/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/encode/SkICC.h" #include "include/core/SkColorSpace.h" #include "include/core/SkData.h" #include "include/core/SkFourByteTag.h" #include "include/core/SkStream.h" #include "include/core/SkString.h" #include "include/core/SkTypes.h" #include "include/private/base/SkFixed.h" #include "include/private/base/SkFloatingPoint.h" #include "modules/skcms/skcms.h" #include "src/base/SkAutoMalloc.h" #include "src/base/SkEndian.h" #include "src/core/SkMD5.h" #include "src/core/SkStreamPriv.h" #include "src/encode/SkICCPriv.h" #include #include #include #include #include #include namespace { // The number of input and output channels. constexpr size_t kNumChannels = 3; // The D50 illuminant. constexpr float kD50_x = 0.9642f; constexpr float kD50_y = 1.0000f; constexpr float kD50_z = 0.8249f; // This is like SkFloatToFixed, but rounds to nearest, preserving as much accuracy as possible // when going float -> fixed -> float (it has the same accuracy when going fixed -> float -> fixed). // The use of double is necessary to accommodate the full potential 32-bit mantissa of the 16.16 // SkFixed value, and so avoiding rounding problems with float. Also, see the comment in SkFixed.h. SkFixed float_round_to_fixed(float x) { return sk_float_saturate2int((float)floor((double)x * SK_Fixed1 + 0.5)); } // Convert a float to a uInt16Number, with 0.0 mapping go 0 and 1.0 mapping to |one|. uint16_t float_to_uInt16Number(float x, uint16_t one) { x = x * one + 0.5; if (x > one) return one; if (x < 0) return 0; return static_cast(x); } // The uInt16Number used by curveType has 1.0 map to 0xFFFF. See section "10.6. curveType". constexpr uint16_t kOne16CurveType = 0xFFFF; // The uInt16Number used to encoude XYZ values has 1.0 map to 0x8000. See section "6.3.4.2 General // PCS encoding" and Table 11. constexpr uint16_t kOne16XYZ = 0x8000; struct ICCHeader { // Size of the profile (computed) uint32_t size; // Preferred CMM type (ignored) uint32_t cmm_type = 0; // Version 4.3 or 4.4 if CICP is included. uint32_t version = SkEndian_SwapBE32(0x04300000); // Display device profile uint32_t profile_class = SkEndian_SwapBE32(kDisplay_Profile); // RGB input color space; uint32_t data_color_space = SkEndian_SwapBE32(kRGB_ColorSpace); // Profile connection space. uint32_t pcs = SkEndian_SwapBE32(kXYZ_PCSSpace); // Date and time (ignored) uint16_t creation_date_year = SkEndian_SwapBE16(2016); uint16_t creation_date_month = SkEndian_SwapBE16(1); // 1-12 uint16_t creation_date_day = SkEndian_SwapBE16(1); // 1-31 uint16_t creation_date_hours = 0; // 0-23 uint16_t creation_date_minutes = 0; // 0-59 uint16_t creation_date_seconds = 0; // 0-59 // Profile signature uint32_t signature = SkEndian_SwapBE32(kACSP_Signature); // Platform target (ignored) uint32_t platform = 0; // Flags: not embedded, can be used independently uint32_t flags = 0x00000000; // Device manufacturer (ignored) uint32_t device_manufacturer = 0; // Device model (ignored) uint32_t device_model = 0; // Device attributes (ignored) uint8_t device_attributes[8] = {0}; // Relative colorimetric rendering intent uint32_t rendering_intent = SkEndian_SwapBE32(1); // D50 standard illuminant (X, Y, Z) uint32_t illuminant_X = SkEndian_SwapBE32(float_round_to_fixed(kD50_x)); uint32_t illuminant_Y = SkEndian_SwapBE32(float_round_to_fixed(kD50_y)); uint32_t illuminant_Z = SkEndian_SwapBE32(float_round_to_fixed(kD50_z)); // Profile creator (ignored) uint32_t