/* * Copyright 2017 ARM Ltd. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/GrDistanceFieldGenFromVector.h" #include "include/core/SkMatrix.h" #include "include/core/SkPath.h" #include "include/core/SkRect.h" #include "include/core/SkScalar.h" #include "include/private/base/SkAssert.h" #include "include/private/base/SkDebug.h" #include "include/private/base/SkPoint_impl.h" #include "include/private/base/SkTArray.h" #include "include/private/base/SkTPin.h" #include "include/private/base/SkTemplates.h" #include "src/base/SkAutoMalloc.h" #include "src/core/SkDistanceFieldGen.h" #include "src/core/SkGeometry.h" #include "src/core/SkPathPriv.h" #include "src/core/SkPointPriv.h" #include "src/core/SkRectPriv.h" #include "src/gpu/ganesh/geometry/GrPathUtils.h" #include #include using namespace skia_private; #if !defined(SK_ENABLE_OPTIMIZE_SIZE) namespace { // TODO: should we make this real (i.e. src/core) and distinguish it from // pathops SkDPoint? struct DPoint { double fX, fY; double distanceSquared(DPoint p) const { double dx = fX - p.fX; double dy = fY - p.fY; return dx*dx + dy*dy; } double distance(DPoint p) const { return sqrt(this->distanceSquared(p)); } }; } /** * If a scanline (a row of texel) cross from the kRight_SegSide * of a segment to the kLeft_SegSide, the winding score should * add 1. * And winding score should subtract 1 if the scanline cross * from kLeft_SegSide to kRight_SegSide. * Always return kNA_SegSide if the scanline does not cross over * the segment. Winding score should be zero in this case. * You can get the winding number for each texel of the scanline * by adding the winding score from left to right. * Assuming we always start from outside, so the winding number * should always start from zero. * ________ ________ * | | | | * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment * |+1 |-1 |-1 |+1 <= Winding score * 0 | 1 ^ 0 ^ -1 |0 <= Winding number * |________| |________| * * .......NA................NA.......... * 0 0 */ enum SegSide { kLeft_SegSide = -1, kOn_SegSide = 0, kRight_SegSide = 1, kNA_SegSide = 2, }; struct DFData { float fDistSq; // distance squared to nearest (so far) edge int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment }; /////////////////////////////////////////////////////////////////////////////// /* * Type definition for double precision DAffineMatrix */ // Matrix with double precision for affine transformation. // We don't store row 3 because its always (0, 0, 1). class DAffineMatrix { public: double operator[](int index) const { SkASSERT((unsigned)index < 6); return fMat[index]; } double& operator[](int index) { SkASSERT((unsigned)index < 6); return fMat[index]; } void setAffine(double m11, double m12, double m13, double m21, double m22, double m23) { fMat[0] = m11; fMat[1] = m12; fMat[2] = m13; fMat[3] = m21; fMat[4] = m22; fMat[5] = m23; } /** Set the matrix to identity */ void reset() { fMat[0] = fMat[4] = 1.0; fMat[1] = fMat[3] = fMat[2] = fMat[5] = 0.0; } // alias for reset() void setIdentity() { this->reset(); } DPoint mapPoint(const SkPoint& src) const { DPoint pt = {src.fX, src.fY}; return this->mapPoint(pt); } DPoint mapPoint(const DPoint& src) const { return { fMat[0] * src.fX + fMat[1] * src.fY + fMat[2], fMat[3] * src.fX + fMat[4] * src.fY + fMat[5] }; } private: double fMat[6]; }; /////////////////////////////////////////////////////////////////////////////// static const double kClose = (SK_Scalar1 / 16.0); static const double kCloseSqd = kClose * kClose; static const double kNearlyZero = (SK_Scalar1 / (1 << 18)); static const double kTangentTolerance = (SK_Scalar1 / (1 << 11)); static const float kConicTolerance = 0.25f; // returns true if a >= min(b,c) && a < max(b,c) static inline bool between_closed_open(double a, double b, double c, double tolerance = 0.0, bool xformToleranceToX = false) { SkASSERT(tolerance >= 0.0); double tolB = tolerance; double tolC = tolerance; if (xformToleranceToX) { // Canonical space is y = x^2 and the derivative of x^2 is 2x. // So the slope of the tangent line at point (x, x^2) is 2x. // // /| // sqrt(2x * 2x + 1 * 1) / | 2x // /__| // 1 tolB = tolerance / sqrt(4.0 * b * b + 1.0); tolC = tolerance / sqrt(4.0 * c * c + 