/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/effects/GrRRectEffect.h" #include "include/core/SkPoint.h" #include "include/core/SkRRect.h" #include "include/core/SkRect.h" #include "include/core/SkScalar.h" #include "include/core/SkString.h" #include "include/private/base/SkAssert.h" #include "include/private/gpu/ganesh/GrTypesPriv.h" #include "src/base/SkRandom.h" #include "src/base/SkTLazy.h" #include "src/core/SkRRectPriv.h" #include "src/core/SkSLTypeShared.h" #include "src/gpu/KeyBuilder.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrFragmentProcessor.h" #include "src/gpu/ganesh/GrProcessorUnitTest.h" #include "src/gpu/ganesh/GrShaderCaps.h" #include "src/gpu/ganesh/effects/GrOvalEffect.h" #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h" #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h" #include #include #include #include // The effects defined here only handle rrect radii >= kRadiusMin. static const SkScalar kRadiusMin = SK_ScalarHalf; ////////////////////////////////////////////////////////////////////////////// namespace { class CircularRRectEffect : public GrFragmentProcessor { public: enum CornerFlags { kTopLeft_CornerFlag = (1 << SkRRect::kUpperLeft_Corner), kTopRight_CornerFlag = (1 << SkRRect::kUpperRight_Corner), kBottomRight_CornerFlag = (1 << SkRRect::kLowerRight_Corner), kBottomLeft_CornerFlag = (1 << SkRRect::kLowerLeft_Corner), kLeft_CornerFlags = kTopLeft_CornerFlag | kBottomLeft_CornerFlag, kTop_CornerFlags = kTopLeft_CornerFlag | kTopRight_CornerFlag, kRight_CornerFlags = kTopRight_CornerFlag | kBottomRight_CornerFlag, kBottom_CornerFlags = kBottomLeft_CornerFlag | kBottomRight_CornerFlag, kAll_CornerFlags = kTopLeft_CornerFlag | kTopRight_CornerFlag | kBottomLeft_CornerFlag | kBottomRight_CornerFlag, kNone_CornerFlags = 0 }; // The flags are used to indicate which corners are circluar (unflagged corners are assumed to // be square). static GrFPResult Make(std::unique_ptr, GrClipEdgeType, uint32_t circularCornerFlags, const SkRRect&); ~CircularRRectEffect() override {} const char* name() const override { return "CircularRRect"; } std::unique_ptr clone() const override; private: class Impl; CircularRRectEffect(std::unique_ptr inputFP, GrClipEdgeType, uint32_t circularCornerFlags, const SkRRect&); CircularRRectEffect(const CircularRRectEffect& that); std::unique_ptr onMakeProgramImpl() const override; void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override; bool onIsEqual(const GrFragmentProcessor& other) const override; SkRRect fRRect; GrClipEdgeType fEdgeType; uint32_t fCircularCornerFlags; GR_DECLARE_FRAGMENT_PROCESSOR_TEST using INHERITED = GrFragmentProcessor; }; } // anonymous namespace GrFPResult CircularRRectEffect::Make(std::unique_ptr inputFP, GrClipEdgeType edgeType, uint32_t circularCornerFlags, const SkRRect& rrect) { if (GrClipEdgeType::kFillAA != edgeType && GrClipEdgeType::kInverseFillAA != edgeType) { return GrFPFailure(std::move(inputFP)); } return GrFPSuccess(std::unique_ptr( new CircularRRectEffect(std::move(inputFP), edgeType, circularCornerFlags, rrect))); } CircularRRectEffect::CircularRRectEffect(std::unique_ptr inputFP, GrClipEdgeType edgeType, uint32_t circularCornerFlags, const SkRRect& rrect) : INHERITED(kCircularRRectEffect_ClassID, ProcessorOptimizationFlags(inputFP.get()) & kCompatibleWithCoverageAsAlpha_OptimizationFlag) , fRRect(rrect) , fEdgeType(edgeType) , fCircularCornerFlags(circularCornerFlags) { this->registerChild(std::move(inputFP)); } CircularRRectEffect::CircularRRectEffect(const CircularRRectEffect& that) : INHERITED(that) , fRRect(that.fRRect) , fEdgeType(that.fEdgeType) , fCircularCornerFlags(that.fCircularCornerFlags) {} std::unique_ptr