/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkGlyph_DEFINED #define SkGlyph_DEFINED #include "include/core/SkDrawable.h" #include "include/core/SkPath.h" #include "include/core/SkPicture.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkString.h" #include "include/core/SkTypes.h" #include "include/private/base/SkDebug.h" #include "include/private/base/SkFixed.h" #include "include/private/base/SkTo.h" #include "src/base/SkVx.h" #include "src/core/SkChecksum.h" #include "src/core/SkMask.h" #include #include #include #include #include #include class SkArenaAlloc; class SkCanvas; class SkGlyph; class SkReadBuffer; class SkScalerContext; class SkWriteBuffer; namespace sktext { class StrikeForGPU; } // namespace sktext // -- SkPackedGlyphID ------------------------------------------------------------------------------ // A combination of SkGlyphID and sub-pixel position information. struct SkPackedGlyphID { inline static constexpr uint32_t kImpossibleID = ~0u; enum { // Lengths kGlyphIDLen = 16u, kSubPixelPosLen = 2u, // Bit positions kSubPixelX = 0u, kGlyphID = kSubPixelPosLen, kSubPixelY = kGlyphIDLen + kSubPixelPosLen, kEndData = kGlyphIDLen + 2 * kSubPixelPosLen, // Masks kGlyphIDMask = (1u << kGlyphIDLen) - 1, kSubPixelPosMask = (1u << kSubPixelPosLen) - 1, kMaskAll = (1u << kEndData) - 1, // Location of sub pixel info in a fixed pointer number. kFixedPointBinaryPointPos = 16u, kFixedPointSubPixelPosBits = kFixedPointBinaryPointPos - kSubPixelPosLen, }; inline static const constexpr SkScalar kSubpixelRound = 1.f / (1u << (SkPackedGlyphID::kSubPixelPosLen + 1)); inline static const constexpr SkIPoint kXYFieldMask{kSubPixelPosMask << kSubPixelX, kSubPixelPosMask << kSubPixelY}; struct Hash { uint32_t operator() (SkPackedGlyphID packedID) const { return packedID.hash(); } }; constexpr explicit SkPackedGlyphID(SkGlyphID glyphID) : fID{(uint32_t)glyphID << kGlyphID} { } constexpr SkPackedGlyphID(SkGlyphID glyphID, SkFixed x, SkFixed y) : fID {PackIDXY(glyphID, x, y)} { } constexpr SkPackedGlyphID(SkGlyphID glyphID, uint32_t x, uint32_t y) : fID {PackIDSubXSubY(glyphID, x, y)} { } SkPackedGlyphID(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) : fID{PackIDSkPoint(glyphID, pt, mask)} { } constexpr explicit SkPackedGlyphID(uint32_t v) : fID{v & kMaskAll} { } constexpr SkPackedGlyphID() : fID{kImpossibleID} {} bool operator==(const SkPackedGlyphID& that) const { return fID == that.fID; } bool operator!=(const SkPackedGlyphID& that) const { return !(*this == that); } bool operator<(SkPackedGlyphID that) const { return this->fID < that.fID; } SkGlyphID glyphID() const { return (fID >> kGlyphID) & kGlyphIDMask; } uint32_t value() const { return fID; } SkFixed getSubXFixed() const { return this->subToFixed(kSubPixelX); } SkFixed getSubYFixed() const { return this->subToFixed(kSubPixelY); } uint32_t hash() const { return SkChecksum::CheapMix(fID); } SkString dump() const { SkString str; str.appendf("glyphID: %d, x: %d, y:%d", glyphID(), getSubXFixed(), getSubYFixed()); return str; } SkString shortDump() const { SkString str; str.appendf("0x%x|%1u|%1u", this->glyphID(), this->subPixelField(kSubPixelX), this->subPixelField(kSubPixelY)); return str; } private: static constexpr uint32_t PackIDSubXSubY(SkGlyphID glyphID, uint32_t x, uint32_t y) { SkASSERT(x < (1u << kSubPixelPosLen)); SkASSERT(y < (1u << kSubPixelPosLen)); return (x << kSubPixelX) | (y << kSubPixelY) | (glyphID << kGlyphID); } // Assumptions: pt is properly rounded. mask is set for the x or y fields. // // A sub-pixel field is a number