creator = 0; // Profile id checksum (ignored) uint8_t profile_id[16] = {0}; // Reserved (ignored) uint8_t reserved[28] = {0}; // Technically not part of header, but required uint32_t tag_count = 0; }; sk_sp write_xyz_tag(float x, float y, float z) { uint32_t data[] = { SkEndian_SwapBE32(kXYZ_PCSSpace), 0, SkEndian_SwapBE32(float_round_to_fixed(x)), SkEndian_SwapBE32(float_round_to_fixed(y)), SkEndian_SwapBE32(float_round_to_fixed(z)), }; return SkData::MakeWithCopy(data, sizeof(data)); } sk_sp write_matrix(const skcms_Matrix3x4* matrix) { uint32_t data[12]; // See layout details in section "10.12.5 Matrix". size_t k = 0; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { data[k++] = SkEndian_SwapBE32(float_round_to_fixed(matrix->vals[i][j])); } } for (int i = 0; i < 3; ++i) { data[k++] = SkEndian_SwapBE32(float_round_to_fixed(matrix->vals[i][3])); } return SkData::MakeWithCopy(data, sizeof(data)); } bool nearly_equal(float x, float y) { // A note on why I chose this tolerance: transfer_fn_almost_equal() uses a // tolerance of 0.001f, which doesn't seem to be enough to distinguish // between similar transfer functions, for example: gamma2.2 and sRGB. // // If the tolerance is 0.0f, then this we can't distinguish between two // different encodings of what is clearly the same colorspace. Some // experimentation with example files lead to this number: static constexpr float kTolerance = 1.0f / (1 << 11); return ::fabsf(x - y) <= kTolerance; } bool nearly_equal(const skcms_TransferFunction& u, const skcms_TransferFunction& v) { return nearly_equal(u.g, v.g) && nearly_equal(u.a, v.a) && nearly_equal(u.b, v.b) && nearly_equal(u.c, v.c) && nearly_equal(u.d, v.d) && nearly_equal(u.e, v.e) && nearly_equal(u.f, v.f); } bool nearly_equal(const skcms_Matrix3x3& u, const skcms_Matrix3x3& v) { for (int r = 0; r < 3; r++) { for (int c = 0; c < 3; c++) { if (!nearly_equal(u.vals[r][c], v.vals[r][c])) { return false; } } } return true; } constexpr uint32_t kCICPPrimariesSRGB = 1; constexpr uint32_t kCICPPrimariesP3 = 12; constexpr uint32_t kCICPPrimariesRec2020 = 9; uint32_t get_cicp_primaries(const skcms_Matrix3x3& toXYZD50) { if (nearly_equal(toXYZD50, SkNamedGamut::kSRGB)) { return kCICPPrimariesSRGB; } else if (nearly_equal(toXYZD50, SkNamedGamut::kDisplayP3)) { return kCICPPrimariesP3; } else if (nearly_equal(toXYZD50, SkNamedGamut::kRec2020)) { return kCICPPrimariesRec2020; } return 0; } constexpr uint32_t kCICPTrfnSRGB = 1; constexpr uint32_t kCICPTrfn2Dot2 = 4; constexpr uint32_t kCICPTrfnLinear = 8; constexpr uint32_t kCICPTrfnPQ = 16; constexpr uint32_t kCICPTrfnHLG = 18; uint32_t get_cicp_trfn(const skcms_TransferFunction& fn) { switch (skcms_TransferFunction_getType(&fn)) { case skcms_TFType_Invalid: return 0; case skcms_TFType_sRGBish: if (nearly_equal(fn, SkNamedTransferFn::kSRGB)) { return kCICPTrfnSRGB; } else if (nearly_equal(fn, SkNamedTransferFn::k2Dot2)) { return kCICPTrfn2Dot2; } else if (nearly_equal(fn, SkNamedTransferFn::kLinear)) { return kCICPTrfnLinear; } break; case skcms_TFType_PQish: // All PQ transfer functions are mapped to the single PQ value, // ignoring their SDR white level. return kCICPTrfnPQ; case skcms_TFType_HLGish: // All HLG transfer functions are mapped to the single HLG value. return kCICPTrfnHLG; case skcms_TFType_HLGinvish: return 0; } return 0; } std::string get_desc_string(const skcms_TransferFunction& fn, const skcms_Matrix3x3& toXYZD50) { const uint32_t cicp_trfn = get_cicp_trfn(fn); const uint32_t cicp_primaries = get_cicp_primaries(toXYZD50); // Use a unique string for sRGB. if (cicp_trfn == kCICPPrimariesSRGB && cicp_primaries == kCICPTrfnSRGB) { return "sRGB"; } // If available, use the named CICP primaries and transfer function. if (cicp_primaries && cicp_trfn) { std::string result; switch (cicp_primaries) { case kCICPPrimariesSRGB: result += "sRGB"; break; case kCICPPrimariesP3: result += "Display P3"; break; case kCICPPrimariesRec2020: result += "Rec2020"; break; default: result += "Unknown"; break; } result += " Gamut with "; switch (cicp_trfn) { case kCICPTrfnSRGB: result += "sRGB"; break; case kCICPTrfnLinear: result += "Linear"; break; case kCICPTrfn2Dot2: result += "2.2"; break; case kCICPTrfnPQ: result += "PQ"; break; case kCICPTrfnHLG: result += "HLG"; break; default: result += "Unknown"; break; } result += " Transfer"; return result; } // Fall back to a prefix plus md5 hash. SkMD5 md5; md5.write(&toXYZD50, sizeof(toXYZD50)); md5.write(&fn, sizeof(fn)); SkMD5::Digest digest = md5.finish(); return std::string("Google/Skia/") + digest.toHexString().c_str(); } sk_sp write_text_tag(const char* text) { uint32_t text_length = strlen(text); uint32_t header[] = { SkEndian_SwapBE32(kTAG_TextType), // Type signature 0, // Reserved SkEndian_SwapBE32(1), // Number of records SkEndian_SwapBE32(12), // Record size (must be 12) SkEndian_SwapBE32(SkSetFourByteTag('e', 'n', 'U', 'S')), // English USA SkEndian_SwapBE32(2 * text_length), // Length of string in bytes SkEndian_SwapBE32(28), // Offset of string }; SkDynamicMemoryWStream s; s.write(header, sizeof(header)); for (size_t i = 0; i < text_length; i++) { // Convert ASCII to big-endian UTF-16. s.write8(0); s.write8(text[i]); } s.padToAlign4(); return s.detachAsData(); } // Write a CICP tag. sk_sp write_cicp_tag(const skcms_CICP& cicp) { SkDynamicMemoryWStream s; SkWStreamWriteU32BE(&s, kTAG_cicp); // Type signature SkWStreamWriteU32BE(&s, 0); // Reserved s.write8(cicp.color_primaries); // Color primaries s.write8(cicp.transfer_characteristics); // Transfer characteristics s.write8(cicp.matrix_coefficients); // RGB matrix s.write8(cicp.video_full_range_flag); // Full range return s.detachAsData(); } constexpr float kToneMapInputMax = 1000.f / 203.f; constexpr float kToneMapOutputMax = 1.f; // Scalar tone map gain function. float tone_map_gain(float x) { // The PQ transfer function will map to the range [0, 1]. Linearly scale // it up to the range [0, 1,000/203]. We will then tone map that back // down to [0, 1]. constexpr float kToneMapA = kToneMapOutputMax / (kToneMapInputMax * kToneMapInputMax); constexpr float kToneMapB = 1.f / kToneMapOutputMax; return (1.f + kToneMapA * x) / (1.f + kToneMapB * x); } // Scalar tone map inverse function float tone_map_inverse(float y) { constexpr float kToneMapA = kToneMapOutputMax / (kToneMapInputMax * kToneMapInputMax); constexpr float kToneMapB = 1.f / kToneMapOutputMax; // This is a quadratic equation of the form a*x*x + b*x + c = 0 const float a = kToneMapA; const float b = (1 - kToneMapB * y); const float c = -y; const float discriminant = b * b - 4.f * a * c; if (discriminant < 0.f) { return 0.f; } return (-b + sqrtf(discriminant)) / (2.f * a); } // Evaluate PQ and HLG transfer functions without tonemapping. The maximum returned value is // kToneMapInputMax. float hdr_trfn_eval(const skcms_TransferFunction& fn, float x) { if (skcms_TransferFunction_isHLGish(&fn)) { // For HLG this curve