1.0); } return b < c ? (a >= b - tolB && a < c - tolC) : (a >= c - tolC && a < b - tolB); } // returns true if a >= min(b,c) && a <= max(b,c) static inline bool between_closed(double a, double b, double c, double tolerance = 0.0, bool xformToleranceToX = false) { SkASSERT(tolerance >= 0.0); double tolB = tolerance; double tolC = tolerance; if (xformToleranceToX) { tolB = tolerance / sqrt(4.0 * b * b + 1.0); tolC = tolerance / sqrt(4.0 * c * c + 1.0); } return b < c ? (a >= b - tolB && a <= c + tolC) : (a >= c - tolC && a <= b + tolB); } static inline bool nearly_zero(double x, double tolerance = kNearlyZero) { SkASSERT(tolerance >= 0.0); return fabs(x) <= tolerance; } static inline bool nearly_equal(double x, double y, double tolerance = kNearlyZero, bool xformToleranceToX = false) { SkASSERT(tolerance >= 0.0); if (xformToleranceToX) { tolerance = tolerance / sqrt(4.0 * y * y + 1.0); } return fabs(x - y) <= tolerance; } static inline double sign_of(const double &val) { return std::copysign(1, val); } static bool is_colinear(const SkPoint pts[3]) { return nearly_zero((pts[1].fY - pts[0].fY) * (pts[1].fX - pts[2].fX) - (pts[1].fY - pts[2].fY) * (pts[1].fX - pts[0].fX), kCloseSqd); } class PathSegment { public: enum { kLine = 0, kQuad = 1, } fType; // These enum values are assumed in member functions below. static_assert(0 == kLine && 1 == kQuad); // line uses 2 pts, quad uses 3 pts SkPoint fPts[3]; DPoint fP0T, fP2T; DAffineMatrix fXformMatrix; // transforms the segment into canonical space double fScalingFactor; double fScalingFactorSqd; double fNearlyZeroScaled; double fTangentTolScaledSqd; SkRect fBoundingBox; void init(); int countPoints() const { SkASSERT(fType == kLine || fType == kQuad); return fType + 2; } const SkPoint& endPt() const { SkASSERT(fType == kLine || fType == kQuad); return fPts[fType + 1]; } }; typedef TArray PathSegmentArray; void PathSegment::init() { const DPoint p0 = { fPts[0].fX, fPts[0].fY }; const DPoint p2 = { this->endPt().fX, this->endPt().fY }; const double p0x = p0.fX; const double p0y = p0.fY; const double p2x = p2.fX; const double p2y = p2.fY; fBoundingBox.set(fPts[0], this->endPt()); if (fType == PathSegment::kLine) { fScalingFactorSqd = fScalingFactor = 1.0; double hypotenuse = p0.distance(p2); if (SkTAbs(hypotenuse) < 1.0e-100) { fXformMatrix.reset(); } else { const double cosTheta = (p2x - p0x) / hypotenuse; const double sinTheta = (p2y - p0y) / hypotenuse; // rotates the segment to the x-axis, with p0 at the origin fXformMatrix.setAffine( cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y), -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y) ); } } else { SkASSERT(fType == PathSegment::kQuad); // Calculate bounding box const SkPoint m = fPts[0]*0.25f + fPts[1]*0.5f + fPts[2]*0.25f; // midpoint of curve SkRectPriv::GrowToInclude(&fBoundingBox, m); const double p1x = fPts[1].fX; const double p1y = fPts[1].fY; const double p0xSqd = p0x * p0x; const double p0ySqd = p0y * p0y; const double p2xSqd = p2x * p2x; const double p2ySqd = p2y * p2y; const double p1xSqd = p1x * p1x; const double p1ySqd = p1y * p1y; const double p01xProd = p0x * p1x; const double p02xProd = p0x * p2x; const double b12xProd = p1x * p2x; const double p01yProd = p0y * p1y; const double p02yProd = p0y * p2y; const double b12yProd = p1y * p2y; // calculate quadratic params const double sqrtA = p0y - (2.0 * p1y) + p2y; const double a = sqrtA * sqrtA; const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x); const double sqrtB = p0x - (2.0 * p1x) + p2x; const double b = sqrtB * sqrtB; const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd) - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd) + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd) + (p2xSqd * p0ySqd); const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd) + (2.0 * p0x * b12yProd) - (p0x * p2ySqd) + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd) + (2.0 * p1x * b12yProd) - (p2x * p0ySqd) + (2.0 * p2x * p01yProd) + (p2x * p02yProd) - (2.0 * p2x * p1ySqd); const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y) - (2.0 * p01xProd * p2y) - (p02xProd * p0y) + (4.0 * p02xProd * p1y) - (p02xProd * p2y) + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y) - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y) + (p2xSqd * p0y)); const double cosTheta = sqrt(a / (a + b)); const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); const double gDef = cosTheta * g - sinTheta * f; const double fDef = sinTheta * g + cosTheta * f; const double x0 = gDef / (a + b); const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b))); const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); fScalingFactor = fabs(1.0 / lambda); fScalingFactorSqd = fScalingFactor * fScalingFactor; const double lambda_cosTheta = lambda * cosTheta; const double lambda_sinTheta = lambda * sinTheta; // transforms to lie on a canonical y = x^2 parabola fXformMatrix.setAffine( lambda_cosTheta, -lambda_sinTheta, lambda * x0, lambda_sinTheta, lambda_cosTheta, lambda * y0 ); } fNearlyZeroScaled = kNearlyZero / fScalingFactor; fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd; fP0T = fXformMatrix.mapPoint(p0); fP2T = fXformMatrix.mapPoint(p2); } static void init_distances(DFData* data, int size) { DFData* currData = data; for (int i = 0; i < size; ++i) { // init distance to "far away" currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude; currData->fDeltaWindingScore = 0; ++currData; } } static inline void add_line(const SkPoint pts[2], PathSegmentArray* segments) { segments->push_back(); segments->back().fType = PathSegment::kLine; segments->back().fPts[0] = pts[0]; segments->back().fPts[1] = pts[1]; segments->back().init(); } static inline void add_quad(const SkPoint pts[3], PathSegmentArray* segments) { if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd || SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd || is_colinear(pts)) { if (pts[0] != pts[2]) { SkPoint line_pts[2]; line_pts[0] = pts[0]; line_pts[1] = pts[2]; add_line(line_pts, segments); } } else { segments->push_back(); segments->back().fType = PathSegment::kQuad; segments->back().fPts[0] = pts[0]; segments->back().fPts[1] = pts[1]; segments->back().fPts[2] = pts[2]; segments->back().init(); } } static inline void add_cubic(const SkPoint pts[4], PathSegmentArray* segments) { STArray<15, SkPoint, true> quads; GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads); int count = quads.size(); for (int q = 0; q < count; q += 3) { add_quad(&quads[q], segments); } } static float calculate_nearest_point_for_quad( const PathSegment& segment, const DPoint &xFormPt) { static const float kThird = 0.33333333333f; static const float kTwentySeventh = 0.037037037f; const float a = 0.5f - (float)xFormPt.fY; const float b = -0.5f * (float)xFormPt.fX; const float a3 = a * a * a; const float b2 = b * b; const float c = (b2 * 0.25f) + (a3 * kTwentySeventh); if (c >= 0.f) { const float sqrtC = sqrt(c); const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); return result; } else { const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); const float phi = (float)acos(cosPhi); float result; if (xFormPt.fX > 0.f) { result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); if (!between_closed(result, segment.fP0T.fX, segment.fP2T.fX)) { result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); } } else { result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); if (!between_closed(result, segment.fP0T.fX, segment.fP2T.fX)) { result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); } } return result; } } // This structure contains some intermediate values shared by the same row. // It is used to calculate segment side of a quadratic bezier. struct RowData { // The intersection type of a scanline and y = x * x parabola in canonical space. enum IntersectionType { kNoIntersection, kVerticalLine, kTangentLine, kTwoPointsIntersect } fIntersectionType; // The direction of the quadratic segment/scanline in the canonical space. // 1: The quadratic segment/scanline going from negative x-axis to positive x-axis. // 0: The scanline is a vertical line in the canonical space. // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis. int fQuadXDirection; int fScanlineXDirection; // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type. double fYAtIntersection; // The x-value for two intersection points. double fXAtIntersection1; double