on the interval [2^kSubPixel, 2^(kSubPixel + kSubPixelPosLen)). // Where kSubPixel is either kSubPixelX or kSubPixelY. Given a number x on [0, 1) we can // generate a sub-pixel field using: // sub-pixel-field = x * 2^(kSubPixel + kSubPixelPosLen) // // We can generate the integer sub-pixel field by &-ing the integer part of sub-filed with the // sub-pixel field mask. // int-sub-pixel-field = int(sub-pixel-field) & (kSubPixelPosMask << kSubPixel) // // The last trick is to extend the range from [0, 1) to [0, 2). The extend range is // necessary because the modulo 1 calculation (pt - floor(pt)) generates numbers on [-1, 1). // This does not round (floor) properly when converting to integer. Adding one to the range // causes truncation and floor to be the same. Coincidentally, masking to produce the field also // removes the +1. static uint32_t PackIDSkPoint(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) { #if 0 // TODO: why does this code not work on GCC 8.3 x86 Debug builds? using namespace skvx; using XY = Vec<2, float>; using SubXY = Vec<2, int>; const XY magic = {1.f * (1u << (kSubPixelPosLen + kSubPixelX)), 1.f * (1u << (kSubPixelPosLen + kSubPixelY))}; XY pos{pt.x(), pt.y()}; XY subPos = (pos - floor(pos)) + 1.0f; SubXY sub = cast(subPos * magic) & SubXY{mask.x(), mask.y()}; #else const float magicX = 1.f * (1u << (kSubPixelPosLen + kSubPixelX)), magicY = 1.f * (1u << (kSubPixelPosLen + kSubPixelY)); float x = pt.x(), y = pt.y(); x = (x - floorf(x)) + 1.0f; y = (y - floorf(y)) + 1.0f; int sub[] = { (int)(x * magicX) & mask.x(), (int)(y * magicY) & mask.y(), }; #endif SkASSERT(sub[0] / (1u << kSubPixelX) < (1u << kSubPixelPosLen)); SkASSERT(sub[1] / (1u << kSubPixelY) < (1u << kSubPixelPosLen)); return (glyphID << kGlyphID) | sub[0] | sub[1]; } static constexpr uint32_t PackIDXY(SkGlyphID glyphID, SkFixed x, SkFixed y) { return PackIDSubXSubY(glyphID, FixedToSub(x), FixedToSub(y)); } static constexpr uint32_t FixedToSub(SkFixed n) { return ((uint32_t)n >> kFixedPointSubPixelPosBits) & kSubPixelPosMask; } constexpr uint32_t subPixelField(uint32_t subPixelPosBit) const { return (fID >> subPixelPosBit) & kSubPixelPosMask; } constexpr SkFixed subToFixed(uint32_t subPixelPosBit) const { uint32_t subPixelPosition = this->subPixelField(subPixelPosBit); return subPixelPosition << kFixedPointSubPixelPosBits; } uint32_t fID; }; // -- SkAxisAlignment ------------------------------------------------------------------------------ // SkAxisAlignment specifies the x component of a glyph's position is rounded when kX, and the y // component is rounded when kY. If kNone then neither are rounded. enum class SkAxisAlignment : uint32_t { kNone, kX, kY, }; // round and ignorePositionMask are used to calculate the subpixel position of a glyph. // The per component (x or y) calculation is: // // subpixelOffset = (floor((viewportPosition + rounding) & mask) >> 14) & 3 // // where mask is either 0 or ~0, and rounding is either // 1/2 for non-subpixel or 1/8 for subpixel. struct SkGlyphPositionRoundingSpec { SkGlyphPositionRoundingSpec(bool isSubpixel, SkAxisAlignment axisAlignment); const SkVector halfAxisSampleFreq; const SkIPoint ignorePositionMask; const SkIPoint ignorePositionFieldMask; private: static SkVector HalfAxisSampleFreq(bool isSubpixel, SkAxisAlignment axisAlignment); static SkIPoint IgnorePositionMask(bool isSubpixel, SkAxisAlignment axisAlignment); static SkIPoint IgnorePositionFieldMask(bool isSubpixel, SkAxisAlignment axisAlignment); }; class SkGlyphRect; namespace skglyph { SkGlyphRect