CircularRRectEffect::clone() const { return std::unique_ptr(new CircularRRectEffect(*this)); } bool CircularRRectEffect::onIsEqual(const GrFragmentProcessor& other) const { const CircularRRectEffect& crre = other.cast(); // The corner flags are derived from fRRect, so no need to check them. return fEdgeType == crre.fEdgeType && fRRect == crre.fRRect; } ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircularRRectEffect) #if defined(GPU_TEST_UTILS) std::unique_ptr CircularRRectEffect::TestCreate(GrProcessorTestData* d) { SkScalar w = d->fRandom->nextRangeScalar(20.f, 1000.f); SkScalar h = d->fRandom->nextRangeScalar(20.f, 1000.f); SkScalar r = d->fRandom->nextRangeF(kRadiusMin, 9.f); SkRRect rrect; rrect.setRectXY(SkRect::MakeWH(w, h), r, r); std::unique_ptr fp = d->inputFP(); bool success; do { GrClipEdgeType et = (GrClipEdgeType)d->fRandom->nextULessThan(kGrClipEdgeTypeCnt); std::tie(success, fp) = GrRRectEffect::Make(std::move(fp), et, rrect, *d->caps()->shaderCaps()); } while (!success); return fp; } #endif ////////////////////////////////////////////////////////////////////////////// class CircularRRectEffect::Impl : public ProgramImpl { public: void emitCode(EmitArgs&) override; private: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; GrGLSLProgramDataManager::UniformHandle fInnerRectUniform; GrGLSLProgramDataManager::UniformHandle fRadiusPlusHalfUniform; SkRRect fPrevRRect; }; void CircularRRectEffect::Impl::emitCode(EmitArgs& args) { const CircularRRectEffect& crre = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; const char *rectName; const char *radiusPlusHalfName; // The inner rect is the rrect bounds inset by the radius. Its left, top, right, and bottom // edges correspond to components x, y, z, and w, respectively. When a side of the rrect has // only rectangular corners, that side's value corresponds to the rect edge's value outset by // half a pixel. fInnerRectUniform = uniformHandler->addUniform(&crre, kFragment_GrShaderFlag, SkSLType::kFloat4, "innerRect", &rectName); // x is (r + .5) and y is 1/(r + .5) fRadiusPlusHalfUniform = uniformHandler->addUniform(&crre, kFragment_GrShaderFlag, SkSLType::kHalf2, "radiusPlusHalf", &radiusPlusHalfName); // If we're on a device where float != fp32 then the length calculation could overflow. SkString clampedCircleDistance; if (!args.fShaderCaps->fFloatIs32Bits) { clampedCircleDistance.printf("saturate(%s.x * (1.0 - length(dxy * %s.y)))", radiusPlusHalfName, radiusPlusHalfName); } else { clampedCircleDistance.printf("saturate(%s.x - length(dxy))", radiusPlusHalfName); } GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; // At each quarter-circle corner we compute a vector that is the offset of the fragment position // from the circle center. The vector is pinned in x and y to be in the quarter-plane relevant // to that corner. This means that points near the interior near the rrect top edge will have // a vector that points straight up for both the TL left and TR corners. Computing an // alpha from this vector at either the TR or TL corner will give the correct result. Similarly, // fragments near the other three edges will get the correct AA. Fragments in the interior of // the rrect will have a (0,0) vector at all four corners. So long as the radius > 0.5 they will // correctly produce an alpha value of 1 at all four corners. We take the min of all the alphas. // The code below is a simplified version of the above that performs maxs on the vector // components before computing distances and alpha values so that only one distance computation // need be computed to determine the min alpha. // // For the cases where