/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkMipmap.h" #include "include/core/SkBitmap.h" #include "include/core/SkColorSpace.h" #include "include/core/SkColorType.h" #include "include/core/SkTypes.h" #include "include/private/base/SkTo.h" #include "src/base/SkMathPriv.h" #include "src/core/SkImageInfoPriv.h" #include "src/core/SkMipmapBuilder.h" #include // // ColorTypeFilter is the "Type" we pass to some downsample template functions. // It controls how we expand a pixel into a large type, with space between each component, // so we can then perform our simple filter (either box or triangle) and store the intermediates // in the expanded type. // /////////////////////////////////////////////////////////////////////////////////////////////////// SkMipmap::SkMipmap(void* malloc, size_t size) : SkCachedData(malloc, size) {} SkMipmap::SkMipmap(size_t size, SkDiscardableMemory* dm) : SkCachedData(size, dm) {} SkMipmap::~SkMipmap() = default; size_t SkMipmap::AllocLevelsSize(int levelCount, size_t pixelSize) { if (levelCount < 0) { return 0; } int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize; if (!SkTFitsIn(size)) { return 0; } return SkTo(size); } SkMipmap* SkMipmap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact, bool computeContents) { if (src.width() <= 1 && src.height() <= 1) { return nullptr; } const SkColorType ct = src.colorType(); const SkAlphaType at = src.alphaType(); // whip through our loop to compute the exact size needed size_t size = 0; int countLevels = ComputeLevelCount(src.width(), src.height()); for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) { SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel); size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight; } size_t storageSize = SkMipmap::AllocLevelsSize(countLevels, size); if (0 == storageSize) { return nullptr; } SkMipmap* mipmap; if (fact) { SkDiscardableMemory* dm = fact(storageSize); if (nullptr == dm) { return nullptr; } mipmap = new SkMipmap(storageSize, dm); } else { void* tmp = sk_malloc_canfail(storageSize); if (!tmp) { return nullptr; } mipmap = new SkMipmap(tmp, storageSize); } // init mipmap->fCS = sk_ref_sp(src.info().colorSpace()); mipmap->fCount = countLevels; mipmap->fLevels = (Level*)mipmap->writable_data(); SkASSERT(mipmap->fLevels); Level* levels = mipmap->fLevels; uint8_t* baseAddr = (uint8_t*)&levels[countLevels]; uint8_t* addr = baseAddr; int width = src.width(); int height = src.height(); uint32_t rowBytes; SkPixmap srcPM(src); // Depending on architecture and other factors, the pixel data alignment may need to be as // large as 8 (for F16 pixels). See the comment on SkMipmap::Level. SkASSERT(SkIsAlign8((uintptr_t)addr)); std::unique_ptr downsampler; if (computeContents) { downsampler = MakeDownSampler(src); if (!downsampler) { return nullptr; } } for (int i = 0; i < countLevels; ++i) { width = std::max(1, width >> 1); height = std::max(1, height >> 1); rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width)); // We make the Info w/o any colorspace, since that storage is not under our control, and // will not be deleted in a controlled fashion. When the caller is given the pixmap for // a given level, we augment this pixmap with fCS (which we do manage). new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes); levels[i].fScale = SkSize::Make(SkIntToScalar(width) / src.width(), SkIntToScalar(height) / src.height()); const SkPixmap& dstPM = levels[i].fPixmap; if (downsampler) { downsampler->buildLevel(dstPM, srcPM); } srcPM = dstPM; addr += height * rowBytes; } SkASSERT(addr == baseAddr + size); SkASSERT(mipmap->fLevels); return mipmap; } int SkMipmap::ComputeLevelCount(int baseWidth, int baseHeight) { if (baseWidth < 1 || baseHeight < 1) { return 0; } // OpenGL's spec requires that each mipmap level have height/width equal to // max(1, floor(original_height / 2^i) // (or original_width) where i is the mipmap level. // Continue scaling down until both axes are size 1. const int largestAxis = std::max(baseWidth, baseHeight); if (largestAxis < 2) { // SkMipmap::Build requires a minimum size of 2. return 0; } const int