rect_union(SkGlyphRect, SkGlyphRect); SkGlyphRect rect_intersection(SkGlyphRect, SkGlyphRect); } // namespace skglyph // SkGlyphRect encodes rectangles with coordinates using SkScalar. It is specialized for // rectangle union and intersection operations. class SkGlyphRect { public: SkGlyphRect() = default; SkGlyphRect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) : fRect{-left, -top, right, bottom} { } bool empty() const { return -fRect[0] >= fRect[2] || -fRect[1] >= fRect[3]; } SkRect rect() const { return SkRect::MakeLTRB(-fRect[0], -fRect[1], fRect[2], fRect[3]); } SkGlyphRect offset(SkScalar x, SkScalar y) const { return SkGlyphRect{fRect + Storage{-x, -y, x, y}}; } SkGlyphRect offset(SkPoint pt) const { return this->offset(pt.x(), pt.y()); } SkGlyphRect scaleAndOffset(SkScalar scale, SkPoint offset) const { auto [x, y] = offset; return fRect * scale + Storage{-x, -y, x, y}; } SkGlyphRect inset(SkScalar dx, SkScalar dy) const { return fRect - Storage{dx, dy, dx, dy}; } SkPoint leftTop() const { return -this->negLeftTop(); } SkPoint rightBottom() const { return {fRect[2], fRect[3]}; } SkPoint widthHeight() const { return this->rightBottom() + negLeftTop(); } friend SkGlyphRect skglyph::rect_union(SkGlyphRect, SkGlyphRect); friend SkGlyphRect skglyph::rect_intersection(SkGlyphRect, SkGlyphRect); private: SkPoint negLeftTop() const { return {fRect[0], fRect[1]}; } using Storage = skvx::Vec<4, SkScalar>; SkGlyphRect(Storage rect) : fRect{rect} { } Storage fRect; }; namespace skglyph { inline SkGlyphRect empty_rect() { constexpr SkScalar max = std::numeric_limits::max(); return {max, max, -max, -max}; } inline SkGlyphRect full_rect() { constexpr SkScalar max = std::numeric_limits::max(); return {-max, -max, max, max}; } inline SkGlyphRect rect_union(SkGlyphRect a, SkGlyphRect b) { return skvx::max(a.fRect, b.fRect); } inline SkGlyphRect rect_intersection(SkGlyphRect a, SkGlyphRect b) { return skvx::min(a.fRect, b.fRect); } enum class GlyphAction { kUnset, kAccept, kReject, kDrop, kSize, }; enum ActionType { kDirectMask = 0, kDirectMaskCPU = 2, kMask = 4, kSDFT = 6, kPath = 8, kDrawable = 10, }; enum ActionTypeSize { kTotalBits = 12 }; } // namespace skglyph // SkGlyphDigest contains a digest of information for making GPU drawing decisions. It can be // referenced instead of the glyph itself in many situations. In the remote glyphs cache the // SkGlyphDigest is the only information that needs to be stored in the cache. class SkGlyphDigest { public: // An atlas consists of plots, and plots hold glyphs. The minimum a plot can be is 256x256. // This means that the maximum size a glyph can be is 256x256. static constexpr uint16_t kSkSideTooBigForAtlas = 256; // Default ctor is only needed for the hash table. SkGlyphDigest() = default; SkGlyphDigest(size_t index, const SkGlyph& glyph); int index() const { return fIndex; } bool isEmpty() const { return fIsEmpty; } bool isColor() const { return fFormat == SkMask::kARGB32_Format; } SkMask::Format maskFormat() const { return static_cast(fFormat); } skglyph::GlyphAction actionFor(skglyph::ActionType actionType) const { return static_cast((fActions >> actionType) & 0b11); } void setActionFor(skglyph::ActionType, SkGlyph*, sktext::StrikeForGPU*); uint16_t maxDimension() const { return std::max(fWidth, fHeight); } bool fitsInAtlasDirect() const { return this->maxDimension() <= kSkSideTooBigForAtlas; } bool fitsInAtlasInterpolated() const { // Include the padding needed for interpolating the glyph when drawing. return this->maxDimension() <= kSkSideTooBigForAtlas - 