one half of the rrect is rectangular we drop one of the x or y // computations, compute a separate rect edge alpha for the rect side, and mul the two computed // alphas together. switch (crre.fCircularCornerFlags) { case CircularRRectEffect::kAll_CornerFlags: fragBuilder->codeAppendf("float2 dxy0 = %s.LT - sk_FragCoord.xy;", rectName); fragBuilder->codeAppendf("float2 dxy1 = sk_FragCoord.xy - %s.RB;", rectName); fragBuilder->codeAppend("float2 dxy = max(max(dxy0, dxy1), 0.0);"); fragBuilder->codeAppendf("half alpha = half(%s);", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kTopLeft_CornerFlag: fragBuilder->codeAppendf("float2 dxy = max(%s.LT - sk_FragCoord.xy, 0.0);", rectName); fragBuilder->codeAppendf("half rightAlpha = half(saturate(%s.R - sk_FragCoord.x));", rectName); fragBuilder->codeAppendf("half bottomAlpha = half(saturate(%s.B - sk_FragCoord.y));", rectName); fragBuilder->codeAppendf("half alpha = bottomAlpha * rightAlpha * half(%s);", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kTopRight_CornerFlag: fragBuilder->codeAppendf("float2 dxy = max(float2(sk_FragCoord.x - %s.R, " "%s.T - sk_FragCoord.y), 0.0);", rectName, rectName); fragBuilder->codeAppendf("half leftAlpha = half(saturate(sk_FragCoord.x - %s.L));", rectName); fragBuilder->codeAppendf("half bottomAlpha = half(saturate(%s.B - sk_FragCoord.y));", rectName); fragBuilder->codeAppendf("half alpha = bottomAlpha * leftAlpha * half(%s);", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kBottomRight_CornerFlag: fragBuilder->codeAppendf("float2 dxy = max(sk_FragCoord.xy - %s.RB, 0.0);", rectName); fragBuilder->codeAppendf("half leftAlpha = half(saturate(sk_FragCoord.x - %s.L));", rectName); fragBuilder->codeAppendf("half topAlpha = half(saturate(sk_FragCoord.y - %s.T));", rectName); fragBuilder->codeAppendf("half alpha = topAlpha * leftAlpha * half(%s);", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kBottomLeft_CornerFlag: fragBuilder->codeAppendf("float2 dxy = max(float2(%s.L - sk_FragCoord.x, " "sk_FragCoord.y - %s.B), 0.0);", rectName, rectName); fragBuilder->codeAppendf("half rightAlpha = half(saturate(%s.R - sk_FragCoord.x));", rectName); fragBuilder->codeAppendf("half topAlpha = half(saturate(sk_FragCoord.y - %s.T));", rectName); fragBuilder->codeAppendf("half alpha = topAlpha * rightAlpha * half(%s);", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kLeft_CornerFlags: fragBuilder->codeAppendf("float2 dxy0 = %s.LT - sk_FragCoord.xy;", rectName); fragBuilder->codeAppendf("float dy1 = sk_FragCoord.y - %s.B;", rectName); fragBuilder->codeAppend("float2 dxy = max(float2(dxy0.x, max(dxy0.y, dy1)), 0.0);"); fragBuilder->codeAppendf("half rightAlpha = half(saturate(%s.R - sk_FragCoord.x));", rectName); fragBuilder->codeAppendf("half alpha = rightAlpha * half(%s);", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kTop_CornerFlags: fragBuilder->codeAppendf("float2 dxy0 = %s.LT - sk_FragCoord.xy;", rectName); fragBuilder->codeAppendf("float dx1 = sk_FragCoord.x - %s.R;", rectName); fragBuilder->codeAppend("float2 dxy = max(float2(max(dxy0.x, dx1), dxy0.y), 0.0);"); fragBuilder->codeAppendf("half bottomAlpha = half(saturate(%s.B - sk_FragCoord.y));", rectName); fragBuilder->codeAppendf("half alpha = bottomAlpha * half(%s);", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kRight_CornerFlags: fragBuilder->codeAppendf("float dy0 = %s.T - sk_FragCoord.y;", rectName); fragBuilder->codeAppendf("float2 dxy1 = sk_FragCoord.xy - %s.RB;", rectName); fragBuilder->codeAppend("float2 dxy = max(float2(dxy1.x, max(dy0, dxy1.y)), 0.0);"); fragBuilder->codeAppendf("half leftAlpha = half(saturate(sk_FragCoord.x - %s.L));", rectName); fragBuilder->codeAppendf("half