/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/GrGpu.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkSurface.h" #include "include/core/SkTextureCompressionType.h" #include "include/gpu/ganesh/GrBackendSemaphore.h" #include "include/gpu/ganesh/GrBackendSurface.h" #include "include/gpu/ganesh/GrDirectContext.h" #include "include/private/base/SkTo.h" #include "src/base/SkMathPriv.h" #include "src/core/SkCompressedDataUtils.h" #include "src/core/SkTraceEvent.h" #include "src/gpu/RefCntedCallback.h" #include "src/gpu/ganesh/GrBackendUtils.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrDirectContextPriv.h" #include "src/gpu/ganesh/GrGpuBuffer.h" #include "src/gpu/ganesh/GrGpuResourcePriv.h" #include "src/gpu/ganesh/GrRenderTarget.h" #include "src/gpu/ganesh/GrResourceProvider.h" #include "src/gpu/ganesh/GrRingBuffer.h" #include "src/gpu/ganesh/GrSemaphore.h" #include "src/gpu/ganesh/GrStagingBufferManager.h" #include "src/gpu/ganesh/GrSurface.h" #include "src/gpu/ganesh/GrTexture.h" #include #include using namespace skia_private; //////////////////////////////////////////////////////////////////////////////// GrGpu::GrGpu(GrDirectContext* direct) : fResetBits(kAll_GrBackendState), fContext(direct) {} GrGpu::~GrGpu() { this->callSubmittedProcs(false); } void GrGpu::initCaps(sk_sp caps) { fCaps = std::move(caps); } void GrGpu::disconnect(DisconnectType type) {} //////////////////////////////////////////////////////////////////////////////// static bool validate_texel_levels(SkISize dimensions, GrColorType texelColorType, const GrMipLevel* texels, int mipLevelCount, const GrCaps* caps) { SkASSERT(mipLevelCount > 0); bool hasBasePixels = texels[0].fPixels; int levelsWithPixelsCnt = 0; auto bpp = GrColorTypeBytesPerPixel(texelColorType); int w = dimensions.fWidth; int h = dimensions.fHeight; for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; ++currentMipLevel) { if (texels[currentMipLevel].fPixels) { const size_t minRowBytes = w * bpp; if (caps->writePixelsRowBytesSupport()) { if (texels[currentMipLevel].fRowBytes < minRowBytes) { return false; } if (texels[currentMipLevel].fRowBytes % bpp) { return false; } } else { if (texels[currentMipLevel].fRowBytes != minRowBytes) { return false; } } ++levelsWithPixelsCnt; } if (w == 1 && h == 1) { if (currentMipLevel != mipLevelCount - 1) { return false; } } else { w = std::max(w / 2, 1); h = std::max(h / 2, 1); } } // Either just a base layer or a full stack is required. if (mipLevelCount != 1 && (w != 1 || h != 1)) { return false; } // Can specify just the base, all levels, or no levels. if (!hasBasePixels) { return levelsWithPixelsCnt == 0; } return levelsWithPixelsCnt == 1 || levelsWithPixelsCnt == mipLevelCount; } sk_sp GrGpu::createTextureCommon(SkISize dimensions, const GrBackendFormat& format, GrTextureType textureType, GrRenderable renderable, int renderTargetSampleCnt, skgpu::Budgeted budgeted, GrProtected isProtected, int mipLevelCount, uint32_t levelClearMask, std::string_view label) { if (this->caps()->isFormatCompressed(format)) { // Call GrGpu::createCompressedTexture. return nullptr; } skgpu::Mipmapped mipmapped = mipLevelCount > 1 ? skgpu::Mipmapped::kYes : skgpu::Mipmapped::kNo; if (!this->caps()->validateSurfaceParams(dimensions, format, renderable, renderTargetSampleCnt, mipmapped, textureType)) { return nullptr; } if (renderable == GrRenderable::kYes) { renderTargetSampleCnt = this->caps()->getRenderTargetSampleCount(renderTargetSampleCnt, format); } // Attempt to catch un- or wrongly initialized sample counts. SkASSERT(renderTargetSampleCnt > 0 && renderTargetSampleCnt <= 64); this->handleDirtyContext(); auto tex = this->onCreateTexture(dimensions, format, renderable, renderTargetSampleCnt, budgeted, isProtected, mipLevelCount, levelClearMask, label); if (tex) { SkASSERT(tex->backendFormat() == format); SkASSERT(GrRenderable::kNo == renderable || tex->asRenderTarget()); if (!this->caps()->reuseScratchTextures() && renderable == GrRenderable::kNo) { tex->resourcePriv().removeScratchKey(); } fStats.incTextureCreates(); if (renderTargetSampleCnt > 1 && !this->caps()->msaaResolvesAutomatically()) { SkASSERT(GrRenderable::kYes == renderable); tex->asRenderTarget()->setRequiresManualMSAAResolve(); } } return tex; } sk_sp GrGpu::createTexture(SkISize dimensions, const GrBackendFormat& format, GrTextureType textureType, GrRenderable renderable, int renderTargetSampleCnt, skgpu::Mipmapped mipmapped, skgpu::Budgeted budgeted, GrProtected isProtected, std::string_view label) { int mipLevelCount = 1; if (mipmapped == skgpu::Mipmapped::kYes) { mipLevelCount = 32 - SkCLZ(static_cast(std::max(dimensions.fWidth, dimensions.fHeight))); } uint32_t levelClearMask = this->caps()->shouldInitializeTextures() ? (1 << mipLevelCount) - 1 : 0; auto tex = this->createTextureCommon(dimensions, format, textureType, renderable, renderTargetSampleCnt, budgeted, isProtected, mipLevelCount, levelClearMask, label); if (tex && mipmapped == skgpu::Mipmapped::kYes && levelClearMask) { tex->markMipmapsClean(); } return tex; } sk_sp GrGpu::createTexture(SkISize dimensions, const GrBackendFormat& format, GrTextureType textureType, GrRenderable renderable, int renderTargetSampleCnt, skgpu::Budgeted budgeted, GrProtected isProtected, GrColorType textureColorType, GrColorType srcColorType, const GrMipLevel texels[], int texelLevelCount, std::string_view label) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); if (texelLevelCount) { if (!validate_texel_levels(dimensions, srcColorType, texels, texelLevelCount, this->caps())) { return nullptr; } } int mipLevelCount = std::max(1, texelLevelCount); uint32_t levelClearMask = 0; if (this->caps()->shouldInitializeTextures()) { if (texelLevelCount) { for (int i = 0; i < mipLevelCount; ++i) { if (!texels->fPixels) { levelClearMask |= static_cast(1 << i); } } } else { levelClearMask = static_cast((1 << mipLevelCount) - 1); } } auto tex = this->createTextureCommon(dimensions, format, textureType, renderable, renderTargetSampleCnt, budgeted, isProtected, texelLevelCount, levelClearMask, label); if (tex) { bool markMipLevelsClean = false; // Currently if level 0 does not have pixels then no other level may, as enforced by // validate_texel_levels. if (texelLevelCount && texels[0].fPixels) { if (!this->writePixels(tex.get(), SkIRect::MakeSize(dimensions), textureColorType, srcColorType, texels, texelLevelCount)) { return nullptr; } // Currently if level[1] of mip map has pixel data then so must all other levels. // as enforced by validate_texel_levels. markMipLevelsClean = (texelLevelCount > 1 && !levelClearMask && texels[1].fPixels); fStats.incTextureUploads(); } else if (levelClearMask && mipLevelCount > 1) { markMipLevelsClean = true; } if (markMipLevelsClean) { tex->markMipmapsClean(); } } return tex; } sk_sp GrGpu::createCompressedTexture(SkISize dimensions, const GrBackendFormat& format, skgpu::Budgeted budgeted, skgpu::Mipmapped mipmapped, GrProtected isProtected, const void* data, size_t dataSize) { this->handleDirtyContext(); if (dimensions.width() < 1 || dimensions.width() > this->caps()->maxTextureSize() || dimensions.height() < 1 || dimensions.height() > this->caps()->maxTextureSize()) { return nullptr; } // Note if we relax the requirement that data must be provided then we must check // caps()->shouldInitializeTextures() here. if (!data) { return nullptr; } // TODO: expand CompressedDataIsCorrect to work here too SkTextureCompressionType compressionType = GrBackendFormatToCompressionType(format); if (compressionType == SkTextureCompressionType::kNone) { return nullptr; } if (!this->caps()->isFormatTexturable(format, GrTextureType::k2D)) { return nullptr; } if (dataSize < SkCompressedDataSize( compressionType, dimensions, nullptr, mipmapped == skgpu::Mipmapped::kYes)) { return nullptr; } return this->onCreateCompressedTexture(dimensions, format, budgeted, mipmapped, isProtected, data, dataSize); } sk_sp GrGpu::wrapBackendTexture(const GrBackendTexture& backendTex, GrWrapOwnership ownership, GrWrapCacheable cacheable, GrIOType ioType) { SkASSERT(ioType != kWrite_GrIOType); this->handleDirtyContext(); const GrCaps* caps = this->caps(); SkASSERT(caps); if (!caps->isFormatTexturable(backendTex.getBackendFormat(), backendTex.textureType())) { return nullptr; } if (backendTex.width() > caps->maxTextureSize() || backendTex.height() > caps->maxTextureSize()) { return nullptr; } return this->onWrapBackendTexture(backendTex, ownership, cacheable, ioType); } sk_sp GrGpu::wrapCompressedBackendTexture(const GrBackendTexture& backendTex, GrWrapOwnership ownership, GrWrapCacheable cacheable) { this->handleDirtyContext(); const GrCaps* caps = this->caps(); SkASSERT(caps); if (!caps->isFormatTexturable(backendTex.getBackendFormat(), backendTex.textureType())) { return nullptr; } if (backendTex.width() > caps->maxTextureSize() || backendTex.height() > caps->maxTextureSize()) { return nullptr; } return this->onWrapCompressedBackendTexture(backendTex, ownership, cacheable); } sk_sp GrGpu::wrapRenderableBackendTexture(const GrBackendTexture& backendTex, int sampleCnt, GrWrapOwnership ownership, GrWrapCacheable cacheable) { this->handleDirtyContext(); if (sampleCnt < 1) { return nullptr; } const GrCaps* caps = this->caps(); if (!caps->isFormatTexturable(backendTex.getBackendFormat(), backendTex.textureType()) || !caps->isFormatRenderable(backendTex.getBackendFormat(), sampleCnt)) { return nullptr; } if (backendTex.width() > caps->maxRenderTargetSize() || backendTex.height() > caps->maxRenderTargetSize()) { return nullptr; } sk_sp tex = this->onWrapRenderableBackendTexture(backendTex, sampleCnt, ownership, cacheable); SkASSERT(!tex || tex->asRenderTarget()); if (tex && sampleCnt > 1 && !caps->msaaResolvesAutomatically()) { tex->asRenderTarget()->setRequiresManualMSAAResolve(); } return tex; } sk_sp GrGpu::wrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) { this->handleDirtyContext(); const GrCaps* caps = this->caps(); if (!caps->isFormatRenderable(backendRT.getBackendFormat(), backendRT.sampleCnt())) { return nullptr; } sk_sp rt = this->onWrapBackendRenderTarget(backendRT); if (backendRT.isFramebufferOnly()) { rt->setFramebufferOnly(); } return rt; } sk_sp GrGpu::wrapVulkanSecondaryCBAsRenderTarget(const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) { return this->onWrapVulkanSecondaryCBAsRenderTarget(imageInfo, vkInfo); } sk_sp GrGpu::onWrapVulkanSecondaryCBAsRenderTarget(const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) { // This is only supported on Vulkan so we default to returning nullptr here return nullptr; } sk_sp GrGpu::createBuffer(size_t size, GrGpuBufferType intendedType, GrAccessPattern accessPattern) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); this->handleDirtyContext(); if ((intendedType == GrGpuBufferType::kXferCpuToGpu || intendedType == GrGpuBufferType::kXferGpuToCpu) && accessPattern == kStatic_GrAccessPattern) { return nullptr; } sk_sp buffer = this->onCreateBuffer(size, intendedType, accessPattern); if (buffer && !this->caps()->reuseScratchBuffers()) { buffer->resourcePriv().removeScratchKey(); } return buffer; } bool GrGpu::copySurface(GrSurface* dst, const SkIRect& dstRect, GrSurface* src, const SkIRect& srcRect, GrSamplerState::Filter filter) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(dst && src); SkASSERT(!src->framebufferOnly()); if (dst->readOnly()) { return false; } this->handleDirtyContext(); return this->onCopySurface(dst, dstRect, src, srcRect, filter); } bool GrGpu::readPixels(GrSurface* surface, SkIRect rect, GrColorType surfaceColorType, GrColorType dstColorType, void* buffer, size_t