fXAtIntersection2; }; void precomputation_for_row(RowData *rowData, const PathSegment& segment, const SkPoint& pointLeft, const SkPoint& pointRight) { if (segment.fType != PathSegment::kQuad) { return; } const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight); rowData->fQuadXDirection = (int)sign_of(segment.fP2T.fX - segment.fP0T.fX); rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.fX - xFormPtLeft.fX); const double x1 = xFormPtLeft.fX; const double y1 = xFormPtLeft.fY; const double x2 = xFormPtRight.fX; const double y2 = xFormPtRight.fY; if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) { rowData->fIntersectionType = RowData::kVerticalLine; rowData->fYAtIntersection = x1 * x1; rowData->fScanlineXDirection = 0; return; } // Line y = mx + b const double m = (y2 - y1) / (x2 - x1); const double b = -m * x1 + y1; const double m2 = m * m; const double c = m2 + 4.0 * b; const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0); // Check if the scanline is the tangent line of the curve, // and the curve start or end at the same y-coordinate of the scanline if ((rowData->fScanlineXDirection == 1 && (segment.fPts[0].fY == pointLeft.fY || segment.fPts[2].fY == pointLeft.fY)) && nearly_zero(c, tol)) { rowData->fIntersectionType = RowData::kTangentLine; rowData->fXAtIntersection1 = m / 2.0; rowData->fXAtIntersection2 = m / 2.0; } else if (c <= 0.0) { rowData->fIntersectionType = RowData::kNoIntersection; return; } else { rowData->fIntersectionType = RowData::kTwoPointsIntersect; const double d = sqrt(c); rowData->fXAtIntersection1 = (m + d) / 2.0; rowData->fXAtIntersection2 = (m - d) / 2.0; } } SegSide calculate_side_of_quad( const PathSegment& segment, const SkPoint& point, const DPoint& xFormPt, const RowData& rowData) { SegSide side = kNA_SegSide; if (RowData::kVerticalLine == rowData.fIntersectionType) { side = (SegSide)(int)(sign_of(xFormPt.fY - rowData.fYAtIntersection) * rowData.fQuadXDirection); } else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) { const double p1 = rowData.fXAtIntersection1; const double p2 = rowData.fXAtIntersection2; int signP1 = (int)sign_of(p1 - xFormPt.fX); bool includeP1 = true; bool includeP2 = true; if (rowData.fScanlineXDirection == 1) { if ((rowData.fQuadXDirection == -1 && segment.fPts[0].fY <= point.fY && nearly_equal(segment.fP0T.fX, p1, segment.fNearlyZeroScaled, true)) || (rowData.fQuadXDirection == 1 && segment.fPts[2].fY <= point.fY && nearly_equal(segment.fP2T.fX, p1, segment.fNearlyZeroScaled, true))) { includeP1 = false; } if ((rowData.fQuadXDirection == -1 && segment.fPts[2].fY <= point.fY && nearly_equal(segment.fP2T.fX, p2, segment.fNearlyZeroScaled, true)) || (rowData.fQuadXDirection == 1 && segment.fPts[0].fY <= point.fY && nearly_equal(segment.fP0T.fX, p2, segment.fNearlyZeroScaled, true))) { includeP2 = false; } } if (includeP1 && between_closed(p1, segment.fP0T.fX, segment.fP2T.fX, segment.fNearlyZeroScaled, true)) { side = (SegSide)(signP1 * rowData.fQuadXDirection); } if (includeP2 && between_closed(p2, segment.fP0T.fX, segment.fP2T.fX, segment.fNearlyZeroScaled, true)) { int signP2 = (int)sign_of(p2 - xFormPt.fX); if (side == kNA_SegSide || signP2 == 1) { side = (SegSide)(-signP2 * rowData.fQuadXDirection); } } } else if (RowData::kTangentLine == rowData.fIntersectionType) { // The scanline is the tangent line of current quadratic segment. const double p = rowData.fXAtIntersection1; int signP = (int)sign_of(p - xFormPt.fX); if (rowData.fScanlineXDirection == 1) { // The path start or end at the tangent point. if (segment.fPts[0].fY == point.fY) { side = (SegSide)(signP); } else if (segment.fPts[2].fY == point.fY) { side = (SegSide)(-signP); } } } return side; } static float distance_to_segment(const SkPoint& point, const PathSegment& segment, const RowData& rowData, SegSide* side) { SkASSERT(side); const DPoint xformPt = segment.fXformMatrix.mapPoint(point); if (segment.fType == PathSegment::kLine) { float result = SK_DistanceFieldPad * SK_DistanceFieldPad; if (between_closed(xformPt.fX, segment.fP0T.fX, segment.fP2T.fX)) { result = (float)(xformPt.fY * xformPt.fY); } else if (xformPt.fX < segment.fP0T.fX) { result = (float)(xformPt.fX * xformPt.fX + xformPt.fY * xformPt.fY); } else { result = (float)((xformPt.fX - segment.fP2T.fX) * (xformPt.fX - segment.fP2T.fX) + xformPt.fY * xformPt.fY); } if (between_closed_open(point.fY, segment.fBoundingBox.fTop, segment.fBoundingBox.fBottom)) { *side = (SegSide)(int)sign_of(xformPt.fY); } else { *side = kNA_SegSide; } return result; } else { SkASSERT(segment.fType == PathSegment::kQuad); const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt); float dist; if (between_closed(nearestPoint, segment.fP0T.fX, segment.fP2T.fX)) { DPoint x = { nearestPoint, nearestPoint * nearestPoint }; dist = (float)xformPt.distanceSquared(x); } else { const float distToB0T = (float)xformPt.distanceSquared(segment.fP0T); const float distToB2T = (float)xformPt.distanceSquared(segment.fP2T); if (distToB0T < distToB2T) { dist = distToB0T; } else { dist = distToB2T; } } if (between_closed_open(point.fY, segment.fBoundingBox.fTop, segment.fBoundingBox.fBottom)) { *side = calculate_side_of_quad(segment, point, xformPt, rowData); } else { *side = kNA_SegSide; } return (float)(dist * segment.fScalingFactorSqd); } } static void calculate_distance_field_data(PathSegmentArray* segments, DFData* dataPtr, int width, int height) { int count = segments->size(); // for each segment for (int a = 0; a < count; ++a) { PathSegment& segment = (*segments)[a]; const SkRect& segBB = segment.fBoundingBox; // get the bounding box, outset by distance field pad, and clip to total bounds const SkRect& paddedBB = segBB.makeOutset(SK_DistanceFieldPad, SK_DistanceFieldPad); int startColumn = (int)paddedBB.fLeft; int endColumn = SkScalarCeilToInt(paddedBB.fRight); int startRow = (int)paddedBB.fTop; int endRow = SkScalarCeilToInt(paddedBB.fBottom); SkASSERT((startColumn >= 0) && "StartColumn < 0!"); SkASSERT((endColumn <= width) && "endColumn > width!"); SkASSERT((startRow >= 0) && "StartRow < 0!"); SkASSERT((endRow <= height) && "EndRow > height!"); // Clip inside the distance field to avoid overflow startColumn = std::max(startColumn, 0); endColumn = std::min(endColumn, width); startRow = std::max(startRow, 0); endRow = std::min(endRow, height); // for each row in the padded bounding box for (int row = startRow; row < endRow; ++row) { SegSide prevSide = kNA_SegSide; // track side for winding count const float pY = row + 0.5f; // offset by 1/2? why? RowData rowData; const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY); const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY); // if this is a row inside the original segment bounding box if (between_closed_open(pY, segBB.fTop, segBB.fBottom)) { // compute intersections with the row precomputation_for_row(&rowData, segment, pointLeft, pointRight); } // adjust distances and windings in each column based on the row calculation for (int col = startColumn; col < endColumn; ++col) { int idx = (row * width) + col; const float pX = col + 0.5f; const SkPoint point = SkPoint::Make(pX, pY); const float distSq = dataPtr[idx].fDistSq; // Optimization for not calculating some points. int dilation = distSq < 1.5f * 1.5f ? 1 : distSq < 2.5f * 2.5f ? 2 : distSq < 3.5f * 3.5f ? 3 : SK_DistanceFieldPad; if (dilation < SK_DistanceFieldPad && !segBB.roundOut().makeOutset(dilation, dilation).contains(col, row)) { continue; } SegSide side = kNA_SegSide; int deltaWindingScore = 0; float currDistSq = distance_to_segment(point, segment, rowData, &side); if (prevSide == kLeft_SegSide && side == kRight_SegSide) { deltaWindingScore = -1; } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) { deltaWindingScore = 1; } prevSide = side; if (currDistSq < distSq) { dataPtr[idx].fDistSq = currDistSq; } dataPtr[idx].fDeltaWindingScore += deltaWindingScore; } } } } template static unsigned char pack_distance_field_val(float dist) { // The distance field is constructed as unsigned char values, so that the zero value is at 128, // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. dist = SkTPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f); // Scale into the positive range for unsigned distance. dist += distanceMagnitude; // Scale into unsigned char range. // Round to place negative and positive values as equally as possible around 128 // (which represents zero). return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f); } bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, const SkPath& path, const SkMatrix& drawMatrix, int width, int height, size_t rowBytes) { SkASSERT(distanceField); // transform to device space, then: // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad) SkMatrix dfMatrix(drawMatrix); dfMatrix.