/* * Copyright 2010 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkDevice_DEFINED #define SkDevice_DEFINED #include "include/core/SkBlender.h" // IWYU pragma: keep #include "include/core/SkCanvas.h" #include "include/core/SkClipOp.h" #include "include/core/SkColor.h" #include "include/core/SkImageInfo.h" #include "include/core/SkM44.h" #include "include/core/SkMatrix.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkRegion.h" #include "include/core/SkSamplingOptions.h" #include "include/core/SkShader.h" #include "include/core/SkSize.h" #include "include/core/SkSurfaceProps.h" #include "include/private/base/SkAssert.h" #include "include/private/base/SkNoncopyable.h" #include "include/private/base/SkTArray.h" #include "src/core/SkMatrixPriv.h" #include "src/shaders/SkShaderBase.h" #include #include #include struct SkArc; class SkBitmap; class SkColorSpace; class SkMesh; struct SkDrawShadowRec; class SkImageFilter; class SkRasterHandleAllocator; class SkSpecialImage; class GrRecordingContext; class SkData; class SkDrawable; class SkImage; class SkPaint; class SkPath; class SkPixmap; class SkRRect; class SkSurface; class SkVertices; enum SkColorType : int; enum class SkBlendMode; enum class SkScalerContextFlags : uint32_t; struct SkRSXform; namespace sktext { class GlyphRunList; } namespace skif { class Backend; class Mapping; } namespace skgpu::ganesh { class Device; } namespace skgpu::graphite { class Device; class Recorder; } namespace sktext::gpu { class SubRunControl; class Slug; } struct SkStrikeDeviceInfo { const SkSurfaceProps fSurfaceProps; const SkScalerContextFlags fScalerContextFlags; // This is a pointer so this can be compiled without SK_GPU_SUPPORT. const sktext::gpu::SubRunControl* const fSubRunControl; }; /** * SkDevice is the internal API and implementation that SkCanvas will use to perform rendering and * implement the saveLayer abstraction. A device wraps some pixel allocation (for non-document based * devices) or wraps some other container that stores rendering operations. The drawing operations * perform equivalently to their corresponding functions in SkCanvas except that the canvas is * responsible for all SkImageFilters. An image filter is applied by automatically creating a layer, * drawing the filter-less paint into the layer, and then evaluating the filter on the layer's * image. * * Each layer in an SkCanvas stack is represented by an SkDevice instance that was created by the * parent SkDevice (up to the canvas's base device). In most cases these devices will be pixel * aligned with one another but may differ in size based on the known extent of the active clip. In * complex image filtering scenarios, they may not be axis aligned, although the effective pixel * size should remain approximately equal across all devices in a canvas. * * While SkCanvas manages a single stack of layers and canvas transforms, SkDevice does not have a * stack of transforms. Instead, it has a single active transform that is modified as needed by * SkCanvas. However, SkDevices are the means by which SkCanvas manages the clip stack because each * layer's clip stack starts anew (although the layer's results are then clipped by its parent's * stack when it is restored). */ class SkDevice : public SkRefCnt { public: SkDevice(const SkImageInfo&, const SkSurfaceProps&); // -- Surface properties and metadata /** * Return ImageInfo for this device. If the canvas is not backed by pixels * (cpu or gpu), then the info's ColorType will be kUnknown_SkColorType. */ const SkImageInfo& imageInfo() const { return fInfo; } int width() const { return this->imageInfo().width(); } int height() const { return this->imageInfo().height(); } bool isOpaque() const { return this->imageInfo().isOpaque(); } // NOTE: Image dimensions as a rect, *not* the current restricted clip bounds. SkIRect bounds() const { return SkIRect::MakeWH(this->width(), this->height()); } SkISize size() const { return this->imageInfo().dimensions(); } /** * Return SurfaceProps for this device. */ const SkSurfaceProps& surfaceProps() const { return fSurfaceProps; } SkScalerContextFlags scalerContextFlags() const; virtual SkStrikeDeviceInfo strikeDeviceInfo() const { return {fSurfaceProps, this->scalerContextFlags(), nullptr}; } // -- Direct pixel manipulation /** * Write the pixels in 'src' into this Device at the specified x,y offset. The caller is * responsible for "pre-clipping" the src. */ bool writePixels(const SkPixmap& src, int x, int y) { return this->onWritePixels(src, x, y); } /** * Read pixels from this Device at the specified x,y offset into dst. The caller is * responsible for "pre-clipping" the dst */ bool readPixels(const SkPixmap& dst, int x, int y) { return this->onReadPixels(dst, x, y); } /** * Try to get write-access to the pixels behind the device. If successful, this returns true * and