rowBytes) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(surface); SkASSERT(!surface->framebufferOnly()); SkASSERT(this->caps()->areColorTypeAndFormatCompatible(surfaceColorType, surface->backendFormat())); SkASSERT(dstColorType != GrColorType::kUnknown); if (!SkIRect::MakeSize(surface->dimensions()).contains(rect)) { return false; } size_t minRowBytes = SkToSizeT(GrColorTypeBytesPerPixel(dstColorType) * rect.width()); if (!this->caps()->readPixelsRowBytesSupport()) { if (rowBytes != minRowBytes) { return false; } } else { if (rowBytes < minRowBytes) { return false; } if (rowBytes % GrColorTypeBytesPerPixel(dstColorType)) { return false; } } this->handleDirtyContext(); return this->onReadPixels(surface, rect, surfaceColorType, dstColorType, buffer, rowBytes); } bool GrGpu::writePixels(GrSurface* surface, SkIRect rect, GrColorType surfaceColorType, GrColorType srcColorType, const GrMipLevel texels[], int mipLevelCount, bool prepForTexSampling) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); ATRACE_ANDROID_FRAMEWORK_ALWAYS("Texture upload(%u) %ix%i", surface->uniqueID().asUInt(), rect.width(), rect.height()); SkASSERT(surface); SkASSERT(!surface->framebufferOnly()); if (surface->readOnly()) { return false; } if (mipLevelCount == 0) { return false; } else if (mipLevelCount == 1) { // We require that if we are not mipped, then the write region is contained in the surface if (!SkIRect::MakeSize(surface->dimensions()).contains(rect)) { return false; } } else if (rect != SkIRect::MakeSize(surface->dimensions())) { // We require that if the texels are mipped, than the write region is the entire surface return false; } if (!validate_texel_levels(rect.size(), srcColorType, texels, mipLevelCount, this->caps())) { return false; } this->handleDirtyContext(); if (!this->onWritePixels(surface, rect, surfaceColorType, srcColorType, texels, mipLevelCount, prepForTexSampling)) { return false; } this->didWriteToSurface(surface, kTopLeft_GrSurfaceOrigin, &rect, mipLevelCount); fStats.incTextureUploads(); return true; } bool GrGpu::transferFromBufferToBuffer(sk_sp src, size_t srcOffset, sk_sp dst, size_t dstOffset, size_t size) { SkASSERT(src); SkASSERT(dst); SkASSERT(srcOffset % this->caps()->transferFromBufferToBufferAlignment() == 0); SkASSERT(dstOffset % this->caps()->transferFromBufferToBufferAlignment() == 0); SkASSERT(size % this->caps()->transferFromBufferToBufferAlignment() == 0); SkASSERT(srcOffset + size <= src->size()); SkASSERT(dstOffset + size <= dst->size()); SkASSERT(src->intendedType() == GrGpuBufferType::kXferCpuToGpu); SkASSERT(dst->intendedType() != GrGpuBufferType::kXferCpuToGpu); this->handleDirtyContext(); if (!this->onTransferFromBufferToBuffer(std::move(src), srcOffset, std::move(dst), dstOffset, size)) { return false; } fStats.incBufferTransfers(); return true; } bool GrGpu::transferPixelsTo(GrTexture* texture, SkIRect rect, GrColorType textureColorType, GrColorType bufferColorType, sk_sp transferBuffer, size_t offset, size_t rowBytes) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(texture); SkASSERT(transferBuffer); SkASSERT(transferBuffer->intendedType() == GrGpuBufferType::kXferCpuToGpu); if (texture->readOnly()) { return false; } // We require that the write region is contained in the texture if (!SkIRect::MakeSize(texture->dimensions()).contains(rect)) { return false; } size_t bpp = GrColorTypeBytesPerPixel(bufferColorType); if (this->caps()->writePixelsRowBytesSupport()) { if (rowBytes < SkToSizeT(bpp*rect.width())) { return false; } if (rowBytes % bpp) { return false; } } else { if (rowBytes != SkToSizeT(bpp*rect.width())) { return false; } } this->handleDirtyContext(); if (!this->onTransferPixelsTo(texture, rect, textureColorType, bufferColorType, std::move(transferBuffer), offset, rowBytes)) { return false; } this->didWriteToSurface(texture, kTopLeft_GrSurfaceOrigin, &rect); fStats.incTransfersToTexture(); return