/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/geometry/GrTriangulator.h" #include "include/core/SkPathTypes.h" #include "include/core/SkRect.h" #include "include/private/base/SkDebug.h" #include "include/private/base/SkFloatingPoint.h" #include "include/private/base/SkMath.h" #include "include/private/base/SkTPin.h" #include "src/base/SkVx.h" #include "src/core/SkGeometry.h" #include "src/core/SkPointPriv.h" #include "src/gpu/BufferWriter.h" #include "src/gpu/ganesh/GrColor.h" #include "src/gpu/ganesh/GrEagerVertexAllocator.h" #include "src/gpu/ganesh/geometry/GrPathUtils.h" #include #include #include #include #include #include #if !defined(SK_ENABLE_OPTIMIZE_SIZE) #if TRIANGULATOR_LOGGING #define TESS_LOG printf #define DUMP_MESH(M) (M).dump() #else #define TESS_LOG(...) #define DUMP_MESH(M) #endif using EdgeType = GrTriangulator::EdgeType; using Vertex = GrTriangulator::Vertex; using VertexList = GrTriangulator::VertexList; using Line = GrTriangulator::Line; using Edge = GrTriangulator::Edge; using EdgeList = GrTriangulator::EdgeList; using Poly = GrTriangulator::Poly; using MonotonePoly = GrTriangulator::MonotonePoly; using Comparator = GrTriangulator::Comparator; template static void list_insert(T* t, T* prev, T* next, T** head, T** tail) { t->*Prev = prev; t->*Next = next; if (prev) { prev->*Next = t; } else if (head) { *head = t; } if (next) { next->*Prev = t; } else if (tail) { *tail = t; } } template static void list_remove(T* t, T** head, T** tail) { if (t->*Prev) { t->*Prev->*Next = t->*Next; } else if (head) { *head = t->*Next; } if (t->*Next) { t->*Next->*Prev = t->*Prev; } else if (tail) { *tail = t->*Prev; } t->*Prev = t->*Next = nullptr; } typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b); static bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) { return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY); } static bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) { return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX); } bool GrTriangulator::Comparator::sweep_lt(const SkPoint& a, const SkPoint& b) const { return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b); } static inline skgpu::VertexWriter emit_vertex(Vertex* v, bool emitCoverage, skgpu::VertexWriter data) { data << v->fPoint; if (emitCoverage) { data << GrNormalizeByteToFloat(v->fAlpha); } return data; } static skgpu::VertexWriter emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, bool emitCoverage, skgpu::VertexWriter data) { TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha); TESS_LOG(" %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha); TESS_LOG(" %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha); #if TRIANGULATOR_WIREFRAME data = emit_vertex(v0, emitCoverage, std::move(data)); data = emit_vertex(v1, emitCoverage, std::move(data)); data = emit_vertex(v1, emitCoverage, std::move(data)); data = emit_vertex(v2, emitCoverage, std::move(data)); data = emit_vertex(v2, emitCoverage, std::move(data)); data = emit_vertex(v0, emitCoverage, std::move(data)); #else data = emit_vertex(v0, emitCoverage, std::move(data)); data = emit_vertex(v1, emitCoverage, std::move(data)); data = emit_vertex(v2, emitCoverage, std::move(data)); #endif return data; } void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) { list_insert(v, prev, next, &fHead, &fTail); } void GrTriangulator::VertexList::remove(Vertex* v) { list_remove(v, &fHead, &fTail); } // Round to nearest quarter-pixel. This is used for screenspace tessellation. static inline void round(SkPoint* p) { p->fX = SkScalarRoundToScalar(p->fX * 4.0f) * 0.25f; p->fY = SkScalarRoundToScalar(p->fY * 4.0f) * 0.25f; } static inline SkScalar double_to_clamped_scalar(double d) { // Clamps large values to what's finitely representable when cast back to a float. static const double kMaxLimit = (double) SK_ScalarMax; // It's not perfect, but a using a value larger than float_min helps protect from denormalized // values and ill-conditions in intermediate calculations on coordinates. static const double kNearZeroLimit = 16 * (double) std::numeric_limits::min(); if (std::abs(d) < kNearZeroLimit) { d = 0.f; } return SkDoubleToScalar(std::max(-kMaxLimit, std::min(d, kMaxLimit))); } bool GrTriangulator::Line::intersect(const Line& other, SkPoint* point) const { double denom = fA * other.fB - fB * other.fA; if (denom == 0.0) { return false; } double scale = 1.0 / denom; point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale); point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale); round(point); return point->isFinite(); } // If the edge's vertices differ by many orders of magnitude, the computed line equation can have // significant error in its distance and intersection tests. To avoid this, we recursively subdivide // long edges and effectively perform a binary search to perform a more accurate intersection test. static bool edge_line_needs_recursion(const SkPoint& p0, const SkPoint& p1) { // ilogbf(0) returns an implementation-defined constant, but we are choosing to saturate // negative exponents to 0 for comparisons sake. We're only trying to recurse on lines with // very large coordinates. int expDiffX = std::abs((std::abs(p0.fX) < 1.f ? 0 : std::ilogbf(p0.fX)) - (std::abs(p1.fX) < 1.f ? 0 : std::ilogbf(p1.fX))); int expDiffY = std::abs((std::abs(p0.fY) < 1.f ? 0 : std::ilogbf(p0.fY)) - (std::abs(p1.fY) < 1.f ? 0 : std::ilogbf(p1.fY))); // Differ by more than 2^20, or roughly a factor of one million. return expDiffX > 20 || expDiffY > 20; } static bool recursive_edge_intersect(const Line& u, SkPoint u0, SkPoint u1, const Line& v, SkPoint v0, SkPoint v1, SkPoint* p, double* s, double* t) { // First check if the bounding boxes of [u0,u1] intersects [v0,v1]. If they do not, then the // two line segments cannot intersect in their domain (even if the lines themselves might). // - don't use SkRect::intersect since the vertices aren't sorted and horiz/vertical lines // appear as empty rects, which then never "intersect" according to SkRect. if (std::min(u0.fX, u1.fX) > std::max(v0.fX, v1.fX) || std::max(u0.fX, u1.fX) < std::min(v0.fX, v1.fX) || std::min(u0.fY, u1.fY) > std::max(v0.fY, v1.fY) || std::max(u0.fY, u1.fY) < std::min(v0.fY, v1.fY)) { return false; } // Compute intersection based on current segment vertices; if an intersection is found but the // vertices differ too much in