fBottom); vertex[3].set(fRect.fLeft, fRect.fBottom); vertex[4].set(fRect.fLeft, fRect.fTop); } fMesh = target->allocMesh(); fMesh->set(std::move(vertexBuffer), vertexCount, firstVertex); } void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { if (!fMesh) { return; } flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); flushState->drawMesh(*fMesh); } #if defined(GPU_TEST_UTILS) SkString onDumpInfo() const override { return SkStringPrintf("Color: 0x%08x, Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], " "StrokeWidth: %.2f\n%s", fColor.toBytes_RGBA(), fRect.fLeft, fRect.fTop, fRect.fRight, fRect.fBottom, fStrokeWidth, fHelper.dumpInfo().c_str()); } #endif // TODO: override onCombineIfPossible Helper fHelper; SkPMColor4f fColor; SkMatrix fViewMatrix; SkRect fRect; SkScalar fStrokeWidth; GrSimpleMesh* fMesh = nullptr; GrProgramInfo* fProgramInfo = nullptr; const static int kVertsPerHairlineRect = 5; const static int kVertsPerStrokeRect = 10; using INHERITED = GrMeshDrawOp; }; /////////////////////////////////////////////////////////////////////////////////////////////////// // AA Stroking /////////////////////////////////////////////////////////////////////////////////////////////////// SKGPU_DECLARE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey); SKGPU_DECLARE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey); bool stroke_dev_half_size_supported(SkVector devHalfStrokeSize) { // Since the horizontal and vertical strokes share internal corners, the coverage value at that // corner needs to be equal for the horizontal and vertical strokes both. // // The inner coverage values will be equal if the horizontal and vertical stroke widths are // equal (in which case innerCoverage is same for all sides of the rects) or if the horizontal // and vertical stroke widths are both greater than 1 (in which case innerCoverage will always // be 1). In actuality we allow them to be nearly-equal since differing by < 1/1000 will not be // visually detectable when the shape is already less than 1px in thickness. return SkScalarNearlyEqual(devHalfStrokeSize.fX, devHalfStrokeSize.fY) || std::min(devHalfStrokeSize.fX, devHalfStrokeSize.fY) >= .5f; } bool compute_aa_rects(const GrCaps& caps, SkRect* devOutside, SkRect* devOutsideAssist, SkRect* devInside, bool* isDegenerate, const SkMatrix& viewMatrix, const SkRect& rect, SkScalar strokeWidth, bool miterStroke, SkVector* devHalfStrokeSize) { SkVector devStrokeSize; if (strokeWidth > 0) { devStrokeSize.set(strokeWidth, strokeWidth); viewMatrix.mapVectors(&devStrokeSize, 1); devStrokeSize.setAbs(devStrokeSize); } else { devStrokeSize.set(SK_Scalar1, SK_Scalar1); } const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarHalf(dx); const SkScalar ry = SkScalarHalf(dy); devHalfStrokeSize->fX = rx; devHalfStrokeSize->fY = ry; SkRect devRect; viewMatrix.mapRect(&devRect, rect); // Clip our draw rect 1 full stroke width plus bloat outside the viewport. This avoids // interpolation precision issues with very large coordinates. const float m = caps.maxRenderTargetSize(); const SkRect visibilityBounds = SkRect::MakeWH(m, m).makeOutset(dx + 1, dy + 1); if (!devRect.intersect(visibilityBounds)) { return false; } *devOutside = devRect; *devOutsideAssist = devRect; *devInside = devRect; devOutside->outset(rx, ry); devInside->inset(rx, ry); // If we have a degenerate stroking rect(ie the stroke is larger than inner rect) then we // make a degenerate inside rect to avoid double hitting. We will also jam all of the points // together when we render these