alpha = leftAlpha * half(%s);", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kBottom_CornerFlags: fragBuilder->codeAppendf("float dx0 = %s.L - sk_FragCoord.x;", rectName); fragBuilder->codeAppendf("float2 dxy1 = sk_FragCoord.xy - %s.RB;", rectName); fragBuilder->codeAppend("float2 dxy = max(float2(max(dx0, dxy1.x), dxy1.y), 0.0);"); fragBuilder->codeAppendf("half topAlpha = half(saturate(sk_FragCoord.y - %s.T));", rectName); fragBuilder->codeAppendf("half alpha = topAlpha * half(%s);", clampedCircleDistance.c_str()); break; } if (GrClipEdgeType::kInverseFillAA == crre.fEdgeType) { fragBuilder->codeAppend("alpha = 1.0 - alpha;"); } SkString inputSample = this->invokeChild(/*childIndex=*/0, args); fragBuilder->codeAppendf("return %s * alpha;", inputSample.c_str()); } void CircularRRectEffect::Impl::onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { const CircularRRectEffect& crre = processor.cast(); const SkRRect& rrect = crre.fRRect; if (rrect != fPrevRRect) { SkRect rect = rrect.getBounds(); SkScalar radius = 0; switch (crre.fCircularCornerFlags) { case CircularRRectEffect::kAll_CornerFlags: SkASSERT(SkRRectPriv::IsSimpleCircular(rrect)); radius = SkRRectPriv::GetSimpleRadii(rrect).fX; SkASSERT(radius >= kRadiusMin); rect.inset(radius, radius); break; case CircularRRectEffect::kTopLeft_CornerFlag: radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; rect.fLeft += radius; rect.fTop += radius; rect.fRight += 0.5f; rect.fBottom += 0.5f; break; case CircularRRectEffect::kTopRight_CornerFlag: radius = rrect.radii(SkRRect::kUpperRight_Corner).fX; rect.fLeft -= 0.5f; rect.fTop += radius; rect.fRight -= radius; rect.fBottom += 0.5f; break; case CircularRRectEffect::kBottomRight_CornerFlag: radius = rrect.radii(SkRRect::kLowerRight_Corner).fX; rect.fLeft -= 0.5f; rect.fTop -= 0.5f; rect.fRight -= radius; rect.fBottom -= radius; break; case CircularRRectEffect::kBottomLeft_CornerFlag: radius = rrect.radii(SkRRect::kLowerLeft_Corner).fX; rect.fLeft += radius; rect.fTop -= 0.5f; rect.fRight += 0.5f; rect.fBottom -= radius; break; case CircularRRectEffect::kLeft_CornerFlags: radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; rect.fLeft += radius; rect.fTop += radius; rect.fRight += 0.5f; rect.fBottom -= radius; break; case CircularRRectEffect::kTop_CornerFlags: radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; rect.fLeft += radius; rect.fTop += radius; rect.fRight -= radius; rect.fBottom += 0.5f; break; case CircularRRectEffect::kRight_CornerFlags: radius = rrect.radii(SkRRect::kUpperRight_Corner).fX; rect.fLeft -= 0.5f; rect.fTop += radius; rect.fRight -= radius; rect.fBottom -= radius; break; case CircularRRectEffect::kBottom_CornerFlags: radius = rrect.radii(SkRRect::kLowerLeft_Corner).fX; rect.fLeft += radius; rect.fTop -= 0.5f; rect.fRight -= radius; rect.fBottom -= radius; break; default: SK_ABORT("Should have been one of the above cases."); } pdman.set4f(fInnerRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom); radius += 0.5f; pdman.set2f(fRadiusPlusHalfUniform, radius, 1.f / radius); fPrevRRect = rrect; } } //////////////////////////////////////////////////////////////////////////////////////////////////// void CircularRRectEffect::onAddToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const { static_assert(kGrClipEdgeTypeCnt <= 8); b->add32((fCircularCornerFlags << 3) | static_cast(fEdgeType)); } std::unique_ptr CircularRRectEffect::onMakeProgramImpl() const { return std::make_unique(); } ////////////////////////////////////////////////////////////////////////////// namespace { class EllipticalRRectEffect : public GrFragmentProcessor { public: static