magnitude, we recurse using the midpoint of the segment to // reject false positives. We don't currently try to avoid false negatives (e.g. large magnitude // line reports no intersection but there is one). double denom = u.fA * v.fB - u.fB * v.fA; if (denom == 0.0) { return false; } double dx = static_cast(v0.fX) - u0.fX; double dy = static_cast(v0.fY) - u0.fY; double sNumer = dy * v.fB + dx * v.fA; double tNumer = dy * u.fB + dx * u.fA; // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early. // This saves us doing the divide below unless absolutely necessary. if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom) : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) { return false; } *s = sNumer / denom; *t = tNumer / denom; SkASSERT(*s >= 0.0 && *s <= 1.0 && *t >= 0.0 && *t <= 1.0); const bool uNeedsSplit = edge_line_needs_recursion(u0, u1); const bool vNeedsSplit = edge_line_needs_recursion(v0, v1); if (!uNeedsSplit && !vNeedsSplit) { p->fX = double_to_clamped_scalar(u0.fX - (*s) * u.fB); p->fY = double_to_clamped_scalar(u0.fY + (*s) * u.fA); return true; } else { double sScale = 1.0, sShift = 0.0; double tScale = 1.0, tShift = 0.0; if (uNeedsSplit) { SkPoint uM = {(float) (0.5 * u0.fX + 0.5 * u1.fX), (float) (0.5 * u0.fY + 0.5 * u1.fY)}; sScale = 0.5; if (*s >= 0.5) { u0 = uM; sShift = 0.5; } else { u1 = uM; } } if (vNeedsSplit) { SkPoint vM = {(float) (0.5 * v0.fX + 0.5 * v1.fX), (float) (0.5 * v0.fY + 0.5 * v1.fY)}; tScale = 0.5; if (*t >= 0.5) { v0 = vM; tShift = 0.5; } else { v1 = vM; } } // Just recompute both lines, even if only one was split; we're already in a slow path. if (recursive_edge_intersect(Line(u0, u1), u0, u1, Line(v0, v1), v0, v1, p, s, t)) { // Adjust s and t back to full range *s = sScale * (*s) + sShift; *t = tScale * (*t) + tShift; return true; } else { // False positive return false; } } } bool GrTriangulator::Edge::intersect(const Edge& other, SkPoint* p, uint8_t* alpha) const { TESS_LOG("intersecting %g -> %g with %g -> %g\n", fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID); if (fTop == other.fTop || fBottom == other.fBottom || fTop == other.fBottom || fBottom == other.fTop) { // If the two edges share a vertex by construction, they have already been split and // shouldn't be considered "intersecting" anymore. return false; } double s, t; // needed to interpolate vertex alpha const bool intersects = recursive_edge_intersect( fLine, fTop->fPoint, fBottom->fPoint, other.fLine, other.fTop->fPoint, other.fBottom->fPoint, p, &s, &t); if (!intersects) { return false; } if (alpha) { if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) { // If the intersection is on any interior edge, it needs to stay fully opaque or later // triangulation could leech transparency into the inner fill region. *alpha = 255; } else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) { // Trivially, the intersection will be fully transparent since since it is by // construction on the outer edge. *alpha = 0; } else { // Could be two connectors crossing, or a connector crossing an outer edge. // Take the max interpolated alpha SkASSERT(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector); *alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha, (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha); } } return true; } void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) { list_insert(edge, prev, next, &fHead, &fTail); } bool GrTriangulator::EdgeList::remove(Edge* edge) { TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); // SkASSERT(this->contains(edge)); // Leave this here for future debugging. if (!this->contains(edge)) { return false; } list_remove(edge, &fHead, &fTail); return true; } void GrTriangulator::MonotonePoly::addEdge(Edge* edge) { if (fSide == Side::kRight) { SkASSERT(!edge->fUsedInRightPoly); list_insert( edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge); edge->fUsedInRightPoly = true; } else { SkASSERT(!edge->fUsedInLeftPoly); list_insert( edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge); edge->fUsedInLeftPoly = true; } } skgpu::VertexWriter GrTriangulator::emitMonotonePoly(const MonotonePoly* monotonePoly, skgpu::VertexWriter data) const { SkASSERT(monotonePoly->fWinding != 0); Edge* e = monotonePoly->fFirstEdge; VertexList vertices; vertices.append(e->fTop); int count = 1; while (e != nullptr) { if (Side::kRight == monotonePoly->fSide) { vertices.append(e->fBottom); e = e->fRightPolyNext; } else { vertices.prepend(e->fBottom); e = e->fLeftPolyNext; } count++; } Vertex* first = vertices.fHead; Vertex* v = first->fNext; while (v != vertices.fTail) { SkASSERT(v && v->fPrev && v->fNext); Vertex* prev = v->fPrev; Vertex* curr = v; Vertex* next = v->fNext; if (count == 3) { return this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data)); } double ax = static_cast(curr->fPoint.fX) - prev->fPoint.fX; double ay = static_cast(curr->fPoint.fY) - prev->fPoint.fY; double bx = static_cast(next->fPoint.fX) - curr->fPoint.fX; double by = static_cast(next->fPoint.fY) - curr->fPoint.fY; if (ax * by - ay * bx >= 0.0) { data = this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data)); v->fPrev->fNext = v->fNext; v->fNext->fPrev = v->fPrev; count--; if (v->fPrev == first) { v = v->fNext; } else { v = v->fPrev; } } else { v = v->fNext; } } return data; } skgpu::VertexWriter GrTriangulator::emitTriangle( Vertex* prev, Vertex* curr, Vertex* next, int winding, skgpu::VertexWriter data) const { if (winding > 0) { // Ensure our triangles always wind in the same direction as if the path had been // triangulated as a simple fan (a la red book). std::swap(prev, next); } if (fCollectBreadcrumbTriangles && abs(winding) > 1 && fPath.getFillType() == SkPathFillType::kWinding) { // The first winding count will come from the actual triangle we emit. The remaining counts // come from the breadcrumb triangle. fBreadcrumbList.append(fAlloc, prev->fPoint, curr->fPoint, next->fPoint, abs(winding) - 1); } return emit_triangle(prev, curr, next, fEmitCoverage, std::move(data)); } GrTriangulator::Poly::Poly(Vertex* v, int winding) : fFirstVertex(v) , fWinding(winding) , fHead(nullptr) , fTail(nullptr) , fNext(nullptr) , fPartner(nullptr) , fCount(0) { #if TRIANGULATOR_LOGGING static int gID = 0; fID = gID++; TESS_LOG("*** created Poly %d\n", fID); #endif } Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, GrTriangulator* tri) { TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n", e->fTop->fID, e->fBottom->fID, fID, side == Side::kLeft ? "left" : "right"); Poly* partner = fPartner; Poly* poly = this; if (side == Side::kRight) { if (e->fUsedInRightPoly) { return this; } } else { if (e->fUsedInLeftPoly) { return this; } } if (partner) { fPartner = partner->fPartner = nullptr; } if (!fTail) { fHead = fTail = tri->allocateMonotonePoly(e, side, fWinding); fCount += 2; } else if (e->fBottom == fTail->fLastEdge->fBottom) { return poly; } else if (side == fTail->fSide) { fTail->addEdge(e); fCount++; } else { e = tri->allocateEdge(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner); fTail->addEdge(e); fCount++; if (partner) { partner->addEdge(e, side, tri); poly = partner; } else { MonotonePoly* m = tri->allocateMonotonePoly(e, side, fWinding); m->fPrev = fTail; fTail->fNext = m; fTail = m; } } return poly; } skgpu::VertexWriter GrTriangulator::emitPoly(const Poly* poly, skgpu::VertexWriter data) const { if (poly->fCount < 3) { return data; } TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount); for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) { data = this->emitMonotonePoly(m, std::move(data)); } return data; } static bool coincident(const SkPoint& a, const SkPoint& b) { return a == b; } Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const { Poly* poly = fAlloc->make(v, winding); poly->fNext = *head; *head = poly; return poly; } void GrTriangulator::appendPointToContour(const SkPoint& p, VertexList* contour) const { Vertex* v = fAlloc->make(p, 255); #if TRIANGULATOR_LOGGING static float gID = 0.0f; v->fID = gID++; #endif contour->append(v); } static SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) { SkQuadCoeff quad(pts); SkPoint p0 = to_point(quad.eval(t - 0.5f * u)); SkPoint mid = to_point(quad.eval(t)); SkPoint p1 = to_point(quad.eval(t + 0.5f * u)); if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) { return 0; } return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1); } void GrTriangulator::appendQuadraticToContour(const SkPoint pts[3], SkScalar toleranceSqd, VertexList* contour) const { SkQuadCoeff quad(pts); skvx::float2 aa = quad.fA * quad.fA; SkScalar denom = 2.0f * (aa[0] + aa[1]); skvx::float2 ab = quad.fA * quad.fB; SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f; int nPoints = 1; SkScalar u = 1.0f; // Test possible subdivision values only at the point of maximum curvature. // If it passes the flatness metric there, it'll pass everywhere. while (nPoints < GrPathUtils::kMaxPointsPerCurve) { u = 1.0f / nPoints; if (quad_error_at(pts, t, u) < toleranceSqd) { break; } nPoints++; } for (int j = 1; j <= nPoints; j++) { this->appendPointToContour(to_point(quad.eval(j * u)), contour); } } void GrTriangulator::generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, const SkPoint& p3, SkScalar tolSqd, VertexList* contour, int pointsLeft) const { SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3); SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3); if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || !SkIsFinite(d1, d2)) { this->appendPointToContour(p3, contour); return; } const SkPoint q[] = { { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } }; const SkPoint r[] = { { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } }; const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; pointsLeft >>= 1; this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft); this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft); } // Stage 1: convert the input path to a set of linear contours (linked list of Vertices). void GrTriangulator::pathToContours(float tolerance, const SkRect& clipBounds, VertexList* contours, bool* isLinear) const { SkScalar toleranceSqd = tolerance * tolerance; SkPoint pts[4]; *isLinear = true; VertexList* contour = contours; SkPath::Iter iter(fPath, false); if (fPath.isInverseFillType()) { SkPoint quad[4]; clipBounds.toQuad(quad); for (int i = 3; i >= 0; i--) { this->appendPointToContour(quad[i], contours); } contour++; } SkAutoConicToQuads converter; SkPath::Verb verb; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kConic_Verb: { *isLinear = false; if (toleranceSqd == 0) { this->appendPointToContour(pts[2], contour); break; } SkScalar weight = iter.conicWeight(); const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd); for (int i = 0; i < converter.countQuads(); ++i) { this->appendQuadraticToContour(quadPts, toleranceSqd, contour); quadPts += 2; } break; } case SkPath::kMove_Verb: if (contour->fHead) { contour++; } this->appendPointToContour(pts[0], contour); break; case SkPath::kLine_Verb: { this->appendPointToContour(pts[1], contour); break; } case SkPath::kQuad_Verb: { *isLinear = false; if (toleranceSqd == 0) { this->appendPointToContour(pts[2], contour); break; } this->appendQuadraticToContour(pts, toleranceSqd, contour); break; } case SkPath::kCubic_Verb: { *isLinear = false; if (toleranceSqd == 0) { this->appendPointToContour(pts[3], contour); break; } int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance); this->generateCubicPoints(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour, pointsLeft); break; } case SkPath::kClose_Verb: case SkPath::kDone_Verb: break; } } } static inline bool apply_fill_type(SkPathFillType fillType, int winding) { switch (fillType) { case SkPathFillType::kWinding: return winding != 0; case SkPathFillType::kEvenOdd: return (winding & 1) != 0; case SkPathFillType::kInverseWinding: return winding == 1; case SkPathFillType::kInverseEvenOdd: return (winding & 1) == 1; default: SkASSERT(false); return false; } } bool GrTriangulator::applyFillType(int winding) const { return apply_fill_type(fPath.getFillType(), winding); } static inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) { return poly && apply_fill_type(fillType, poly->fWinding); } MonotonePoly* GrTriangulator::allocateMonotonePoly(Edge* edge, Side side, int winding) { ++fNumMonotonePolys; return fAlloc->make(edge, side, winding); } Edge* GrTriangulator::allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type) { ++fNumEdges; return fAlloc->make(top, bottom, winding, type); } Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type, const Comparator& c) { SkASSERT(prev->fPoint != next->fPoint); int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; Vertex* top = winding < 0 ? next : prev; Vertex* bottom = winding < 0 ? prev : next; return this->allocateEdge(top, bottom, winding, type); } bool EdgeList::insert(Edge* edge, Edge* prev) { TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); // SkASSERT(!this->contains(edge)); // Leave this here for debugging. if (this->contains(edge)) { return false; } Edge* next = prev ? prev->fRight : fHead; this->insert(edge, prev, next); return true; } void GrTriangulator::FindEnclosingEdges(const Vertex& v, const EdgeList& edges, Edge** left, Edge**right) { if (v.fFirstEdgeAbove && v.fLastEdgeAbove) { *left = v.fFirstEdgeAbove->fLeft; *right = v.fLastEdgeAbove->fRight; return; } Edge* next = nullptr; Edge* prev; for (prev = edges.fTail; prev != nullptr; prev = prev->fLeft) { if (prev->isLeftOf(v)) { break; } next = prev; } *left = prev; *right = next; } void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) { if (fTop->fPoint == fBottom->fPoint || c.sweep_lt(fBottom->fPoint, fTop->fPoint)) { return; } TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID); Edge* prev = nullptr; Edge* next; for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { if (next->isRightOf(*fTop)) { break; } prev = next; } list_insert( this, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); } void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) { if (fTop->fPoint == fBottom->fPoint || c.sweep_lt(fBottom->fPoint, fTop->fPoint)) { return; } TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID); Edge* prev = nullptr; Edge* next; for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { if (next->isRightOf(*fBottom)) { break; } prev = next; } list_insert( this, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); } static void remove_edge_above(Edge* edge) { SkASSERT(edge->fTop && edge->fBottom); TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, edge->fBottom->fID); list_remove( edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); } static void remove_edge_below(Edge* edge) { SkASSERT(edge->fTop && edge->fBottom); TESS_LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID); list_remove( edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); } void GrTriangulator::Edge::disconnect() { remove_edge_above(this); remove_edge_below(this); } static bool rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) { if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) { return true; } Vertex* v = *current; TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID); while (v != dst) { v = v->fPrev; for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { if (!activeEdges->remove(e)) { return false; } } Edge* leftEdge = v->fLeftEnclosingEdge; for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { if (!activeEdges->insert(e, leftEdge)) { return false; } leftEdge = e; Vertex* top = e->fTop; if (c.sweep_lt(top->fPoint, dst->fPoint) && ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(*e->fTop)) || (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(*e->fTop)))) { dst = top; } } } *current = v; return true; } static bool rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current, const Comparator& c) { if (!activeEdges || !current) { return true; } if (!edge) { return false; } Vertex* top = edge->fTop; Vertex* bottom = edge->fBottom; if (edge->fLeft) { Vertex* leftTop = edge->fLeft->fTop; Vertex* leftBottom = edge->fLeft->fBottom; if (leftTop && leftBottom) { if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(*top)) { if (!rewind(activeEdges, current, leftTop, c)) { return false; } } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(*leftTop)) { if (!rewind(activeEdges, current, top, c)) { return false; } } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) && !edge->fLeft->isLeftOf(*bottom)) { if (!rewind(activeEdges, current, leftTop, c)) { return false; } } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(*leftBottom)) { if (!rewind(activeEdges, current, top, c)) { return false; } } } } if (edge->fRight) { Vertex* rightTop = edge->fRight->fTop; Vertex* rightBottom = edge->fRight->fBottom; if (rightTop && rightBottom) { if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(*top)) { if (!rewind(activeEdges, current, rightTop, c)) { return false; } } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(*rightTop)) { if (!rewind(activeEdges, current, top, c)) { return false; } } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) && !edge->fRight->isRightOf(*bottom)) { if (!rewind(activeEdges, current, rightTop, c)) { return false; } } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) && !edge->isLeftOf(*rightBottom)) { if (!rewind(activeEdges, current, top, c)) { return false; } } } } return true; } bool GrTriangulator::setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, const Comparator& c) const { remove_edge_below(edge); if (fCollectBreadcrumbTriangles) { fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint, edge->fWinding); } edge->fTop = v; edge->recompute(); edge->insertBelow(v, c); if (!rewind_if_necessary(edge, activeEdges, current, c)) { return false; } return this->mergeCollinearEdges(edge, activeEdges, current, c); } bool GrTriangulator::setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, const Comparator& c) const { remove_edge_above(edge); if (fCollectBreadcrumbTriangles) { fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint, edge->fWinding); } edge->fBottom = v; edge->recompute(); edge->insertAbove(v, c); if (!rewind_if_necessary(edge, activeEdges, current, c)) { return false; } return this->mergeCollinearEdges(edge, activeEdges, current, c); } bool GrTriangulator::mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current, const Comparator& c) const { if (!edge || !other) { return false; } if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); if (!rewind(activeEdges, current, edge->fTop, c)) { return false; } other->fWinding += edge->fWinding; edge->disconnect(); edge->fTop = edge->fBottom = nullptr; } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) { if (!rewind(activeEdges, current, edge->fTop, c)) { return false; } other->fWinding += edge->fWinding; if (!this->setBottom(edge, other->fTop, activeEdges, current, c)) { return false; } } else { if (!rewind(activeEdges, current, other->fTop, c)) { return false; } edge->fWinding += other->fWinding; if (!this->setBottom(other, edge->fTop, activeEdges, current, c)) { return