2; } SkGlyphRect bounds() const { return SkGlyphRect(fLeft, fTop, (SkScalar)fLeft + fWidth, (SkScalar)fTop + fHeight); } static bool FitsInAtlas(const SkGlyph& glyph); // GetKey and Hash implement the required methods for THashTable. static SkPackedGlyphID GetKey(SkGlyphDigest digest) { return SkPackedGlyphID{SkTo(digest.fPackedID)}; } static uint32_t Hash(SkPackedGlyphID packedID) { return packedID.hash(); } private: void setAction(skglyph::ActionType actionType, skglyph::GlyphAction action) { using namespace skglyph; SkASSERT(action != GlyphAction::kUnset); SkASSERT(this->actionFor(actionType) == GlyphAction::kUnset); const uint64_t mask = 0b11 << actionType; fActions &= ~mask; fActions |= SkTo(action) << actionType; } static_assert(SkPackedGlyphID::kEndData == 20); static_assert(SkMask::kCountMaskFormats <= 8); static_assert(SkTo(skglyph::GlyphAction::kSize) <= 4); struct { uint64_t fPackedID : SkPackedGlyphID::kEndData; uint64_t fIndex : SkPackedGlyphID::kEndData; uint64_t fIsEmpty : 1; uint64_t fFormat : 3; uint64_t fActions : skglyph::ActionTypeSize::kTotalBits; }; int16_t fLeft, fTop; uint16_t fWidth, fHeight; }; class SkPictureBackedGlyphDrawable final : public SkDrawable { public: static sk_spMakeFromBuffer(SkReadBuffer& buffer); static void FlattenDrawable(SkWriteBuffer& buffer, SkDrawable* drawable); SkPictureBackedGlyphDrawable(sk_sp self); private: sk_sp fPicture; SkRect onGetBounds() override; size_t onApproximateBytesUsed() override; void onDraw(SkCanvas* canvas) override; }; class SkGlyph { public: static std::optional MakeFromBuffer(SkReadBuffer&); // SkGlyph() is used for testing. constexpr SkGlyph() : SkGlyph{SkPackedGlyphID()} { } SkGlyph(const SkGlyph&) = default; SkGlyph& operator=(const SkGlyph&) = default; SkGlyph(SkGlyph&&) = default; SkGlyph& operator=(SkGlyph&&) = default; ~SkGlyph() = default; constexpr explicit SkGlyph(SkPackedGlyphID id) : fID{id} { } SkVector advanceVector() const { return SkVector{fAdvanceX, fAdvanceY}; } SkScalar advanceX() const { return fAdvanceX; } SkScalar advanceY() const { return fAdvanceY; } SkGlyphID getGlyphID() const { return fID.glyphID(); } SkPackedGlyphID getPackedID() const { return fID; } SkFixed getSubXFixed() const { return fID.getSubXFixed(); } SkFixed getSubYFixed() const { return fID.getSubYFixed(); } size_t rowBytes() const; size_t rowBytesUsingFormat(SkMask::Format format) const; // Call this to set all the metrics fields to 0 (e.g. if the scaler // encounters an error measuring a glyph). Note: this does not alter the // fImage, fPath, fID, fMaskFormat fields. void zeroMetrics(); SkMask mask() const; SkMask mask(SkPoint position) const; // Image // If we haven't already tried to associate an image with this glyph // (i.e. setImageHasBeenCalled() returns false), then use the // SkScalerContext or const void* argument to set the image. bool setImage(SkArenaAlloc* alloc, SkScalerContext* scalerContext); bool setImage(SkArenaAlloc* alloc, const void* image); // Merge the 'from' glyph into this glyph using alloc to allocate image data. Return the number // of bytes allocated. Copy the width, height, top, left, format, and image into this glyph // making a copy of the image using the alloc. size_t setMetricsAndImage(SkArenaAlloc* alloc, const SkGlyph& from); // Returns true if the image has been set. bool setImageHasBeenCalled() const { // Check for empty bounds first to guard against fImage somehow being set. return this->isEmpty() || fImage != nullptr || this->imageTooLarge(); } // Return a pointer to the path if the image exists, otherwise