true; } bool GrGpu::transferPixelsFrom(GrSurface* surface, SkIRect rect, GrColorType surfaceColorType, GrColorType bufferColorType, sk_sp transferBuffer, size_t offset) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(surface); SkASSERT(transferBuffer); SkASSERT(transferBuffer->intendedType() == GrGpuBufferType::kXferGpuToCpu); SkASSERT(this->caps()->areColorTypeAndFormatCompatible(surfaceColorType, surface->backendFormat())); #ifdef SK_DEBUG auto supportedRead = this->caps()->supportedReadPixelsColorType( surfaceColorType, surface->backendFormat(), bufferColorType); SkASSERT(supportedRead.fOffsetAlignmentForTransferBuffer); SkASSERT(offset % supportedRead.fOffsetAlignmentForTransferBuffer == 0); #endif // We require that the write region is contained in the texture if (!SkIRect::MakeSize(surface->dimensions()).contains(rect)) { return false; } this->handleDirtyContext(); if (!this->onTransferPixelsFrom(surface, rect, surfaceColorType, bufferColorType, std::move(transferBuffer), offset)) { return false; } fStats.incTransfersFromSurface(); return true; } bool GrGpu::regenerateMipMapLevels(GrTexture* texture) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(texture); SkASSERT(this->caps()->mipmapSupport()); SkASSERT(texture->mipmapped() == skgpu::Mipmapped::kYes); if (!texture->mipmapsAreDirty()) { // This can happen when the proxy expects mipmaps to be dirty, but they are not dirty on the // actual target. This may be caused by things that the drawingManager could not predict, // i.e., ops that don't draw anything, aborting a draw for exceptional circumstances, etc. // NOTE: This goes away once we quit tracking mipmap state on the actual texture. return true; } if (texture->readOnly()) { return false; } if (this->onRegenerateMipMapLevels(texture)) { texture->markMipmapsClean(); return true; } return false; } void GrGpu::resetTextureBindings() { this->handleDirtyContext(); this->onResetTextureBindings(); } void GrGpu::resolveRenderTarget(GrRenderTarget* target, const SkIRect& resolveRect) { SkASSERT(target); this->handleDirtyContext(); this->onResolveRenderTarget(target, resolveRect); } void GrGpu::didWriteToSurface(GrSurface* surface, GrSurfaceOrigin origin, const SkIRect* bounds, uint32_t mipLevels) const { SkASSERT(surface); SkASSERT(!surface->readOnly()); // Mark any MIP chain as dirty if and only if there is a non-empty bounds. if (nullptr == bounds || !bounds->isEmpty()) { GrTexture* texture = surface->asTexture(); if (texture) { if (mipLevels == 1) { texture->markMipmapsDirty(); } else { texture->markMipmapsClean(); } } } } void GrGpu::executeFlushInfo(SkSpan proxies, SkSurfaces::BackendSurfaceAccess access, const GrFlushInfo& info, std::optional timerQuery, const skgpu::MutableTextureState* newState) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); GrResourceProvider* resourceProvider = fContext->priv().resourceProvider(); std::unique_ptr[]> semaphores( new std::unique_ptr[info.fNumSemaphores]); if (this->caps()->backendSemaphoreSupport() && info.fNumSemaphores) { for (size_t i = 0; i < info.fNumSemaphores; ++i) { if (info.fSignalSemaphores[i].isInitialized()) { semaphores[i] = resourceProvider->wrapBackendSemaphore( info.fSignalSemaphores[i], GrSemaphoreWrapType::kWillSignal, kBorrow_GrWrapOwnership); // If we failed to wrap the semaphore it means the client didn't give us a valid // semaphore to begin with. Therefore, it is fine to not signal it. if (semaphores[i]) { this->insertSemaphore(semaphores[i].get()); } } else { semaphores[i] = resourceProvider->makeSemaphore(false); if (semaphores[i]) { this->insertSemaphore(semaphores[i].get()); info.fSignalSemaphores[i] = semaphores[i]->backendSemaphore(); } } } } if (timerQuery) { this->endTimerQuery(*timerQuery); } skgpu::AutoCallback callback; if (info.fFinishedWithStatsProc) { callback = skgpu::AutoCallback(info.fFinishedWithStatsProc, info.fFinishedContext); } else { callback = skgpu::AutoCallback(info.fFinishedProc, info.fFinishedContext); } if (callback) { this->addFinishedCallback(std::move(callback), std::move(timerQuery)); } if (info.fSubmittedProc) { fSubmittedProcs.emplace_back(info.fSubmittedProc, info.fSubmittedContext); } // We currently don't support passing in new surface state for multiple proxies here. The only // time we have multiple proxies is if we are flushing a yuv SkImage which won't have state // updates anyways. SkASSERT(!newState || proxies.size() == 1); SkASSERT(!newState || access == SkSurfaces::BackendSurfaceAccess::kNoAccess); this->prepareSurfacesForBackendAccessAndStateUpdates(proxies, access, newState); } GrOpsRenderPass* GrGpu::getOpsRenderPass( GrRenderTarget* renderTarget, bool useMSAASurface, GrAttachment* stencil, GrSurfaceOrigin origin, const SkIRect& bounds, const GrOpsRenderPass::LoadAndStoreInfo& colorInfo, const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo, const TArray& sampledProxies, GrXferBarrierFlags renderPassXferBarriers) { #if SK_HISTOGRAMS_ENABLED fCurrentSubmitRenderPassCount++; #endif fStats.incRenderPasses(); return this->onGetOpsRenderPass(renderTarget, useMSAASurface, stencil, origin, bounds, colorInfo, stencilInfo, sampledProxies, renderPassXferBarriers); } bool GrGpu::submitToGpu(const GrSubmitInfo& info) { this->stats()->incNumSubmitToGpus(); if (auto manager = this->stagingBufferManager()) { manager->detachBuffers(); } if (auto uniformsBuffer = this->uniformsRingBuffer()) { uniformsBuffer->startSubmit(this); } bool submitted = this->onSubmitToGpu(info); this->callSubmittedProcs(submitted); this->reportSubmitHistograms(); return submitted; } void GrGpu::reportSubmitHistograms() { #if SK_HISTOGRAMS_ENABLED // The max allowed value for SK_HISTOGRAM_EXACT_LINEAR is 100. If we want to support higher // values we can add SK_HISTOGRAM_CUSTOM_COUNTS but this has a number of buckets that is less // than the number of actual values [[maybe_unused]] static constexpr int kMaxRenderPassBucketValue = 100; SK_HISTOGRAM_EXACT_LINEAR("SubmitRenderPasses", std::min(fCurrentSubmitRenderPassCount, kMaxRenderPassBucketValue), kMaxRenderPassBucketValue); fCurrentSubmitRenderPassCount = 0; #endif this->onReportSubmitHistograms(); } bool GrGpu::checkAndResetOOMed() { if (fOOMed) { fOOMed = false; return true; } return false; } void GrGpu::callSubmittedProcs(bool success) { for (int i = 0; i < fSubmittedProcs.size(); ++i) { fSubmittedProcs[i].fProc(fSubmittedProcs[i].fContext, success); } fSubmittedProcs.clear(); } #ifdef SK_ENABLE_DUMP_GPU #include "src/utils/SkJSONWriter.h" void GrGpu::dumpJSON(SkJSONWriter* writer) const { writer->beginObject(); // TODO: Is there anything useful in the base class to dump here? this->onDumpJSON(writer); writer->endObject(); } #else void GrGpu::dumpJSON(SkJSONWriter* writer) const { } #endif #if defined(GPU_TEST_UTILS) #if GR_GPU_STATS void GrGpu::Stats::dump(SkString* out) { out->appendf("Textures Created: %d\n", fTextureCreates); out->appendf("Texture Uploads: %d\n", fTextureUploads); out->appendf("Transfers to Texture: %d\n", fTransfersToTexture); out->appendf("Transfers from Surface: %d\n", fTransfersFromSurface); out->appendf("Stencil Buffer Creates: %d\n", fStencilAttachmentCreates); out->appendf("MSAA Attachment Creates: %d\n", fMSAAAttachmentCreates); out->appendf("Number of draws: %d\n", fNumDraws); out->appendf("Number of Scratch Textures reused %d\n", fNumScratchTexturesReused); out->appendf("Number of Scratch MSAA Attachments reused %d\n", fNumScratchMSAAAttachmentsReused); out->appendf("Number of Render Passes: %d\n", fRenderPasses); out->appendf("Reordered DAGs Over Budget: %d\n", fNumReorderedDAGsOverBudget); // enable this block to output CSV-style stats for program pre-compilation #if 0 