rects. SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = std::min(w, h); } *isDegenerate = spare <= 0; if (*isDegenerate) { devInside->fLeft = devInside->fRight = devRect.centerX(); devInside->fTop = devInside->fBottom = devRect.centerY(); } // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist) // to draw the outside of the octagon. Because there are 8 vertices on the outer // edge, while vertex number of inner edge is 4, the same as miter-stroke. if (!miterStroke) { devOutside->inset(0, ry); devOutsideAssist->outset(0, ry); } return true; } GrGeometryProcessor* create_aa_stroke_rect_gp(SkArenaAlloc* arena, bool usesMSAASurface, bool tweakAlphaForCoverage, const SkMatrix& viewMatrix, bool usesLocalCoords, bool wideColor) { using namespace GrDefaultGeoProcFactory; // When MSAA is enabled, we have to extend our AA bloats and interpolate coverage values outside // 0..1. We tell the gp in this case that coverage is an unclamped attribute so it will call // saturate(coverage) in the fragment shader. Coverage::Type coverageType = usesMSAASurface ? Coverage::kAttributeUnclamped_Type : (!tweakAlphaForCoverage ? Coverage::kAttribute_Type : Coverage::kSolid_Type); LocalCoords::Type localCoordsType = usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type; Color::Type colorType = wideColor ? Color::kPremulWideColorAttribute_Type: Color::kPremulGrColorAttribute_Type; return MakeForDeviceSpace(arena, colorType, coverageType, localCoordsType, viewMatrix); } class AAStrokeRectOp final : public GrMeshDrawOp { private: using Helper = GrSimpleMeshDrawOpHelper; public: DEFINE_OP_CLASS_ID // TODO support AA rotated stroke rects by copying around view matrices struct RectInfo { SkPMColor4f fColor; SkRect fDevOutside; SkRect fDevOutsideAssist; SkRect fDevInside; SkVector fDevHalfStrokeSize; bool fDegenerate; }; static GrOp::Owner Make(GrRecordingContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, const SkRect& devOutside, const SkRect& devInside, const SkVector& devHalfStrokeSize) { if (!viewMatrix.rectStaysRect()) { // The AA op only supports axis-aligned rectangles return nullptr; } if (!stroke_dev_half_size_supported(devHalfStrokeSize)) { return nullptr; } return Helper::FactoryHelper(context, std::move(paint), viewMatrix, devOutside, devInside, devHalfStrokeSize); } AAStrokeRectOp(GrProcessorSet* processorSet, const SkPMColor4f& color, const SkMatrix& viewMatrix, const SkRect& devOutside, const SkRect& devInside, const SkVector& devHalfStrokeSize) : INHERITED(ClassID()) , fHelper(processorSet, GrAAType::kCoverage) , fViewMatrix(viewMatrix) { SkASSERT(!devOutside.isEmpty()); SkASSERT(!devInside.isEmpty()); fRects.emplace_back(RectInfo{color, devOutside, devOutside, devInside, devHalfStrokeSize, false}); this->setBounds(devOutside, HasAABloat::kYes, IsHairline::kNo); fMiterStroke = true; } static GrOp::Owner Make(GrRecordingContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, const SkRect& rect, const SkStrokeRec& stroke) { if (!viewMatrix.rectStaysRect()) { // The AA op only supports axis-aligned rectangles return nullptr; } bool isMiter; if (!allowed_stroke(context->priv().caps(), stroke, GrAA::kYes, &isMiter)) { return nullptr; } RectInfo info; if (!compute_aa_rects(*context->priv().caps(), &info.fDevOutside, &info.fDevOutsideAssist, &info.fDevInside, &info.fDegenerate, viewMatrix, rect, stroke.getWidth(), isMiter, &info.fDevHalfStrokeSize)) { return nullptr; } if (!stroke_dev_half_size_supported(info.fDevHalfStrokeSize)) { return nullptr; } return Helper::FactoryHelper(context, std::move(paint), viewMatrix, info, isMiter); } AAStrokeRectOp(GrProcessorSet* processorSet, const