leadingZeros = SkCLZ(static_cast(largestAxis)); // If the value 00011010 has 3 leading 0s then it has 5 significant bits // (the bits which are not leading zeros) const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros; // This is making the assumption that the size of a byte is 8 bits // and that sizeof(uint32_t)'s implementation-defined behavior is 4. int mipLevelCount = significantBits; // SkMipmap does not include the base mip level. // For example, it contains levels 1-x instead of 0-x. // This is because the image used to create SkMipmap is the base level. // So subtract 1 from the mip level count. if (mipLevelCount > 0) { --mipLevelCount; } return mipLevelCount; } SkISize SkMipmap::ComputeLevelSize(int baseWidth, int baseHeight, int level) { if (baseWidth < 1 || baseHeight < 1) { return SkISize::Make(0, 0); } int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight); if (level >= maxLevelCount || level < 0) { return SkISize::Make(0, 0); } // OpenGL's spec requires that each mipmap level have height/width equal to // max(1, floor(original_height / 2^i) // (or original_width) where i is the mipmap level. // SkMipmap does not include the base mip level. // For example, it contains levels 1-x instead of 0-x. // This is because the image used to create SkMipmap is the base level. // So subtract 1 from the mip level to get the index stored by SkMipmap. int width = std::max(1, baseWidth >> (level + 1)); int height = std::max(1, baseHeight >> (level + 1)); return SkISize::Make(width, height); } /////////////////////////////////////////////////////////////////////////////// // Returns fractional level value. floor(level) is the index of the larger level. // < 0 means failure. float SkMipmap::ComputeLevel(SkSize scaleSize) { SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0); #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE // Use the smallest scale to match the GPU impl. const float scale = std::min(scaleSize.width(), scaleSize.height()); #else // Ideally we'd pick the smaller scale, to match Ganesh. But ignoring one of the // scales can produce some atrocious results, so for now we use the geometric mean. // (https://bugs.chromium.org/p/skia/issues/detail?id=4863) const float scale = std::sqrt(scaleSize.width() * scaleSize.height()); #endif if (scale >= SK_Scalar1 || scale <= 0 || !SkIsFinite(scale)) { return -1; } // The -0.5 bias here is to emulate GPU's sharpen mipmap option. float L = std::max(-SkScalarLog2(scale) - 0.5f, 0.f); if (!SkIsFinite(L)) { return -1; } return L; } bool SkMipmap::extractLevel(SkSize scaleSize, Level* levelPtr) const { if (nullptr == fLevels) { return false; } float L = ComputeLevel(scaleSize); int level = sk_float_round2int(L); if (level <= 0) { return false; } if (level > fCount) { level = fCount; } if (levelPtr) { *levelPtr = fLevels[level - 1]; // need to augment with our colorspace levelPtr->fPixmap.setColorSpace(fCS); } return true; } bool SkMipmap::validForRootLevel(const SkImageInfo& root) const { if (nullptr == fLevels) { return false; } const SkISize dimension = root.dimensions(); if (dimension.width() <= 1 && dimension.height() <= 1) { return false; } if (fLevels[0].fPixmap. width() != std::max(1, dimension. width() >> 1) || fLevels[0].fPixmap.height() != std::max(1, dimension.height() >> 1)) { return false; } for (int i = 0; i < this->countLevels(); ++i) { if (fLevels[i].fPixmap.colorType() != root.colorType() || fLevels[i].fPixmap.alphaType() != root.alphaType()) { return false; } } return true; } // Helper which extracts a pixmap from the src bitmap // SkMipmap* SkMipmap::Build(const SkBitmap& src, SkDiscardableFactoryProc fact) { SkPixmap srcPixmap; if (!src.peekPixels(&srcPixmap)) { return nullptr; } return Build(srcPixmap, fact); } int SkMipmap::countLevels() const { return fCount; } bool SkMipmap::getLevel(int index, Level* levelPtr) const { if (nullptr == fLevels) { return false; } if (index < 0) { return false; } if (index > fCount - 1) { return false; } if (levelPtr) { *levelPtr = fLevels[index]; // need to augment with our colorspace levelPtr->fPixmap.setColorSpace(fCS); } return true; }