false; } } return true; } bool GrTriangulator::mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current, const Comparator& c) const { if (!edge || !other) { return false; } if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); if (!rewind(activeEdges, current, edge->fTop, c)) { return false; } other->fWinding += edge->fWinding; edge->disconnect(); edge->fTop = edge->fBottom = nullptr; } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) { if (!rewind(activeEdges, current, other->fTop, c)) { return false; } edge->fWinding += other->fWinding; if (!this->setTop(other, edge->fBottom, activeEdges, current, c)) { return false; } } else { if (!rewind(activeEdges, current, edge->fTop, c)) { return false; } other->fWinding += edge->fWinding; if (!this->setTop(edge, other->fBottom, activeEdges, current, c)) { return false; } } return true; } static bool top_collinear(Edge* left, Edge* right) { if (!left || !right) { return false; } return left->fTop->fPoint == right->fTop->fPoint || !left->isLeftOf(*right->fTop) || !right->isRightOf(*left->fTop); } static bool bottom_collinear(Edge* left, Edge* right) { if (!left || !right) { return false; } return left->fBottom->fPoint == right->fBottom->fPoint || !left->isLeftOf(*right->fBottom) || !right->isRightOf(*left->fBottom); } bool GrTriangulator::mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current, const Comparator& c) const { for (;;) { if (top_collinear(edge->fPrevEdgeAbove, edge)) { if (!this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c)) { return false; } } else if (top_collinear(edge, edge->fNextEdgeAbove)) { if (!this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c)) { return false; } } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) { if (!this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c)) { return false; } } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) { if (!this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c)) { return false; } } else { break; } } SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge)); SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove)); SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge)); SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow)); return true; } GrTriangulator::BoolFail GrTriangulator::splitEdge( Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, const Comparator& c) { if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) { return BoolFail::kFalse; } TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY); Vertex* top; Vertex* bottom; int winding = edge->fWinding; // Theoretically, and ideally, the edge betwee p0 and p1 is being split by v, and v is "between" // the segment end points according to c. This is equivalent to p0 < v < p1. Unfortunately, if // v was clamped/rounded this relation doesn't always hold. if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) { // Actually "v < p0 < p1": update 'edge' to be v->p1 and add v->p0. We flip the winding on // the new edge so that it winds as if it were p0->v. top = v; bottom = edge->fTop; winding *= -1; if (!this->setTop(edge, v, activeEdges, current, c)) { return BoolFail::kFail; } } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) { // Actually "p0 < p1 < v": update 'edge' to be p0->v and add p1->v. We flip the winding on // the new edge so that it winds as if it were v->p1. top = edge->fBottom; bottom = v; winding *= -1; if (!this->setBottom(edge, v, activeEdges, current, c)) { return BoolFail::kFail; } } else { // The ideal case, "p0 < v < p1": update 'edge' to be p0->v and add v->p1. Original winding // is valid for both edges. top = v; bottom = edge->fBottom; if (!this->setBottom(edge, v, activeEdges, current, c)) { return BoolFail::kFail; } } Edge* newEdge = this->allocateEdge(top, bottom, winding, edge->fType); newEdge->insertBelow(top, c); newEdge->insertAbove(bottom, c); if (!this->mergeCollinearEdges(newEdge, activeEdges, current, c)) { return BoolFail::kFail; } return BoolFail::kTrue; } GrTriangulator::BoolFail GrTriangulator::intersectEdgePair( Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, const Comparator& c) { if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) { return BoolFail::kFalse; } if (left->fTop == right->fTop || left->fBottom == right->fBottom) { return BoolFail::kFalse; } // Check if the lines intersect as determined by isLeftOf and isRightOf, since that is the // source of ground truth. It may suggest an intersection even if Edge::intersect() did not have // the precision to check it. In this case we are explicitly correcting the edge topology to // match the sided-ness checks. Edge* split = nullptr; Vertex* splitAt = nullptr; if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) { if (!left->isLeftOf(*right->fTop)) { split = left; splitAt = right->fTop; } } else { if (!right->isRightOf(*left->fTop)) { split = right; splitAt = left->fTop; } } if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) { if (!left->isLeftOf(*right->fBottom)) { split = left; splitAt = right->fBottom; } } else { if (!right->isRightOf(*left->fBottom)) { split = right; splitAt = left->fBottom; } } if (!split) { return BoolFail::kFalse; } // Rewind to the top of the edge that is "moving" since this topology correction can change the // geometry of the split edge. if (!rewind(activeEdges, current, split->fTop, c)) { return BoolFail::kFail; } return this->splitEdge(split, splitAt, activeEdges, current, c); } Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType type, const Comparator& c, int windingScale) { if (!prev || !next || prev->fPoint == next->fPoint) { return nullptr; } Edge* edge = this->makeEdge(prev, next, type, c); edge->insertBelow(edge->fTop, c); edge->insertAbove(edge->fBottom, c); edge->fWinding *= windingScale; this->mergeCollinearEdges(edge, nullptr, nullptr, c); return edge; } void GrTriangulator::mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh, const Comparator& c) const { TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID); dst->fAlpha = std::max(src->fAlpha, dst->fAlpha); if (src->fPartner) { src->fPartner->fPartner = dst; } while (Edge* edge = src->fFirstEdgeAbove) { std::ignore = this->setBottom(edge, dst, nullptr, nullptr, c); } while (Edge* edge = src->fFirstEdgeBelow) { std::ignore = this->setTop(edge, dst, nullptr, nullptr, c); } mesh->remove(src); dst->fSynthetic = true; } Vertex* GrTriangulator::makeSortedVertex(const SkPoint& p, uint8_t alpha, VertexList* mesh, Vertex* reference, const Comparator& c) const { Vertex* prevV = reference; while (prevV && c.sweep_lt(p, prevV->fPoint)) { prevV = prevV->fPrev; } Vertex* nextV = prevV ? prevV->fNext : mesh->fHead; while (nextV && c.sweep_lt(nextV->fPoint, p)) { prevV = nextV; nextV = nextV->fNext; } Vertex* v; if (prevV && coincident(prevV->fPoint, p)) { v = prevV; } else if (nextV && coincident(nextV->fPoint, p)) { v = nextV; } else { v = fAlloc->make(p, alpha); #if TRIANGULATOR_LOGGING if (!prevV) { v->fID = mesh->fHead->fID - 1.0f; } else if (!nextV) { v->fID = mesh->fTail->fID + 1.0f; } else { v->fID = (prevV->fID + nextV->fID) * 0.5f; } #endif mesh->insert(v, prevV, nextV); } return v; } // Clamps x and y coordinates independently, so the returned point will lie within the bounding // box formed by the corners of 'min' and 'max' (although min/max here refer to the ordering // imposed by 'c'). static SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, const Comparator& c) { if (c.fDirection == Comparator::Direction::kHorizontal) { // With horizontal sorting, we know min.x <= max.x, but there's no relation between // Y components unless min.x == max.x. return {SkTPin(p.fX, min.fX, max.fX), min.fY < max.fY ? SkTPin(p.fY, min.fY, max.fY) : SkTPin(p.fY, max.fY, min.fY)}; } else { // And with vertical sorting, we know Y's relation but not necessarily X's. return {min.fX < max.fX ? SkTPin(p.fX, min.fX, max.fX) : SkTPin(p.fX, max.fX, min.fX), SkTPin(p.fY, min.fY, max.fY)}; } } void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const { SkASSERT(fEmitCoverage); // Edge-AA only! Line line1 = edge1->fLine; Line line2 = edge2->fLine; line1.normalize(); line2.normalize(); double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB; if (cosAngle > 0.999) { return; } line1.fC += edge1->fWinding > 0 ? -1 : 1; line2.fC += edge2->fWinding > 0 ? -1 : 1; SkPoint p; if (line1.intersect(line2, &p)) { uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0; v->fPartner = fAlloc->make(p, alpha); TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID); } } GrTriangulator::BoolFail GrTriangulator::checkForIntersection( Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, VertexList* mesh, const Comparator& c) { if (!left || !right) { return BoolFail::kFalse; } SkPoint p; uint8_t alpha; // If we are going to call intersect, then there must be tops and bottoms. if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) { return BoolFail::kFail; } if (left->intersect(*right, &p, &alpha) && p.isFinite()) { Vertex* v; TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); Vertex* top = *current; // If the intersection point is above the current vertex, rewind to the vertex above the // intersection. while (top && c.sweep_lt(p, top->fPoint)) { top = top->fPrev; } // Always clamp the intersection to lie between the vertices of each segment, since // in theory that's where the intersection is, but in reality, floating point error may // have computed an intersection beyond a vertex's component(s). p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c); p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c); if (coincident(p, left->fTop->fPoint)) { v = left->fTop; } else if (coincident(p, left->fBottom->fPoint)) { v = left->fBottom; } else if (coincident(p, right->fTop->fPoint)) { v = right->fTop; } else if (coincident(p, right->fBottom->fPoint)) { v = right->fBottom; } else { v = this->makeSortedVertex(p, alpha, mesh, top, c); if (left->fTop->fPartner) { SkASSERT(fEmitCoverage); // Edge-AA only! v->fSynthetic = true; this->computeBisector(left, right, v); } } if (!rewind(activeEdges, current, top ? top : v, c)) { return BoolFail::kFail; } if (this->splitEdge(left, v, activeEdges, current, c) == BoolFail::kFail) { return BoolFail::kFail; } if (this->splitEdge(right, v, activeEdges, current, c) == BoolFail::kFail) { return BoolFail::kFail; } v->fAlpha = std::max(v->fAlpha, alpha); return BoolFail::kTrue; } return this->intersectEdgePair(left, right, activeEdges, current, c); } void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const { for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) { SkASSERT(contour->fHead); Vertex* prev = contour->fTail; prev->fPoint.fX = double_to_clamped_scalar((double) prev->fPoint.fX); prev->fPoint.fY = double_to_clamped_scalar((double) prev->fPoint.fY); if (fRoundVerticesToQuarterPixel) { round(&prev->fPoint); } for (Vertex* v = contour->fHead; v;) { v->fPoint.fX = double_to_clamped_scalar((double) v->fPoint.fX); v->fPoint.fY = double_to_clamped_scalar((double) v->fPoint.fY); if (fRoundVerticesToQuarterPixel) { round(&v->fPoint); } Vertex* next = v->fNext; Vertex* nextWrap = next ? next : contour->fHead; if (coincident(prev->fPoint, v->fPoint)) { TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY); contour->remove(v); } else if (!v->fPoint.isFinite()) { TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY); contour->remove(v); } else if (!fPreserveCollinearVertices && Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) { TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY); contour->remove(v); } else { prev = v; } v = next; } } } bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const { if (!mesh->fHead) { return false; } bool merged = false; for (Vertex* v = mesh->fHead->fNext; v;) { Vertex* next = v->fNext; if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) { v->fPoint = v->fPrev->fPoint; } if (coincident(v->fPrev->fPoint, v->fPoint)) { this->mergeVertices(v, v->fPrev, mesh, c); merged = true; } v = next; } return merged; } // Stage 2: convert the contours to a mesh of edges connecting the vertices. void GrTriangulator::buildEdges(VertexList* contours, int contourCnt, VertexList* mesh, const Comparator& c) { for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) { Vertex* prev = contour->fTail; for (Vertex* v = contour->fHead; v;) { Vertex* next = v->fNext; this->makeConnectingEdge(prev, v, EdgeType::kInner, c); mesh->append(v); prev = v; v = next; } } } template static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) { Vertex* a = front->fHead; Vertex* b = back->fHead; while (a && b) { if (sweep_lt(a->fPoint, b->fPoint)) { front->remove(a); result->append(a); a = front->fHead; } else { back->remove(b); result->append(b); b = back->fHead; } } result->append(*front); result->append(*back); } void GrTriangulator::SortedMerge(VertexList* front, VertexList* back, VertexList* result, const Comparator& c) { if (c.fDirection == Comparator::Direction::kHorizontal) { sorted_merge(front, back, result); } else { sorted_merge(front, back, result); } #if TRIANGULATOR_LOGGING float id = 0.0f; for (Vertex* v = result->fHead; v; v = v->fNext) { v->fID = id++; } #endif } // Stage 3: sort the vertices by increasing sweep direction. template static void merge_sort(VertexList* vertices) { Vertex* slow = vertices->fHead; if (!slow) { return; } Vertex* fast = slow->fNext; if (!fast) { return; } do { fast = fast->fNext; if (fast) { fast = fast->fNext; slow = slow->fNext; } } while (fast); VertexList front(vertices->fHead, slow); VertexList back(slow->fNext, vertices->fTail); front.fTail->fNext = back.fHead->fPrev = nullptr; merge_sort(&front); merge_sort(&back); vertices->fHead = vertices->fTail = nullptr; sorted_merge(&front, &back, vertices); } #if TRIANGULATOR_LOGGING void VertexList::dump() const { for (Vertex* v = fHead; v; v = v->fNext) { TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha); if (Vertex* p = v->fPartner) { TESS_LOG(", partner %g (%g, %g) alpha %d\n", p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha); } else { TESS_LOG(", null partner\n"); } for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding); } for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding); } } } #endif #ifdef SK_DEBUG static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) { if (!left || !right) { return; } if (left->fTop == right->fTop) { SkASSERT(left->isLeftOf(*right->fBottom)); SkASSERT(right->isRightOf(*left->fBottom)); } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) { SkASSERT(left->isLeftOf(*right->fTop)); } else { SkASSERT(right->isRightOf(*left->fTop)); } if (left->fBottom == right->fBottom) { SkASSERT(left->isLeftOf(*right->fTop)); SkASSERT(right->isRightOf(*left->fTop)); } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) { SkASSERT(left->isLeftOf(*right->fBottom)); } else { SkASSERT(right->isRightOf(*left->fBottom)); } } static void validate_edge_list(EdgeList* edges, const Comparator& c) { Edge* left = edges->fHead; if (!left) { return; } for (Edge* right = left->fRight; right; right = right->fRight) { validate_edge_pair(left, right, c); left = right; } } #endif // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges. GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh, const Comparator& c) { TESS_LOG("simplifying complex polygons\n"); int initialNumEdges = fNumEdges; int initialNumVertices = 0; for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) { ++initialNumVertices; } int numSelfIntersections = 0; EdgeList activeEdges; auto result = SimplifyResult::kAlreadySimple; int numVisitedVertices = 0; for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) { ++numVisitedVertices; if (!v->isConnected()) { continue; } // The max increase across all skps, svgs and gms with only the triangulating and SW path // renderers enabled and with the triangulator's maxVerbCount set to the Chrome value is // 17x. if (fNumEdges > 170*initialNumEdges) { return SimplifyResult::kFailed; } if (numVisitedVertices > 170*initialNumVertices) { return SimplifyResult::kFailed; } Edge* leftEnclosingEdge; Edge* rightEnclosingEdge; bool restartChecks; do { TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha); restartChecks = false; FindEnclosingEdges(*v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); v->fLeftEnclosingEdge = leftEnclosingEdge; v->fRightEnclosingEdge = rightEnclosingEdge; if (v->fFirstEdgeBelow) { for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) { BoolFail l = this->checkForIntersection( leftEnclosingEdge, edge, &activeEdges, &v, mesh, c); if (l == BoolFail::kFail) { return SimplifyResult::kFailed; } if (l == BoolFail::kFalse) { BoolFail r = this->checkForIntersection( edge, rightEnclosingEdge, &activeEdges, &v, mesh, c); if (r == BoolFail::kFail) { return SimplifyResult::kFailed; } if (r == BoolFail::kFalse) { // Neither l and r are both false. continue; } } // Either l or r are true. result = SimplifyResult::kFoundSelfIntersection; restartChecks = true; ++numSelfIntersections; break; } // for } else { BoolFail bf = this->checkForIntersection( leftEnclosingEdge, rightEnclosingEdge, &activeEdges, &v, mesh, c); if (bf == BoolFail::kFail) { return SimplifyResult::kFailed; } if (bf == BoolFail::kTrue) { result = SimplifyResult::kFoundSelfIntersection; restartChecks = true; ++numSelfIntersections; } } // In pathological cases, a path can intersect itself millions of times. After 500,000 // self-intersections are found, reject the path. if (numSelfIntersections > 500000) { return SimplifyResult::kFailed; } } while (restartChecks); #ifdef SK_DEBUG validate_edge_list(&activeEdges, c); #endif for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { if (!activeEdges.remove(e)) { return SimplifyResult::kFailed; } } Edge* leftEdge = leftEnclosingEdge; for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { activeEdges.insert(e, leftEdge); leftEdge = e; } } SkASSERT(!activeEdges.fHead && !activeEdges.fTail); return result; } // Stage 5: Tessellate the simplified mesh into monotone polygons. std::tuple GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) { TESS_LOG("\ntessellating simple polygons\n"); EdgeList activeEdges; Poly* polys = nullptr; for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) { if (!v->isConnected()) { continue; } #if TRIANGULATOR_LOGGING TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha); #endif Edge* leftEnclosingEdge; Edge* rightEnclosingEdge; FindEnclosingEdges(*v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); Poly* leftPoly; Poly* rightPoly; if (v->fFirstEdgeAbove) { leftPoly = v->fFirstEdgeAbove->fLeftPoly; rightPoly = v->fLastEdgeAbove->fRightPoly; } else { leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr; rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr; } #if TRIANGULATOR_LOGGING TESS_LOG("edges above:\n"); for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); } TESS_LOG("edges below:\n"); for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); } #endif if (v->fFirstEdgeAbove) { if (leftPoly) { leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Side::kRight, this); } if (rightPoly) { rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Side::kLeft, this); } for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) { Edge* rightEdge = e->fNextEdgeAbove; activeEdges.remove(e); if (e->fRightPoly) { e->fRightPoly->addEdge(e, Side::kLeft, this); } if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) { rightEdge->fLeftPoly->addEdge(e, Side::kRight, this); } } activeEdges.remove(v->fLastEdgeAbove); if (!v->fFirstEdgeBelow) { if (leftPoly && rightPoly && leftPoly != rightPoly) { SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr); rightPoly->fPartner = leftPoly; leftPoly->fPartner = rightPoly; } } } if (v->fFirstEdgeBelow) { if (!v->fFirstEdgeAbove) { if (leftPoly && rightPoly) { if (leftPoly == rightPoly) { if (leftPoly->fTail && leftPoly->fTail->fSide == Side::kLeft) { leftPoly = this->makePoly(&polys, leftPoly->lastVertex(), leftPoly->fWinding); leftEnclosingEdge->fRightPoly = leftPoly; } else { rightPoly = this->makePoly(&polys, rightPoly->lastVertex(), rightPoly->fWinding); rightEnclosingEdge->fLeftPoly = rightPoly; } } Edge* join = this->allocateEdge(leftPoly->lastVertex(), v, 1, EdgeType::kInner); leftPoly = leftPoly->addEdge(join, Side::kRight, this); rightPoly = rightPoly->addEdge(join, Side::kLeft, this); } } Edge* leftEdge = v->fFirstEdgeBelow; leftEdge->fLeftPoly = leftPoly; activeEdges.insert(leftEdge, leftEnclosingEdge); for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; rightEdge = rightEdge->fNextEdgeBelow) { activeEdges.insert(rightEdge, leftEdge); int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0; winding += leftEdge->fWinding; if (winding != 0) { Poly* poly = this->makePoly(&polys, v, winding); leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; } leftEdge = rightEdge; } v->fLastEdgeBelow->fRightPoly = rightPoly; } #if TRIANGULATOR_LOGGING TESS_LOG("\nactive edges:\n"); for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) { TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); } #endif } return { polys, true }; } // This is a driver function that calls stages 2-5 in turn. void GrTriangulator::contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh, const Comparator& c) { #if TRIANGULATOR_LOGGING for (int i = 0; i < contourCnt; ++i) { Vertex* v = contours[i].fHead; SkASSERT(v); TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); for (v = v->fNext; v; v = v->fNext) { TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); } } #endif this->sanitizeContours(contours, contourCnt); this->buildEdges(contours, contourCnt, mesh, c); } void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) { if (!vertices || !vertices->fHead) { return; } // Sort vertices in Y (secondarily in X). if (c.fDirection == Comparator::Direction::kHorizontal) { merge_sort(vertices); } else { merge_sort(vertices); } #if TRIANGULATOR_LOGGING for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) { static float gID = 0.0f; v->fID = gID++; } #endif } std::tuple GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) { const SkRect& pathBounds = fPath.getBounds(); Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal : Comparator::Direction::kVertical); VertexList mesh; this->contoursToMesh(contours, contourCnt, &mesh, c); TESS_LOG("\ninitial mesh:\n"); DUMP_MESH(mesh); SortMesh(&mesh, c); TESS_LOG("\nsorted mesh:\n"); DUMP_MESH(mesh); this->mergeCoincidentVertices(&mesh, c); TESS_LOG("\nsorted+merged mesh:\n"); DUMP_MESH(mesh); auto result = this->simplify(&mesh, c); if (result == SimplifyResult::kFailed) { return { nullptr, false }; } TESS_LOG("\nsimplified mesh:\n"); DUMP_MESH(mesh); return this->tessellate(mesh, c); } // Stage 6: Triangulate the monotone polygons into a vertex buffer. skgpu::VertexWriter GrTriangulator::polysToTriangles(Poly* polys, SkPathFillType overrideFillType, skgpu::VertexWriter data) const { for (Poly* poly = polys; poly; poly = poly->fNext) { if (apply_fill_type(overrideFillType, poly)) { data = this->emitPoly(poly, std::move(data)); } } return data; } static int get_contour_count(const SkPath& path, SkScalar tolerance) { // We could theoretically be more aggressive about not counting empty contours, but we need to // actually match the exact number of contour linked lists the tessellator will create later on. int contourCnt = 1; bool hasPoints = false; SkPath::Iter iter(path, false); SkPath::Verb verb; SkPoint pts[4]; bool first = true; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: if (!first) { ++contourCnt; } [[fallthrough]]; case SkPath::kLine_Verb: case SkPath::kConic_Verb: case SkPath::kQuad_Verb: case SkPath::kCubic_Verb: hasPoints = true; break; default: break; } first = false; } if (!hasPoints) { return 0; } return contourCnt; } std::tuple GrTriangulator::pathToPolys(float tolerance, const SkRect& clipBounds, bool* isLinear) { int contourCnt = get_contour_count(fPath, tolerance); if (contourCnt <= 0) { *isLinear = true; return { nullptr, true }; } if (SkPathFillType_IsInverse(fPath.getFillType())) { contourCnt++; } std::unique_ptr contours(new VertexList[contourCnt]); this->pathToContours(tolerance, clipBounds, contours.get(), isLinear); return this->contoursToPolys(contours.get(), contourCnt); } int64_t GrTriangulator::CountPoints(Poly* polys, SkPathFillType overrideFillType) { int64_t count = 0; for (Poly* poly = polys; poly; poly = poly->fNext) { if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) { count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3); } } return count; } // Stage 6: Triangulate the monotone polygons into a vertex buffer. int GrTriangulator::polysToTriangles(Poly* polys, GrEagerVertexAllocator* vertexAllocator) const { int64_t count64 = CountPoints(polys, fPath.getFillType()); if (0 == count64 || count64 > SK_MaxS32) { return 0; } int count = count64; size_t vertexStride = sizeof(SkPoint); if (fEmitCoverage) { vertexStride += sizeof(float); } skgpu::VertexWriter verts = vertexAllocator->lockWriter(vertexStride, count); if (!verts) { SkDebugf("Could not allocate vertices\n"); return 0; } TESS_LOG("emitting %d verts\n", count); skgpu::BufferWriter::Mark start = verts.mark(); verts = this->polysToTriangles(polys, fPath.getFillType(), std::move(verts)); int actualCount = static_cast((verts.mark() - start) / vertexStride); SkASSERT(actualCount <= count); vertexAllocator->unlock(actualCount); return actualCount; } #endif // SK_ENABLE_OPTIMIZE_SIZE