SkPMColor4f& color, const SkMatrix& viewMatrix, const RectInfo& infoExceptColor, bool isMiter) : INHERITED(ClassID()) , fHelper(processorSet, GrAAType::kCoverage) , fViewMatrix(viewMatrix) { fMiterStroke = isMiter; RectInfo& info = fRects.push_back(infoExceptColor); info.fColor = color; if (isMiter) { this->setBounds(info.fDevOutside, HasAABloat::kYes, IsHairline::kNo); } else { // The outer polygon of the bevel stroke is an octagon specified by the points of a // pair of overlapping rectangles where one is wide and the other is narrow. SkRect bounds = info.fDevOutside; bounds.joinPossiblyEmptyRect(info.fDevOutsideAssist); this->setBounds(bounds, HasAABloat::kYes, IsHairline::kNo); } } const char* name() const override { return "AAStrokeRect"; } void visitProxies(const GrVisitProxyFunc& func) const override { if (fProgramInfo) { fProgramInfo->visitFPProxies(func); } else { fHelper.visitProxies(func); } } FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, GrClampType clampType) override { return fHelper.finalizeProcessors(caps, clip, clampType, GrProcessorAnalysisCoverage::kSingleChannel, &fRects.back().fColor, &fWideColor); } private: GrProgramInfo* programInfo() override { return fProgramInfo; } bool compatibleWithCoverageAsAlpha(bool usesMSAASurface) const { // When MSAA is enabled, we have to extend our AA bloats and interpolate coverage values // outside 0..1. This makes us incompatible with coverage as alpha. return !usesMSAASurface && fHelper.compatibleWithCoverageAsAlpha(); } void onCreateProgramInfo(const GrCaps*, SkArenaAlloc*, const GrSurfaceProxyView& writeView, bool usesMSAASurface, GrAppliedClip&&, const GrDstProxyView&, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp) override; void onPrepareDraws(GrMeshDrawTarget*) override; void onExecute(GrOpFlushState*, const SkRect& chainBounds) override; #if defined(GPU_TEST_UTILS) SkString onDumpInfo() const override { SkString string; for (const auto& info : fRects) { string.appendf( "Color: 0x%08x, ORect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], " "AssistORect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], " "IRect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], Degen: %d", info.fColor.toBytes_RGBA(), info.fDevOutside.fLeft, info.fDevOutside.fTop, info.fDevOutside.fRight, info.fDevOutside.fBottom, info.fDevOutsideAssist.fLeft, info.fDevOutsideAssist.fTop, info.fDevOutsideAssist.fRight, info.fDevOutsideAssist.fBottom, info.fDevInside.fLeft, info.fDevInside.fTop, info.fDevInside.fRight, info.fDevInside.fBottom, info.fDegenerate); } string += fHelper.dumpInfo(); return string; } #endif static const int kMiterIndexCnt = 3 * 24; static const int kMiterVertexCnt = 16; static const int kNumMiterRectsInIndexBuffer = 256; static const int kBevelIndexCnt = 48 + 36 + 24; static const int kBevelVertexCnt = 24; static const int kNumBevelRectsInIndexBuffer = 256; static sk_sp GetIndexBuffer(GrResourceProvider*, bool miterStroke); const SkMatrix& viewMatrix() const { return fViewMatrix; } bool miterStroke() const { return fMiterStroke; } CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps&) override; void generateAAStrokeRectGeometry(VertexWriter& vertices, const SkPMColor4f& color, bool wideColor, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke, bool degenerate, const SkVector& devHalfStrokeSize, bool usesMSAASurface) const; Helper fHelper; STArray<1, RectInfo, true> fRects; SkMatrix fViewMatrix; GrSimpleMesh* fMesh = nullptr; GrProgramInfo* fProgramInfo = nullptr; bool fMiterStroke; bool fWideColor; using INHERITED = GrMeshDrawOp; }; void AAStrokeRectOp::onCreateProgramInfo(const GrCaps* caps, SkArenaAlloc* arena, const GrSurfaceProxyView& writeView, bool usesMSAASurface, GrAppliedClip&& appliedClip, const GrDstProxyView& dstProxyView, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp) { GrGeometryProcessor* gp = create_aa_stroke_rect_gp( arena, usesMSAASurface, this->compatibleWithCoverageAsAlpha(usesMSAASurface), this->viewMatrix(), fHelper.usesLocalCoords(), fWideColor); if (!gp) { SkDebugf("Couldn't create GrGeometryProcessor\n"); return; } fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, usesMSAASurface, std::move(appliedClip), dstProxyView, gp, GrPrimitiveType::kTriangles, renderPassXferBarriers, colorLoadOp); } void AAStrokeRectOp::onPrepareDraws(GrMeshDrawTarget* target) { if (!fProgramInfo) { this->createProgramInfo(target); if (!fProgramInfo) { return; } } int innerVertexNum = 4; int outerVertexNum = this->miterStroke() ? 4 : 8; int verticesPerInstance = (outerVertexNum + innerVertexNum) * 2; int indicesPerInstance = this->miterStroke() ? kMiterIndexCnt : kBevelIndexCnt; int instanceCount = fRects.size(); int maxQuads = this->miterStroke() ? kNumMiterRectsInIndexBuffer : kNumBevelRectsInIndexBuffer; sk_sp indexBuffer = GetIndexBuffer(target->resourceProvider(), this->miterStroke()); if (!indexBuffer) { SkDebugf("Could not allocate indices\n"); return; } PatternHelper helper(target, GrPrimitiveType::kTriangles, fProgramInfo->geomProc().vertexStride(), std::move(indexBuffer), verticesPerInstance, indicesPerInstance, instanceCount, maxQuads); VertexWriter vertices{ helper.vertices() }; if (!vertices) { SkDebugf("Could not allocate vertices\n"); return; } for (int i = 0; i < instanceCount; i++) { const RectInfo& info = fRects[i]; this->generateAAStrokeRectGeometry(vertices, info.fColor, fWideColor, info.fDevOutside, info.fDevOutsideAssist, info.fDevInside, fMiterStroke, info.fDegenerate, info.fDevHalfStrokeSize, target->usesMSAASurface()); } fMesh = helper.mesh(); } void AAStrokeRectOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) { if (!fProgramInfo || !fMesh) { return; } flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); flushState->drawMesh(*fMesh); } sk_sp AAStrokeRectOp::GetIndexBuffer(GrResourceProvider* resourceProvider, bool miterStroke) { if (miterStroke) { // clang-format off static const uint16_t gMiterIndices[] = { 0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0, 1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0, 2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0, 3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0, 0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4, 1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4, 2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4, 3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4, 0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8, 1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8, 2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8, 3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8, }; // clang-format on static_assert(std::size(gMiterIndices) == kMiterIndexCnt); SKGPU_DEFINE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey); return resourceProvider->findOrCreatePatternedIndexBuffer( gMiterIndices, kMiterIndexCnt, kNumMiterRectsInIndexBuffer, kMiterVertexCnt, gMiterIndexBufferKey); } else { /** * As in miter-stroke, index = a + b, and a is the current index, b is the shift * from the first index. The index layout: * outer AA line: 0~3, 4~7 * outer edge: 8~11, 12~15 * inner edge: 16~19 * inner AA line: 