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); #ifdef SK_DEBUG SkPath xformPath; path.transform(dfMatrix, &xformPath); SkIRect pathBounds = xformPath.getBounds().roundOut(); SkIRect expectPathBounds = SkIRect::MakeWH(width, height); #endif SkASSERT(expectPathBounds.isEmpty() || expectPathBounds.contains(pathBounds.fLeft, pathBounds.fTop)); SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || expectPathBounds.contains(pathBounds)); // TODO: restore when Simplify() is working correctly // see https://bugs.chromium.org/p/skia/issues/detail?id=9732 // SkPath simplifiedPath; SkPath workingPath; // if (Simplify(path, &simplifiedPath)) { // workingPath = simplifiedPath; // } else { workingPath = path; // } // only even-odd and inverse even-odd supported if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) { return false; } // transform to device space + SDF offset // TODO: remove degenerate segments while doing this? workingPath.transform(dfMatrix); SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut()); SkASSERT(expectPathBounds.isEmpty() || expectPathBounds.contains(pathBounds.fLeft, pathBounds.fTop)); SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || expectPathBounds.contains(pathBounds)); // create temp data size_t dataSize = width * height * sizeof(DFData); SkAutoSMalloc<1024> dfStorage(dataSize); DFData* dataPtr = (DFData*) dfStorage.get(); // create initial distance data (init to "far away") init_distances(dataPtr, width * height); // polygonize path into line and quad segments SkPathEdgeIter iter(workingPath); STArray<15, PathSegment, true> segments; while (auto e = iter.next()) { switch (e.fEdge) { case SkPathEdgeIter::Edge::kLine: { add_line(e.fPts, &segments); break; } case SkPathEdgeIter::Edge::kQuad: add_quad(e.fPts, &segments); break; case SkPathEdgeIter::Edge::kConic: { SkScalar weight = iter.conicWeight(); SkAutoConicToQuads converter; const SkPoint* quadPts = converter.computeQuads(e.fPts, weight, kConicTolerance); for (int i = 0; i < converter.countQuads(); ++i) { add_quad(quadPts + 2*i, &segments); } break; } case SkPathEdgeIter::Edge::kCubic: { add_cubic(e.fPts, &segments); break; } } } // do all the work calculate_distance_field_data(&segments, dataPtr, width, height); // adjust distance based on winding for (int row = 0; row < height; ++row) { using DFSign = int; constexpr DFSign kInside = -1; constexpr DFSign kOutside = 1; int windingNumber = 0; // Winding number start from zero for each scanline for (int col = 0; col < width; ++col) { int idx = (row * width) + col; windingNumber += dataPtr[idx].fDeltaWindingScore; DFSign dfSign; switch (workingPath.getFillType()) { case SkPathFillType::kWinding: dfSign = windingNumber ? kInside : kOutside; break; case SkPathFillType::kInverseWinding: dfSign = windingNumber ? kOutside : kInside; break; case SkPathFillType::kEvenOdd: dfSign = (windingNumber % 2) ? kInside : kOutside; break; case SkPathFillType::kInverseEvenOdd: dfSign = (windingNumber % 2) ? kOutside : kInside; break; } const float miniDist = sqrt(dataPtr[idx].fDistSq); const float dist = dfSign * miniDist; unsigned char pixelVal = pack_distance_field_val(dist); distanceField[(row * rowBytes) + col] = pixelVal; } // The winding number at the end of a scanline should be zero. if (windingNumber != 0) { SkDEBUGFAIL("Winding number should be zero at the end of a scan line."); // Fallback to use SkPath::contains to determine the sign of pixel in release build. for (int col = 0; col < width; ++col) { int idx = (row * width) + col; DFSign dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside; const float miniDist = sqrt(dataPtr[idx].fDistSq); const float dist = dfSign * miniDist; unsigned char pixelVal = pack_distance_field_val(dist); distanceField[(row * rowBytes) + col] = pixelVal; } continue; } } return true; } #endif // SK_ENABLE_OPTIMIZE_SIZE