is the inverse OETF and then a per-channel OOTF. x = skcms_TransferFunction_eval(&SkNamedTransferFn::kHLG, x) / 12.f; x *= std::pow(x, 0.2); } else if (skcms_TransferFunction_isPQish(&fn)) { // For PQ this is the EOTF, scaled so that 1,000 nits maps to 1.0. x = 10.f * skcms_TransferFunction_eval(&SkNamedTransferFn::kPQ, x); x = std::min(x, 1.f); } // Scale x so that 203 nits maps to 1.0. x *= kToneMapInputMax; return x; } // Write a lookup table based 1D curve. sk_sp write_trc_tag(const skcms_Curve& trc) { SkDynamicMemoryWStream s; if (trc.table_entries) { SkWStreamWriteU32BE(&s, kTAG_CurveType); // Type SkWStreamWriteU32BE(&s, 0); // Reserved SkWStreamWriteU32BE(&s, trc.table_entries); // Value count for (uint32_t i = 0; i < trc.table_entries; ++i) { uint16_t value = reinterpret_cast(trc.table_16)[i]; s.write16(value); } } else { SkWStreamWriteU32BE(&s, kTAG_ParaCurveType); // Type s.write32(0); // Reserved const auto& fn = trc.parametric; SkASSERT(skcms_TransferFunction_isSRGBish(&fn)); if (fn.a == 1.f && fn.b == 0.f && fn.c == 0.f && fn.d == 0.f && fn.e == 0.f && fn.f == 0.f) { SkWStreamWriteU16BE(&s, kExponential_ParaCurveType); SkWStreamWriteU16BE(&s, 0); SkWStreamWriteU32BE(&s, float_round_to_fixed(fn.g)); } else { SkWStreamWriteU16BE(&s, kGABCDEF_ParaCurveType); SkWStreamWriteU16BE(&s, 0); SkWStreamWriteU32BE(&s, float_round_to_fixed(fn.g)); SkWStreamWriteU32BE(&s, float_round_to_fixed(fn.a)); SkWStreamWriteU32BE(&s, float_round_to_fixed(fn.b)); SkWStreamWriteU32BE(&s, float_round_to_fixed(fn.c)); SkWStreamWriteU32BE(&s, float_round_to_fixed(fn.d)); SkWStreamWriteU32BE(&s, float_round_to_fixed(fn.e)); SkWStreamWriteU32BE(&s, float_round_to_fixed(fn.f)); } } s.padToAlign4(); return s.detachAsData(); } sk_sp write_clut(const uint8_t* grid_points, const uint8_t* grid_16) { SkDynamicMemoryWStream s; for (size_t i = 0; i < 16; ++i) { s.write8(i < kNumChannels ? grid_points[i] : 0); // Grid size } s.write8(2); // Grid byte width (always 16-bit) s.write8(0); // Reserved s.write8(0); // Reserved s.write8(0); // Reserved uint32_t value_count = kNumChannels; for (uint32_t i = 0; i < kNumChannels; ++i) { value_count *= grid_points[i]; } for (uint32_t i = 0; i < value_count; ++i) { uint16_t value = reinterpret_cast(grid_16)[i]; s.write16(value); } s.padToAlign4(); return s.detachAsData(); } // Write an A2B or B2A tag. sk_sp write_mAB_or_mBA_tag(uint32_t type, const skcms_Curve* b_curves, const skcms_Curve* a_curves, const uint8_t* grid_points, const uint8_t* grid_16, const skcms_Curve* m_curves, const skcms_Matrix3x4* matrix) { size_t offset = 32; // The "B" curve is required. size_t b_curves_offset = offset; sk_sp b_curves_data[kNumChannels]; SkASSERT(b_curves); for (size_t i = 0; i < kNumChannels; ++i) { b_curves_data[i] = write_trc_tag(b_curves[i]); SkASSERT(b_curves_data[i]); offset += b_curves_data[i]->size(); } // The CLUT. size_t clut_offset = 0; sk_sp clut; if (grid_points) { SkASSERT(grid_16); clut_offset = offset; clut = write_clut(grid_points, grid_16); SkASSERT(clut); offset += clut->size(); } // The "A" curves. size_t a_curves_offset = 0; sk_sp a_curves_data[kNumChannels]; if (a_curves) { SkASSERT(grid_points); SkASSERT(grid_16); a_curves_offset = offset; for (size_t i = 0; i < kNumChannels; ++i) { a_curves_data[i] = write_trc_tag(a_curves[i]); SkASSERT(a_curves_data[i]); offset += a_curves_data[i]->size(); } } // The matrix. size_t matrix_offset = 0; sk_sp matrix_data; if (matrix) { SkASSERT(m_curves); matrix_offset = offset; matrix_data = write_matrix(matrix); offset += matrix_data->size(); } // The "M" curves. size_t m_curves_offset = 0; sk_sp m_curves_data[kNumChannels]; if (m_curves) { SkASSERT(matrix); m_curves_offset = offset; for (size_t i = 0; i < kNumChannels; ++i) { m_curves_data[i] = write_trc_tag(m_curves[i]); SkASSERT(a_curves_data[i]); offset += m_curves_data[i]->size(); } } SkDynamicMemoryWStream s; SkWStreamWriteU32BE(&s, type); // Type signature s.write32(0); // Reserved s.write8(kNumChannels); // Input channels s.write8(kNumChannels); // Output channels s.write16(0); // Reserved SkWStreamWriteU32BE(&s, b_curves_offset); // B curve offset SkWStreamWriteU32BE(&s, matrix_offset); // Matrix offset SkWStreamWriteU32BE(&s, m_curves_offset); // M curve offset SkWStreamWriteU32BE(&s, clut_offset); // CLUT offset SkWStreamWriteU32BE(&s, a_curves_offset); // A curve offset SkASSERT(s.bytesWritten() == b_curves_offset); for (size_t i = 0; i < kNumChannels; ++i) { s.write(b_curves_data[i]->data(), b_curves_data[i]->size()); } if (clut) { SkASSERT(s.bytesWritten() == clut_offset); s.write(clut->data(), clut->size()); } if (a_curves) { SkASSERT(s.bytesWritten() == a_curves_offset); for (size_t i = 0; i < kNumChannels; ++i) { s.write(a_curves_data[i]->data(), a_curves_data[i]->size()); } } if (matrix_data) { SkASSERT(s.bytesWritten() == matrix_offset); s.write(matrix_data->data(), matrix_data->size()); } if (m_curves) { SkASSERT(s.bytesWritten() == m_curves_offset); for (size_t i = 0; i < kNumChannels; ++i) { s.write(m_curves_data[i]->data(), m_curves_data[i]->size()); } } return s.detachAsData(); } } // namespace sk_sp SkWriteICCProfile(const skcms_ICCProfile* profile, const char* desc) { ICCHeader header; std::vector>> tags; // Compute primaries. if (profile->has_toXYZD50) { const auto& m = profile->toXYZD50; tags.emplace_back(kTAG_rXYZ, write_xyz_tag(m.vals[0][0], m.vals[1][0], m.vals[2][0])); tags.emplace_back(kTAG_gXYZ, write_xyz_tag(m.vals[0][1], m.vals[1][1], m.vals[2][1])); tags.emplace_back(kTAG_bXYZ, write_xyz_tag(m.vals[0][2], m.vals[1][2], m.vals[2][2])); } // Compute white point tag (must be D50) tags.emplace_back(kTAG_wtpt, write_xyz_tag(kD50_x, kD50_y, kD50_z)); // Compute transfer curves. if (profile->has_trc) { tags.emplace_back(kTAG_rTRC, write_trc_tag(profile->trc[0])); // Use empty data to indicate that the entry should use the previous tag's // data. if (!memcmp(&profile->trc[1], &profile->trc[0], sizeof(profile->trc[0]))) { tags.emplace_back(kTAG_gTRC, SkData::MakeEmpty()); } else { tags.emplace_back(kTAG_gTRC, write_trc_tag(profile->trc[1])); } if (!memcmp(&profile->trc[2], &profile->trc[1], sizeof(profile->trc[1]))) { tags.emplace_back(kTAG_bTRC, SkData::MakeEmpty()); } else { tags.emplace_back(kTAG_bTRC, write_trc_tag(profile->trc[2])); } } // Compute CICP. if (profile->has_CICP) { // The CICP tag is present in ICC 4.4, so update the header's version. header.version = SkEndian_SwapBE32(0x04400000); tags.emplace_back(kTAG_cicp, write_cicp_tag(profile->CICP)); } // Compute A2B0. if (profile->has_A2B) { const auto& a2b = profile->A2B; SkASSERT(a2b.output_channels == kNumChannels); auto a2b_data = write_mAB_or_mBA_tag(kTAG_mABType, a2b.output_curves, a2b.input_channels ? a2b.input_curves : nullptr, a2b.input_channels ? a2b.grid_points : nullptr, a2b.input_channels ? a2b.grid_16 : nullptr, a2b.matrix_channels ? a2b.matrix_curves : nullptr, a2b.matrix_channels ? &a2b.matrix : nullptr); tags.emplace_back(kTAG_A2B0, std::move(a2b_data)); } // Compute B2A0. if (profile->has_B2A) { const auto& b2a = profile->B2A; SkASSERT(b2a.input_channels == kNumChannels); auto b2a_data = write_mAB_or_mBA_tag(kTAG_mBAType, b2a.input_curves, b2a.output_channels ? b2a.input_curves : nullptr, b2a.output_channels ? b2a.grid_points : nullptr, b2a.output_channels ? b2a.grid_16 : nullptr, b2a.matrix_channels ? b2a.matrix_curves : nullptr, b2a.matrix_channels ? &b2a.matrix : nullptr); tags.emplace_back(kTAG_B2A0, std::move(b2a_data)); } // Compute copyright tag tags.emplace_back(kTAG_cprt, write_text_tag("Google Inc. 2016")); // Ensure that the desc isn't empty https://crbug.com/329032158 std::string generatedDesc; if (!desc || *desc == '\0') { SkMD5 md5; for (const auto& tag : tags) { md5.write(&tag.first, sizeof(tag.first)); md5.write(tag.second->bytes(), tag.second->size()); } SkMD5::Digest digest = md5.finish(); generatedDesc = std::string("Google/Skia/") + digest.toHexString().c_str(); desc = generatedDesc.c_str(); } // Compute profile description tag tags.emplace(tags.begin(), kTAG_desc, write_text_tag(desc)); // Compute the size of the profile. size_t tag_data_size = 0; for (const auto& tag : tags) { tag_data_size += tag.second->size(); } size_t tag_table_size = kICCTagTableEntrySize * tags.size(); size_t profile_size = kICCHeaderSize + tag_table_size + tag_data_size; // Write the header. header.data_color_space = SkEndian_SwapBE32(profile->data_color_space); header.pcs = SkEndian_SwapBE32(profile->pcs); header.size = SkEndian_SwapBE32(profile_size); header.tag_count = SkEndian_SwapBE32(tags.size()); SkAutoMalloc profile_data(profile_size); uint8_t* ptr = (uint8_t*)profile_data.get(); memcpy(ptr, &header, sizeof(header)); ptr += sizeof(header); // Write the tag table. Track the offset and size of the previous tag to // compute each tag's offset. An empty SkData indicates that the previous // tag is to be reused. size_t last_tag_offset = sizeof(header) + tag_table_size; size_t last_tag_size = 0; for (const auto& tag : tags) { if (!tag.second->isEmpty()) { last_tag_offset = last_tag_offset + last_tag_size; last_tag_size = tag.second->size(); } uint32_t tag_table_entry[3] = { SkEndian_SwapBE32(tag.first), SkEndian_SwapBE32(last_tag_offset), SkEndian_SwapBE32(last_tag_size), }; memcpy(ptr, tag_table_entry, sizeof(tag_table_entry)); ptr += sizeof(tag_table_entry); } // Write the tags. for (const auto& tag : tags) { if (tag.second->isEmpty()) continue; memcpy(ptr, tag.second->data(), tag.second->size()); ptr += tag.second->size(); } SkASSERT(profile_size == static_cast(ptr - (uint8_t*)profile_data.get())); return SkData::MakeFromMalloc(profile_data.release(), profile_size); } sk_sp SkWriteICCProfile(const skcms_TransferFunction& fn, const skcms_Matrix3x3& toXYZD50) { skcms_ICCProfile profile; memset(&profile, 0, sizeof(profile)); std::vector trc_table; std::vector a2b_grid; profile.data_color_space = skcms_Signature_RGB; profile.pcs = skcms_Signature_XYZ; // Populate toXYZD50. { profile.has_toXYZD50 = true; profile.toXYZD50 = toXYZD50; } // Populate the analytic TRC for sRGB-like curves. if (skcms_TransferFunction_isSRGBish(&fn)) { profile.has_trc = true; profile.trc[0].table_entries = 0; profile.trc[0].parametric = fn; memcpy(&profile.trc[1], &profile.trc[0], sizeof(profile.trc[0])); memcpy(&profile.trc[2], &profile.trc[0], sizeof(profile.trc[0])); } // Populate A2B (PQ and HLG only). if (skcms_TransferFunction_isPQish(&fn) || skcms_TransferFunction_isHLGish(&fn)) { // Populate a 1D curve to perform per-channel conversion to linear and tone mapping. constexpr uint32_t kTrcTableSize = 65; trc_table.resize(kTrcTableSize); for (uint32_t i = 0; i < kTrcTableSize; ++i) { float x = i / (kTrcTableSize - 1.f); x = hdr_trfn_eval(fn, x); x *= tone_map_gain(x); trc_table[i] = SkEndian_SwapBE16(float_to_uInt16Number(x, kOne16CurveType)); } // Populate the grid with a 3D LUT to do cross-channel tone mapping. constexpr uint32_t kGridSize = 11; a2b_grid.resize(kGridSize * kGridSize * kGridSize * kNumChannels); size_t a2b_grid_index = 0; for (uint32_t r_index = 0; r_index < kGridSize; ++r_index) { for (uint32_t g_index = 0; g_index < kGridSize; ++g_index) { for (uint32_t b_index = 0; b_index < kGridSize; ++b_index) { float rgb[3] = { r_index / (kGridSize - 1.f), g_index / (kGridSize - 1.f), b_index / (kGridSize - 1.f), }; // Un-apply the per-channel tone mapping. for (auto& c : rgb) { c = tone_map_inverse(c); } // For HLG, mix the channels according to the OOTF. if (skcms_TransferFunction_isHLGish(&fn)) { // Scale to [0, 1]. for (auto& c : rgb) { c /= kToneMapInputMax; } // Un-apply the per-channel OOTF. for (auto& c : rgb) { c = std::pow(c, 1 / 1.2); } // Re-apply the cross-channel OOTF. float Y = 0.2627f * rgb[0] + 0.6780f * rgb[1] + 0.0593f * rgb[2]; for (auto& c : rgb) { c *= std::pow(Y, 0.2); } // Scale back up to 1.0 being 1,000/203. for (auto& c : rgb) { c *= kToneMapInputMax; } } // Apply tone mapping to take 1,000/203 to 1.0. { float max_rgb = std::max(std::max(rgb[0], rgb[1]), rgb[2]); for (auto& c : rgb) { c *= tone_map_gain(0.5 * (c + max_rgb)); c = std::min(c, 1.f); } } // Write the result to the LUT. for (const auto& c : rgb) { a2b_grid[a2b_grid_index++] = SkEndian_SwapBE16(float_to_uInt16Number(c, kOne16XYZ)); } } } } // Populate A2B as this tone mapping. profile.has_A2B = true; profile.A2B.input_channels = kNumChannels; profile.A2B.output_channels = kNumChannels; profile.A2B.matrix_channels = kNumChannels; for (size_t i = 0; i < kNumChannels; ++i) { profile.A2B.grid_points[i] = kGridSize; // Set the input curve to convert to linear pre-OOTF space. profile.A2B.input_curves[i].table_entries = kTrcTableSize; profile.A2B.input_curves[i].table_16 = reinterpret_cast(trc_table.data()); // The output and matrix curves are the identity. profile.A2B.output_curves[i].parametric = SkNamedTransferFn::kLinear; profile.A2B.matrix_curves[i].parametric = SkNamedTransferFn::kLinear; // Set the matrix to convert from the primaries to XYZD50. for (size_t j = 0; j < 3; ++j) { profile.A2B.matrix.vals[i][j] = toXYZD50.vals[i][j]; } profile.A2B.matrix.vals[i][3] = 0.f; } profile.A2B.grid_16 = reinterpret_cast(a2b_grid.data()); // Populate B2A as the identity. profile.has_B2A = true; profile.B2A.input_channels = kNumChannels; for (size_t i = 0; i < 3; ++i) { profile.B2A.input_curves[i].parametric = SkNamedTransferFn::kLinear; } } // Populate CICP. if (skcms_TransferFunction_isHLGish(&fn) || skcms_TransferFunction_isPQish(&fn)) { profile.has_CICP = true; profile.CICP.color_primaries = get_cicp_primaries(toXYZD50); profile.CICP.transfer_characteristics = get_cicp_trfn(fn); profile.CICP.matrix_coefficients = 0; profile.CICP.video_full_range_flag = 1; SkASSERT(profile.CICP.color_primaries); SkASSERT(profile.CICP.transfer_characteristics); } std::string description = get_desc_string(fn, toXYZD50); return SkWriteICCProfile(&profile, description.c_str()); }