20~23 * Following comes a bevel-stroke rect and its indices: * * 4 7 * ********************************* * * ______________________________ * * * / 12 15 \ * * * / \ * * 0 * |8 16_____________________19 11 | * 3 * * | | | | * * * | | **************** | | * * * | | * 20 23 * | | * * * | | * * | | * * * | | * 21 22 * | | * * * | | **************** | | * * * | |____________________| | * * 1 * |9 17 18 10| * 2 * * \ / * * * \13 __________________________14/ * * * * * ********************************** * 5 6 */ // clang-format off static const uint16_t gBevelIndices[] = { // Draw outer AA, from outer AA line to outer edge, shift is 0. 0 + 0, 1 + 0, 9 + 0, 9 + 0, 8 + 0, 0 + 0, 1 + 0, 5 + 0, 13 + 0, 13 + 0, 9 + 0, 1 + 0, 5 + 0, 6 + 0, 14 + 0, 14 + 0, 13 + 0, 5 + 0, 6 + 0, 2 + 0, 10 + 0, 10 + 0, 14 + 0, 6 + 0, 2 + 0, 3 + 0, 11 + 0, 11 + 0, 10 + 0, 2 + 0, 3 + 0, 7 + 0, 15 + 0, 15 + 0, 11 + 0, 3 + 0, 7 + 0, 4 + 0, 12 + 0, 12 + 0, 15 + 0, 7 + 0, 4 + 0, 0 + 0, 8 + 0, 8 + 0, 12 + 0, 4 + 0, // Draw the stroke, from outer edge to inner edge, shift is 8. 0 + 8, 1 + 8, 9 + 8, 9 + 8, 8 + 8, 0 + 8, 1 + 8, 5 + 8, 9 + 8, 5 + 8, 6 + 8, 10 + 8, 10 + 8, 9 + 8, 5 + 8, 6 + 8, 2 + 8, 10 + 8, 2 + 8, 3 + 8, 11 + 8, 11 + 8, 10 + 8, 2 + 8, 3 + 8, 7 + 8, 11 + 8, 7 + 8, 4 + 8, 8 + 8, 8 + 8, 11 + 8, 7 + 8, 4 + 8, 0 + 8, 8 + 8, // Draw the inner AA, from inner edge to inner AA line, shift is 16. 0 + 16, 1 + 16, 5 + 16, 5 + 16, 4 + 16, 0 + 16, 1 + 16, 2 + 16, 6 + 16, 6 + 16, 5 + 16, 1 + 16, 2 + 16, 3 + 16, 7 + 16, 7 + 16, 6 + 16, 2 + 16, 3 + 16, 0 + 16, 4 + 16, 4 + 16, 7 + 16, 3 + 16, }; // clang-format on static_assert(std::size(gBevelIndices) == kBevelIndexCnt); SKGPU_DEFINE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey); return resourceProvider->findOrCreatePatternedIndexBuffer( gBevelIndices, kBevelIndexCnt, kNumBevelRectsInIndexBuffer, kBevelVertexCnt, gBevelIndexBufferKey); } } GrOp::CombineResult AAStrokeRectOp::onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) { AAStrokeRectOp* that = t->cast(); if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { return CombineResult::kCannotCombine; } // TODO combine across miterstroke changes if (this->miterStroke() != that->miterStroke()) { return CombineResult::kCannotCombine; } // We apply the viewmatrix to the rect points on the cpu. However, if the pipeline uses // local coords then we won't be able to combine. TODO: Upload local coords as an attribute. if (fHelper.usesLocalCoords() && !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) { return CombineResult::kCannotCombine; } fRects.push_back_n(that->fRects.size(), that->fRects.begin()); fWideColor |= that->fWideColor; return CombineResult::kMerged; } void AAStrokeRectOp::generateAAStrokeRectGeometry(VertexWriter& vertices, const SkPMColor4f& color, bool wideColor, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke, bool degenerate, const SkVector& devHalfStrokeSize, bool usesMSAASurface) const { // We create vertices for four nested rectangles. There are two ramps from 0 to full // coverage, one on the exterior of the stroke and the other on the interior. // The following code only works if either devStrokeSize's fX and fY are // equal (in which case innerCoverage is same for all sides of the rects) or // if devStrokeSize's fX and fY are both greater than 1.0 (in which case // innerCoverage will always be 1). SkASSERT(stroke_dev_half_size_supported(devHalfStrokeSize)); auto inset_fan = [](const SkRect& r, SkScalar dx, SkScalar dy) { return VertexWriter::TriFanFromRect(r.makeInset(dx, dy)); }; bool tweakAlphaForCoverage = this->compatibleWithCoverageAsAlpha(usesMSAASurface); auto maybe_coverage = [tweakAlphaForCoverage](float coverage) { return VertexWriter::If(!tweakAlphaForCoverage, coverage); }; // How much do we inset toward the inside of the strokes? float inset = std::min(0.5f, std::min(devHalfStrokeSize.fX, devHalfStrokeSize.fY)); float innerCoverage = 1; if (inset < 0.5f) { // Stroke is subpixel, so reduce the coverage to simulate the narrower strokes. innerCoverage = 2 * inset / (inset + .5f); } // How much do we outset away from the outside of the strokes? // We always want to keep the AA picture frame one pixel wide. float outset = 1 - inset; float outerCoverage = 0; // How much do we outset away from the interior side of the stroke (toward the center)? float interiorOutset = outset; float interiorCoverage = outerCoverage; if (usesMSAASurface) { // Since we're using MSAA, extend our outsets to ensure any pixel with partial coverage has // a full sample mask. constexpr float msaaExtraBloat = SK_ScalarSqrt2 - .5f; outset += msaaExtraBloat; outerCoverage -= msaaExtraBloat; float insetExtraBloat = std::min(inset + msaaExtraBloat, std::min(devHalfStrokeSize.fX, devHalfStrokeSize.fY)) - inset; inset += insetExtraBloat; innerCoverage += insetExtraBloat; float interiorExtraBloat = std::min(interiorOutset + msaaExtraBloat, std::min(devInside.width(), devInside.height()) / 2) - interiorOutset; interiorOutset += interiorExtraBloat; interiorCoverage -= interiorExtraBloat; } VertexColor innerColor(tweakAlphaForCoverage ? color * innerCoverage : color, wideColor); VertexColor outerColor(tweakAlphaForCoverage ? SK_PMColor4fTRANSPARENT : color, wideColor); // Exterior outset rect (away from stroke). vertices.writeQuad(inset_fan(devOutside, -outset, -outset), outerColor, maybe_coverage(outerCoverage)); if (!miterStroke) { // Second exterior outset. vertices.writeQuad(inset_fan(devOutsideAssist, -outset, -outset), outerColor, maybe_coverage(outerCoverage)); } // Exterior inset rect (toward stroke). vertices.writeQuad(inset_fan(devOutside, inset, inset), innerColor, maybe_coverage(innerCoverage)); if (!miterStroke) { // Second exterior inset. vertices.writeQuad(inset_fan(devOutsideAssist, inset, inset), innerColor, maybe_coverage(innerCoverage)); } if (!degenerate) { // Interior inset rect (toward stroke). vertices.writeQuad(inset_fan(devInside, -inset, -inset), innerColor, maybe_coverage(innerCoverage)); // Interior outset rect (away from stroke, toward center of rect). SkRect interiorAABoundary = devInside.makeInset(interiorOutset, interiorOutset); float coverageBackset = 0; // Adds back coverage when the interior AA edges cross. if (interiorAABoundary.fLeft > interiorAABoundary.fRight) { coverageBackset = (interiorAABoundary.fLeft - interiorAABoundary.fRight) / (interiorOutset * 2); interiorAABoundary.fLeft = interiorAABoundary.fRight = interiorAABoundary.centerX(); } if (interiorAABoundary.fTop > interiorAABoundary.fBottom) { coverageBackset = std::max( (interiorAABoundary.fTop - interiorAABoundary.fBottom) / (interiorOutset * 2), coverageBackset); interiorAABoundary.fTop = interiorAABoundary.fBottom = interiorAABoundary.centerY(); } if (coverageBackset > 0) { // The interior edges crossed. Lerp back toward innerCoverage, which is what this op // will draw in the degenerate case. This gives a smooth transition into the degenerate // case. interiorCoverage += interiorCoverage * (1 - coverageBackset) + innerCoverage * coverageBackset; } VertexColor interiorColor(tweakAlphaForCoverage ? color * interiorCoverage : color, wideColor); vertices.writeQuad(VertexWriter::TriFanFromRect(interiorAABoundary), interiorColor, maybe_coverage(interiorCoverage)); } else { // When the interior rect has become degenerate we smoosh to a single point SkASSERT(devInside.fLeft == devInside.fRight && devInside.fTop == devInside.fBottom); vertices.writeQuad(VertexWriter::TriFanFromRect(devInside), innerColor, maybe_coverage(innerCoverage)); // ... unless we are degenerate, in which case we must apply the scaled coverage vertices.writeQuad(VertexWriter::TriFanFromRect(devInside), innerColor, maybe_coverage(innerCoverage)); } } } // anonymous namespace GrOp::Owner Make(GrRecordingContext* context, GrPaint&& paint, GrAAType aaType, const SkMatrix& viewMatrix, const SkRect& rect, const SkStrokeRec& stroke) { SkASSERT(!context->priv().caps()->reducedShaderMode()); if (aaType == GrAAType::kCoverage) { return AAStrokeRectOp::Make(context, std::move(paint), viewMatrix, rect, stroke); } else { return NonAAStrokeRectOp::Make(context, std::move(paint), viewMatrix, rect, stroke, aaType); } } GrOp::Owner MakeNested(GrRecordingContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, const SkRect rects[2]) { SkASSERT(viewMatrix.rectStaysRect()); SkASSERT(!rects[0].isEmpty() && !rects[1].isEmpty()); SkRect devOutside = viewMatrix.mapRect(rects[0]); SkRect devInside = viewMatrix.mapRect(rects[1]); float dx = devOutside.fRight - devInside.fRight; float dy = devOutside.fBottom - devInside.fBottom; // Clips our draw rects 1 full pixel outside the viewport. This avoids interpolation precision // issues with very large coordinates. const float m = context->priv().caps()->maxRenderTargetSize(); const SkRect visibilityBounds = SkRect::MakeWH(m, m).makeOutset(1, 1); if (!devOutside.intersect(visibilityBounds.makeOutset(dx, dy))) { return nullptr; } if (devInside.isEmpty() || !devInside.intersect(visibilityBounds)) { if (devOutside.isEmpty()) { return nullptr; } DrawQuad quad{GrQuad::MakeFromRect(rects[0], viewMatrix), GrQuad(rects[0]), GrQuadAAFlags::kAll}; return ganesh::FillRectOp::Make(context, std::move(paint), GrAAType::kCoverage, &quad); } return AAStrokeRectOp::Make(context, std::move(paint), viewMatrix, devOutside, devInside, SkVector{dx, dy} * .5f); } } // namespace skgpu::ganesh::StrokeRectOp #if defined(GPU_TEST_UTILS) GR_DRAW_OP_TEST_DEFINE(NonAAStrokeRectOp) { SkMatrix viewMatrix = GrTest::TestMatrix(random); SkRect rect = GrTest::TestRect(random); SkScalar strokeWidth = random->nextBool() ? 0.0f : 2.0f; SkPaint strokePaint; strokePaint.setStrokeWidth(strokeWidth); strokePaint.setStyle(SkPaint::kStroke_Style); strokePaint.setStrokeJoin(SkPaint::kMiter_Join); SkStrokeRec strokeRec(strokePaint); GrAAType aaType = GrAAType::kNone; if (numSamples > 1) { aaType = random->nextBool() ? GrAAType::kMSAA : GrAAType::kNone; } return skgpu::ganesh::StrokeRectOp::NonAAStrokeRectOp::Make(context, std::move(paint), viewMatrix, rect, strokeRec, aaType); } GR_DRAW_OP_TEST_DEFINE(AAStrokeRectOp) { bool miterStroke = random->nextBool(); // Create either a empty rect or a non-empty rect. SkRect rect = random->nextBool() ? SkRect::MakeXYWH(10, 10, 50, 40) : SkRect::MakeXYWH(6, 7, 0, 0); SkScalar minDim = std::min(rect.width(), rect.height()); SkScalar strokeWidth = random->nextUScalar1() * minDim; SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); rec.setStrokeStyle(strokeWidth); rec.setStrokeParams(SkPaint::kButt_Cap, miterStroke ? SkPaint::kMiter_Join : SkPaint::kBevel_Join, 1.f); SkMatrix matrix = GrTest::TestMatrixRectStaysRect(random); return skgpu::ganesh::StrokeRectOp::AAStrokeRectOp::Make(context, std::move(paint), matrix, rect, rec); } #endif