SkASSERT(fNumInlineCompilationFailures == 0); SkASSERT(fNumPreCompilationFailures == 0); SkASSERT(fNumCompilationFailures == 0); SkASSERT(fNumPartialCompilationSuccesses == 0); SkDebugf("%d, %d, %d, %d, %d\n", fInlineProgramCacheStats[(int) Stats::ProgramCacheResult::kHit], fInlineProgramCacheStats[(int) Stats::ProgramCacheResult::kMiss], fPreProgramCacheStats[(int) Stats::ProgramCacheResult::kHit], fPreProgramCacheStats[(int) Stats::ProgramCacheResult::kMiss], fNumCompilationSuccesses); #endif } void GrGpu::Stats::dumpKeyValuePairs(TArray* keys, TArray* values) { keys->push_back(SkString("render_passes")); values->push_back(fRenderPasses); keys->push_back(SkString("reordered_dags_over_budget")); values->push_back(fNumReorderedDAGsOverBudget); } #endif // GR_GPU_STATS #endif // defined(GPU_TEST_UTILS) bool GrGpu::CompressedDataIsCorrect(SkISize dimensions, SkTextureCompressionType compressionType, skgpu::Mipmapped mipmapped, const void* data, size_t length) { size_t computedSize = SkCompressedDataSize( compressionType, dimensions, nullptr, mipmapped == skgpu::Mipmapped::kYes); return computedSize == length; } GrBackendTexture GrGpu::createBackendTexture(SkISize dimensions, const GrBackendFormat& format, GrRenderable renderable, skgpu::Mipmapped mipmapped, GrProtected isProtected, std::string_view label) { const GrCaps* caps = this->caps(); if (!format.isValid()) { return {}; } if (caps->isFormatCompressed(format)) { // Compressed formats must go through the createCompressedBackendTexture API return {}; } if (dimensions.isEmpty() || dimensions.width() > caps->maxTextureSize() || dimensions.height() > caps->maxTextureSize()) { return {}; } if (mipmapped == skgpu::Mipmapped::kYes && !this->caps()->mipmapSupport()) { return {}; } return this->onCreateBackendTexture( dimensions, format, renderable, mipmapped, isProtected, label); } bool GrGpu::clearBackendTexture(const GrBackendTexture& backendTexture, sk_sp finishedCallback, std::array color) { if (!backendTexture.isValid()) { return false; } if (backendTexture.hasMipmaps() && !this->caps()->mipmapSupport()) { return false; } return this->onClearBackendTexture(backendTexture, std::move(finishedCallback), color); } GrBackendTexture GrGpu::createCompressedBackendTexture(SkISize dimensions, const GrBackendFormat& format, skgpu::Mipmapped mipmapped, GrProtected isProtected) { const GrCaps* caps = this->caps(); if (!format.isValid()) { return {}; } SkTextureCompressionType compressionType = GrBackendFormatToCompressionType(format); if (compressionType == SkTextureCompressionType::kNone) { // Uncompressed formats must go through the createBackendTexture API return {}; } if (dimensions.isEmpty() || dimensions.width() > caps->maxTextureSize() || dimensions.height() > caps->maxTextureSize()) { return {}; } if (mipmapped == skgpu::Mipmapped::kYes && !this->caps()->mipmapSupport()) { return {}; } return this->onCreateCompressedBackendTexture(dimensions, format, mipmapped, isProtected); } bool GrGpu::updateCompressedBackendTexture(const GrBackendTexture& backendTexture, sk_sp finishedCallback, const void* data, size_t length) { SkASSERT(data); if (!backendTexture.isValid()) { return false; } GrBackendFormat format = backendTexture.getBackendFormat(); SkTextureCompressionType compressionType = GrBackendFormatToCompressionType(format); if (compressionType == SkTextureCompressionType::kNone) { // Uncompressed formats must go through the createBackendTexture API return false; } if (backendTexture.hasMipmaps() && !this->caps()->mipmapSupport()) { return false; } skgpu::Mipmapped mipmapped = backendTexture.hasMipmaps() ? skgpu::Mipmapped::kYes : skgpu::Mipmapped::kNo; if (!CompressedDataIsCorrect(backendTexture.dimensions(), compressionType, mipmapped, data, length)) { return false; } return this->onUpdateCompressedBackendTexture(backendTexture, std::move(finishedCallback), data, length); }