return nullptr. const void* image() const { SkASSERT(this->setImageHasBeenCalled()); return fImage; } // Return the size of the image. size_t imageSize() const; // Path // If we haven't already tried to associate a path to this glyph // (i.e. setPathHasBeenCalled() returns false), then use the // SkScalerContext or SkPath argument to try to do so. N.B. this // may still result in no path being associated with this glyph, // e.g. if you pass a null SkPath or the typeface is bitmap-only. // // This setPath() call is sticky... once you call it, the glyph // stays in its state permanently, ignoring any future calls. // // Returns true if this is the first time you called setPath() // and there actually is a path; call path() to get it. bool setPath(SkArenaAlloc* alloc, SkScalerContext* scalerContext); bool setPath(SkArenaAlloc* alloc, const SkPath* path, bool hairline, bool modified); // Returns true if that path has been set. bool setPathHasBeenCalled() const { return fPathData != nullptr; } // Return a pointer to the path if it exists, otherwise return nullptr. Only works if the // path was previously set. const SkPath* path() const; bool pathIsHairline() const; bool pathIsModified() const; bool setDrawable(SkArenaAlloc* alloc, SkScalerContext* scalerContext); bool setDrawable(SkArenaAlloc* alloc, sk_sp drawable); bool setDrawableHasBeenCalled() const { return fDrawableData != nullptr; } SkDrawable* drawable() const; // Format bool isColor() const { return fMaskFormat == SkMask::kARGB32_Format; } SkMask::Format maskFormat() const { return fMaskFormat; } size_t formatAlignment() const; // Bounds int maxDimension() const { return std::max(fWidth, fHeight); } SkIRect iRect() const { return SkIRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } SkRect rect() const { return SkRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } SkGlyphRect glyphRect() const { return SkGlyphRect(fLeft, fTop, fLeft + fWidth, fTop + fHeight); } int left() const { return fLeft; } int top() const { return fTop; } int width() const { return fWidth; } int height() const { return fHeight; } bool isEmpty() const { return fWidth == 0 || fHeight == 0; } bool imageTooLarge() const { return fWidth >= kMaxGlyphWidth; } uint16_t extraBits() const { return fScalerContextBits; } // Make sure that the intercept information is on the glyph and return it, or return it if it // already exists. // * bounds - [0] - top of underline; [1] - bottom of underline. // * scale, xPos - information about how wide the gap is. // * array - accumulated gaps for many characters if not null. // * count - the number of gaps. void ensureIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos, SkScalar* array, int* count, SkArenaAlloc* alloc); // Deprecated. Do not use. The last use is in SkChromeRemoteCache, and will be deleted soon. void setImage(void* image) { fImage = image; } // Serialize/deserialize functions. // Flatten the metrics portions, but no drawing data. void flattenMetrics(SkWriteBuffer&) const; // Flatten just the the mask data. void flattenImage(SkWriteBuffer&) const; // Read the image data, store it in the alloc, and add it to the glyph. size_t addImageFromBuffer(SkReadBuffer&, SkArenaAlloc*); // Flatten just the path data. void flattenPath(SkWriteBuffer&) const; // Read the path data, create the glyph's path data in the alloc, and add it to the glyph. size_t addPathFromBuffer(SkReadBuffer&, SkArenaAlloc*); // Flatten just the drawable data. void flattenDrawable(SkWriteBuffer&) const; // Read the drawable data, create the glyph's