GrFPResult Make(std::unique_ptr, GrClipEdgeType, const SkRRect&); ~EllipticalRRectEffect() override {} const char* name() const override { return "EllipticalRRect"; } std::unique_ptr clone() const override; private: class Impl; EllipticalRRectEffect(std::unique_ptr, GrClipEdgeType, const SkRRect&); EllipticalRRectEffect(const EllipticalRRectEffect& that); std::unique_ptr onMakeProgramImpl() const override; void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override; bool onIsEqual(const GrFragmentProcessor& other) const override; SkRRect fRRect; GrClipEdgeType fEdgeType; GR_DECLARE_FRAGMENT_PROCESSOR_TEST using INHERITED = GrFragmentProcessor; }; GrFPResult EllipticalRRectEffect::Make(std::unique_ptr inputFP, GrClipEdgeType edgeType, const SkRRect& rrect) { if (GrClipEdgeType::kFillAA != edgeType && GrClipEdgeType::kInverseFillAA != edgeType) { return GrFPFailure(std::move(inputFP)); } return GrFPSuccess(std::unique_ptr( new EllipticalRRectEffect(std::move(inputFP), edgeType, rrect))); } EllipticalRRectEffect::EllipticalRRectEffect(std::unique_ptr inputFP, GrClipEdgeType edgeType, const SkRRect& rrect) : INHERITED(kEllipticalRRectEffect_ClassID, ProcessorOptimizationFlags(inputFP.get()) & kCompatibleWithCoverageAsAlpha_OptimizationFlag) , fRRect(rrect) , fEdgeType(edgeType) { this->registerChild(std::move(inputFP)); } EllipticalRRectEffect::EllipticalRRectEffect(const EllipticalRRectEffect& that) : INHERITED(that) , fRRect(that.fRRect) , fEdgeType(that.fEdgeType) {} std::unique_ptr EllipticalRRectEffect::clone() const { return std::unique_ptr(new EllipticalRRectEffect(*this)); } bool EllipticalRRectEffect::onIsEqual(const GrFragmentProcessor& other) const { const EllipticalRRectEffect& erre = other.cast(); return fEdgeType == erre.fEdgeType && fRRect == erre.fRRect; } } // anonymous namespace ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(EllipticalRRectEffect) #if defined(GPU_TEST_UTILS) std::unique_ptr EllipticalRRectEffect::TestCreate(GrProcessorTestData* d) { SkScalar w = d->fRandom->nextRangeScalar(20.f, 1000.f); SkScalar h = d->fRandom->nextRangeScalar(20.f, 1000.f); SkVector r[4]; r[SkRRect::kUpperLeft_Corner].fX = d->fRandom->nextRangeF(kRadiusMin, 9.f); // ensure at least one corner really is elliptical do { r[SkRRect::kUpperLeft_Corner].fY = d->fRandom->nextRangeF(kRadiusMin, 9.f); } while (r[SkRRect::kUpperLeft_Corner].fY == r[SkRRect::kUpperLeft_Corner].fX); SkRRect rrect; if (d->fRandom->nextBool()) { // half the time create a four-radii rrect. r[SkRRect::kLowerRight_Corner].fX = d->fRandom->nextRangeF(kRadiusMin, 9.f); r[SkRRect::kLowerRight_Corner].fY = d->fRandom->nextRangeF(kRadiusMin, 9.f); r[SkRRect::kUpperRight_Corner].fX = r[SkRRect::kLowerRight_Corner].fX; r[SkRRect::kUpperRight_Corner].fY = r[SkRRect::kUpperLeft_Corner].fY; r[SkRRect::kLowerLeft_Corner].fX = r[SkRRect::kUpperLeft_Corner].fX; r[SkRRect::kLowerLeft_Corner].fY = r[SkRRect::kLowerRight_Corner].fY; rrect.setRectRadii(SkRect::MakeWH(w, h), r); } else { rrect.setRectXY(SkRect::MakeWH(w, h), r[SkRRect::kUpperLeft_Corner].fX, r[SkRRect::kUpperLeft_Corner].fY); } std::unique_ptr fp = d->inputFP(); bool success; do { GrClipEdgeType et = (GrClipEdgeType)d->fRandom->nextULessThan(kGrClipEdgeTypeCnt); std::tie(success, fp) = GrRRectEffect::Make(std::move(fp), et, rrect, *d->caps()->shaderCaps()); } while (!success); return fp; } #endif ////////////////////////////////////////////////////////////////////////////// static bool elliptical_effect_uses_scale(const GrShaderCaps& caps, const SkRRect& rrect) { // Keep shaders consistent across varying radii when in reduced shader mode. if (caps.fReducedShaderMode) { return true; } // If we're on a device where float != fp32 then we'll do the distance computation in a space // that is normalized by the largest radius. The scale uniform will be scale, 1/scale. The // radii uniform values are already in this normalized space. if (!caps.fFloatIs32Bits) { return true; } // Additionally, even if we have fp32, large radii can underflow 1/radii^2 terms leading to // blurry coverage. This effect applies to simple and nine-patch, so only need to check TL+BR const SkVector& r0 = rrect.radii(SkRRect::kUpperLeft_Corner); const SkVector& r1 = rrect.radii(SkRRect::kLowerRight_Corner); float maxRadius = std::max(std::max(r0.fX, r0.fY), std::max(r1.fX, r1.fY)); return SkScalarNearlyZero(1.f / (maxRadius * maxRadius)); } class EllipticalRRectEffect::Impl : public ProgramImpl { public: void emitCode(EmitArgs&) override; private: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; GrGLSLProgramDataManager::UniformHandle fInnerRectUniform; GrGLSLProgramDataManager::UniformHandle fInvRadiiSqdUniform; GrGLSLProgramDataManager::UniformHandle fScaleUniform; SkRRect fPrevRRect; }; void EllipticalRRectEffect::Impl::emitCode(EmitArgs& args) { const EllipticalRRectEffect& erre = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; const char *rectName; // The inner rect is the rrect bounds inset by the x/y radii fInnerRectUniform = uniformHandler->addUniform(&erre, kFragment_GrShaderFlag, SkSLType::kFloat4, "innerRect", &rectName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; // At each quarter-ellipse corner we compute a vector that is the offset of the fragment pos // to the ellipse center. The vector is pinned in x and y to be in the quarter-plane relevant // to that corner. This means that points near the interior near the rrect top edge will have // a vector that points straight up for both the TL left and TR corners. Computing an // alpha from this vector at either the TR or TL corner will give the correct result. Similarly, // fragments near the other three edges will get the correct AA. Fragments in the interior of // the rrect will have a (0,0) vector at all four corners. So long as the radii > 0.5 they will // correctly produce an alpha value of 1 at all four corners. We take the min of all the alphas. // // The code below is a simplified version of the above that performs maxs on the vector // components before computing distances and alpha values so that only one distance computation // need be computed to determine the min alpha. fragBuilder->codeAppendf("float2 dxy0 = %s.LT - sk_FragCoord.xy;", rectName); fragBuilder->codeAppendf("float2 dxy1 = sk_FragCoord.xy - %s.RB;", rectName); const char* scaleName = nullptr; if (elliptical_effect_uses_scale(*args.fShaderCaps, erre.fRRect)) { fScaleUniform = uniformHandler->addUniform(&erre, kFragment_GrShaderFlag, SkSLType::kHalf2, "scale", &scaleName); } // The uniforms with the inv squared radii are highp to prevent underflow. switch (erre.fRRect.getType()) { case SkRRect::kSimple_Type: { const char *invRadiiXYSqdName; fInvRadiiSqdUniform = uniformHandler->addUniform(&erre, kFragment_GrShaderFlag, SkSLType::kFloat2, "invRadiiXY", &invRadiiXYSqdName); fragBuilder->codeAppend("float2 dxy = max(max(dxy0, dxy1), 0.0);"); if (scaleName) { fragBuilder->codeAppendf("dxy *= %s.y;", scaleName); } // Z is the x/y offsets divided by squared radii. fragBuilder->codeAppendf("float2 Z = dxy * %s.xy;", invRadiiXYSqdName); break; } case SkRRect::kNinePatch_Type: { const char *invRadiiLTRBSqdName; fInvRadiiSqdUniform = uniformHandler->addUniform(&erre, kFragment_GrShaderFlag, SkSLType::kFloat4, "invRadiiLTRB", &invRadiiLTRBSqdName); if (scaleName) { fragBuilder->codeAppendf("dxy0 *= %s.y;", scaleName); fragBuilder->codeAppendf("dxy1 *= %s.y;", scaleName); } fragBuilder->codeAppend("float2 dxy = max(max(dxy0, dxy1), 0.0);"); // Z is the x/y offsets divided by squared radii. We only care about the (at most) one // corner where both the x and y offsets are positive, hence the maxes. (The inverse // squared radii will always be positive.) fragBuilder->codeAppendf("float2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);", invRadiiLTRBSqdName, invRadiiLTRBSqdName); break; } default: SK_ABORT("RRect should always be simple or nine-patch."); } // implicit is the evaluation of (x/a)^2 + (y/b)^2 - 1. fragBuilder->codeAppend("half implicit = half(dot(Z, dxy) - 1.0);"); // grad_dot is the squared length of the gradient of the implicit. fragBuilder->codeAppend("half grad_dot = half(4.0 * dot(Z, Z));"); // avoid calling inversesqrt on zero. fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); fragBuilder->codeAppend("half approx_dist = implicit * half(inversesqrt(grad_dot));"); if (scaleName) { fragBuilder->codeAppendf("approx_dist *= %s.x;", scaleName); } if (erre.fEdgeType == GrClipEdgeType::kFillAA) { fragBuilder->codeAppend("half alpha = clamp(0.5 - approx_dist, 0.0, 1.0);"); } else { fragBuilder->codeAppend("half alpha = clamp(0.5 + approx_dist, 0.0, 1.0);"); } SkString inputSample = this->invokeChild(/*childIndex=*/0, args); fragBuilder->codeAppendf("return %s * alpha;", inputSample.c_str()); } void EllipticalRRectEffect::Impl::onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& effect) { const EllipticalRRectEffect& erre = effect.cast(); const SkRRect& rrect = erre.fRRect; // If we're using a scale factor to work around precision issues, choose the largest radius // as the scale factor. The inv radii need to be pre-adjusted by the scale factor. if (rrect != fPrevRRect) { SkRect rect = rrect.getBounds(); const SkVector& r0 = rrect.radii(SkRRect::kUpperLeft_Corner); SkASSERT(r0.fX >= kRadiusMin); SkASSERT(r0.fY >= kRadiusMin); switch (rrect.getType()) { case SkRRect::kSimple_Type: rect.inset(r0.fX, r0.fY); if (fScaleUniform.isValid()) { if (r0.fX > r0.fY) { pdman.set2f(fInvRadiiSqdUniform, 1.f, (r0.fX * r0.fX) / (r0.fY * r0.fY)); pdman.set2f(fScaleUniform, r0.fX, 1.f / r0.fX); } else { pdman.set2f(fInvRadiiSqdUniform, (r0.fY * r0.fY) / (r0.fX * r0.fX), 1.f); pdman.set2f(fScaleUniform, r0.fY, 1.f / r0.fY); } } else { pdman.set2f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX), 1.f / (r0.fY * r0.fY)); } break; case SkRRect::kNinePatch_Type: { const SkVector& r1 = rrect.radii(SkRRect::kLowerRight_Corner); SkASSERT(r1.fX >= kRadiusMin); SkASSERT(r1.fY >= kRadiusMin); rect.fLeft += r0.fX; rect.fTop += r0.fY; rect.fRight -= r1.fX; rect.fBottom -= r1.fY; if (fScaleUniform.isValid()) { float scale = std::max(std::max(r0.fX, r0.fY), std::max(r1.fX, r1.fY)); float scaleSqd = scale * scale; pdman.set4f(fInvRadiiSqdUniform, scaleSqd / (r0.fX * r0.fX), scaleSqd / (r0.fY * r0.fY), scaleSqd / (r1.fX * r1.fX), scaleSqd / (r1.fY * r1.fY)); pdman.set2f(fScaleUniform, scale, 1.f / scale); } else { pdman.set4f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX), 1.f / (r0.fY * r0.fY), 1.f / (r1.fX * r1.fX), 1.f / (r1.fY * r1.fY)); } break; } default: SK_ABORT("RRect should always be simple or nine-patch."); } pdman.set4f(fInnerRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom); fPrevRRect = rrect; } } //////////////////////////////////////////////////////////////////////////////////////////////////// void EllipticalRRectEffect::onAddToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const { static_assert(kGrClipEdgeTypeCnt <= 4); // 2 bits static_assert((int)SkRRect::kLastType + 1 <= 8); // 3 bits b->addBits(2, static_cast(fEdgeType), "edge_type"); b->addBits(3, static_cast(fRRect.getType()), "rrect_type"); b->addBool(elliptical_effect_uses_scale(caps, fRRect), "scale_radii"); } std::unique_ptr EllipticalRRectEffect::onMakeProgramImpl() const { return std::make_unique(); } ////////////////////////////////////////////////////////////////////////////// GrFPResult GrRRectEffect::Make(std::unique_ptr inputFP, GrClipEdgeType edgeType, const SkRRect& rrect, const GrShaderCaps& caps) { if (rrect.isRect()) { auto fp = GrFragmentProcessor::Rect(std::move(inputFP), edgeType, rrect.getBounds()); return GrFPSuccess(std::move(fp)); } if (rrect.isOval()) { return GrOvalEffect::Make(std::move(inputFP), edgeType, rrect.getBounds(), caps); } if (rrect.isSimple()) { if (SkRRectPriv::GetSimpleRadii(rrect).fX < kRadiusMin || SkRRectPriv::GetSimpleRadii(rrect).fY < kRadiusMin) { // In this case the corners are extremely close to rectangular and we collapse the // clip to a rectangular clip. auto fp = GrFragmentProcessor::Rect(std::move(inputFP), edgeType, rrect.getBounds()); return GrFPSuccess(std::move(fp)); } if (SkRRectPriv::IsSimpleCircular(rrect)) { return CircularRRectEffect::Make(std::move(inputFP), edgeType, CircularRRectEffect::kAll_CornerFlags, rrect); } else { return EllipticalRRectEffect::Make(std::move(inputFP), edgeType, rrect); } } if (rrect.isComplex() || rrect.isNinePatch()) { // Check for the "tab" cases - two adjacent circular corners and two square corners. SkScalar circularRadius = 0; uint32_t cornerFlags = 0; SkVector radii[4]; bool squashedRadii = false; for (int c = 0; c < 4; ++c) { radii[c] = rrect.radii((SkRRect::Corner)c); // This effect can't handle a corner with both zero and non-zero radii if ((0 == radii[c].fX) != (0 == radii[c].fY)) { return GrFPFailure(std::move(inputFP)); } if (0 == radii[c].fX) { // The corner is square, so no need to squash or flag as circular. continue; } if (radii[c].fX < kRadiusMin || radii[c].fY < kRadiusMin) { radii[c].set(0, 0); squashedRadii = true; continue; } if (radii[c].fX != radii[c].fY) { cornerFlags = ~0U; break; } if (!cornerFlags) { circularRadius = radii[c].fX; cornerFlags = 1 << c; } else { if (radii[c].fX != circularRadius) { cornerFlags = ~0U; break; } cornerFlags |= 1 << c; } } switch (cornerFlags) { case CircularRRectEffect::kAll_CornerFlags: // This rrect should have been caught in the simple case above. Though, it would // be correctly handled in the fallthrough code. SkASSERT(false); [[fallthrough]]; case CircularRRectEffect::kTopLeft_CornerFlag: case CircularRRectEffect::kTopRight_CornerFlag: case CircularRRectEffect::kBottomRight_CornerFlag: case CircularRRectEffect::kBottomLeft_CornerFlag: case CircularRRectEffect::kLeft_CornerFlags: case CircularRRectEffect::kTop_CornerFlags: case CircularRRectEffect::kRight_CornerFlags: case CircularRRectEffect::kBottom_CornerFlags: { SkTCopyOnFirstWrite rr(rrect); if (squashedRadii) { rr.writable()->setRectRadii(rrect.getBounds(), radii); } return CircularRRectEffect::Make(std::move(inputFP), edgeType, cornerFlags, *rr); } case CircularRRectEffect::kNone_CornerFlags: { auto fp = GrFragmentProcessor::Rect(std::move(inputFP), edgeType, rrect.getBounds()); return GrFPSuccess(std::move(fp)); } default: { const SkVector ul = rrect.radii(SkRRect::kUpperLeft_Corner); const SkVector lr = rrect.radii(SkRRect::kLowerRight_Corner); if (rrect.isNinePatch() && ul.fX >= kRadiusMin && ul.fY >= kRadiusMin && lr.fX >= kRadiusMin && lr.fY >= kRadiusMin) { return EllipticalRRectEffect::Make(std::move(inputFP), edgeType, rrect); } return GrFPFailure(std::move(inputFP)); } } } return GrFPFailure(std::move(inputFP)); }