drawable data in the alloc, and add it to the // glyph. size_t addDrawableFromBuffer(SkReadBuffer&, SkArenaAlloc*); private: // There are two sides to an SkGlyph, the scaler side (things that create glyph data) have // access to all the fields. Scalers are assumed to maintain all the SkGlyph invariants. The // consumer side has a tighter interface. friend class SkScalerContext; friend class SkGlyphTestPeer; inline static constexpr uint16_t kMaxGlyphWidth = 1u << 13u; // Support horizontal and vertical skipping strike-through / underlines. // The caller walks the linked list looking for a match. For a horizontal underline, // the fBounds contains the top and bottom of the underline. The fInterval pair contains the // beginning and end of the intersection of the bounds and the glyph's path. // If interval[0] >= interval[1], no intersection was found. struct Intercept { Intercept* fNext; SkScalar fBounds[2]; // for horz underlines, the boundaries in Y SkScalar fInterval[2]; // the outside intersections of the axis and the glyph }; struct PathData { Intercept* fIntercept{nullptr}; SkPath fPath; bool fHasPath{false}; // A normal user-path will have patheffects applied to it and eventually become a dev-path. // A dev-path is always a fill-path, except when it is hairline. // The fPath is a dev-path, so sidecar the paths hairline status. // This allows the user to avoid filling paths which should not be filled. bool fHairline{false}; // This is set if the path is significantly different from what a reasonable interpreter of // the underlying font data would produce. This is set if any non-identity matrix, stroke, // path effect, emboldening, etc is applied. // This allows Document implementations to know if a glyph should be drawn out of the font // data or needs to be embedded differently. bool fModified{false}; }; struct DrawableData { Intercept* fIntercept{nullptr}; sk_sp fDrawable; bool fHasDrawable{false}; }; size_t allocImage(SkArenaAlloc* alloc); void installImage(void* imageData) { SkASSERT(!this->setImageHasBeenCalled()); fImage = imageData; } // path == nullptr indicates that there is no path. void installPath(SkArenaAlloc* alloc, const SkPath* path, bool hairline, bool modified); // drawable == nullptr indicates that there is no path. void installDrawable(SkArenaAlloc* alloc, sk_sp drawable); // The width and height of the glyph mask. uint16_t fWidth = 0, fHeight = 0; // The offset from the glyphs origin on the baseline to the top left of the glyph mask. int16_t fTop = 0, fLeft = 0; // fImage must remain null if the glyph is empty or if width > kMaxGlyphWidth. void* fImage = nullptr; // Path data has tricky state. If the glyph isEmpty, then fPathData should always be nullptr, // else if fPathData is not null, then a path has been requested. The fPath field of fPathData // may still be null after the request meaning that there is no path for this glyph. PathData* fPathData = nullptr; DrawableData* fDrawableData = nullptr; // The advance for this glyph. float fAdvanceX = 0, fAdvanceY = 0; SkMask::Format fMaskFormat{SkMask::kBW_Format}; // Used by the SkScalerContext to pass state from generateMetrics to generateImage. // Usually specifies which glyph representation was used to generate the metrics. uint16_t fScalerContextBits = 0; // An SkGlyph can be created with just a packedID, but generally speaking some glyph factory // needs to actually fill out the glyph before it can be used as part of that system. SkDEBUGCODE(bool fAdvancesBoundsFormatAndInitialPathDone{false};) SkPackedGlyphID fID; }; #endif