fills-out the pixmap parameter. On success it also bumps the genID of the underlying * bitmap. * * On failure, returns false and ignores the pixmap parameter. */ bool accessPixels(SkPixmap* pmap); /** * Try to get read-only-access to the pixels behind the device. If successful, this returns * true and fills-out the pixmap parameter. * * On failure, returns false and ignores the pixmap parameter. */ bool peekPixels(SkPixmap*); // -- Device's transform (both current transform affecting draws, and its fixed global mapping) /** * Returns the transformation that maps from the local space to the device's coordinate space. */ const SkM44& localToDevice44() const { return fLocalToDevice; } const SkMatrix& localToDevice() const { return fLocalToDevice33; } /** * Return the device's coordinate space transform: this maps from the device's coordinate space * into the global canvas' space (or root device space). This includes the translation * necessary to account for the device's origin. */ const SkM44& deviceToGlobal() const { return fDeviceToGlobal; } /** * Return the inverse of getDeviceToGlobal(), mapping from the global canvas' space (or root * device space) into this device's coordinate space. */ const SkM44& globalToDevice() const { return fGlobalToDevice; } /** * DEPRECATED: This asserts that 'getDeviceToGlobal' is a translation matrix with integer * components. In the future some SkDevices will have more complex device-to-global transforms, * so getDeviceToGlobal() or getRelativeTransform() should be used instead. */ SkIPoint getOrigin() const; /** * Returns true when this device's pixel grid is axis aligned with the global coordinate space, * and any relative translation between the two spaces is in integer pixel units. */ bool isPixelAlignedToGlobal() const; /** * Get the transformation from this device's coordinate system to the provided device space. * This transform can be used to draw this device into the provided device, such that once * that device is drawn to the root device, the net effect will be that this device's contents * have been transformed by the global CTM. */ SkMatrix getRelativeTransform(const SkDevice&) const; void setLocalToDevice(const SkM44& localToDevice) { fLocalToDevice = localToDevice; fLocalToDevice33 = fLocalToDevice.asM33(); fLocalToDeviceDirty = true; } void setGlobalCTM(const SkM44& ctm); // -- Device's clip bounds and stack manipulation /** * Return the bounds of the device in the coordinate space of the root canvas. The root device * will have its top-left at 0,0, but other devices such as those associated with saveLayer may * have a non-zero origin. */ void getGlobalBounds(SkIRect* bounds) const { SkASSERT(bounds); *bounds = SkMatrixPriv::MapRect(fDeviceToGlobal, SkRect::Make(this->bounds())).roundOut(); } SkIRect getGlobalBounds() const { SkIRect bounds; this->getGlobalBounds(&bounds); return bounds; } /** * Returns the bounding box of the current clip, in this device's coordinate space. No pixels * outside of these bounds will be touched by draws unless the clip is further modified (at * which point this will return the updated bounds). */ virtual SkIRect devClipBounds() const = 0; virtual void pushClipStack() = 0; virtual void popClipStack() = 0; virtual void clipRect(const SkRect& rect, SkClipOp op, bool aa) = 0; virtual void clipRRect(const SkRRect& rrect, SkClipOp op, bool aa) = 0; virtual void clipPath(const SkPath& path, SkClipOp op, bool aa) = 0; virtual void clipRegion(const SkRegion& region, SkClipOp op) = 0; void clipShader(sk_sp sh, SkClipOp op) { sh = as_SB(sh)->makeWithCTM(this->localToDevice()); if (op == SkClipOp::kDifference) { sh = as_SB(sh)->makeInvertAlpha(); } this->onClipShader(std::move(sh)); } virtual void replaceClip(const SkIRect& rect) = 0; virtual bool isClipAntiAliased() const = 0; virtual bool isClipEmpty() const = 0; virtual bool isClipRect() const = 0; virtual bool isClipWideOpen() const = 0; virtual void android_utils_clipAsRgn(SkRegion*) const = 0; virtual bool android_utils_clipWithStencil() { return false; } // -- Device reflection // TEMPORARY: Whether or not SkCanvas should use an layer and image filters to simulate // mask filters and then draw the filtered mask using drawCoverageMask. Unlike regular // layers, the color type passed to SkDevice::createDevice() will always be an alpha-only // color type. Eventually this will be the only way that mask filters are handled (barring // dedicated fast-paths for blurs on [r]rects and text). virtual bool useDrawCoverageMaskForMaskFilters() const { return false; } // SkCanvas uses NoPixelsDevice when createDevice fails; but then it needs to be able to // inspect a layer's device to know if calling drawDevice() later is allowed. virtual bool isNoPixelsDevice() const { return false; } virtual void* getRasterHandle() const { return nullptr; } virtual GrRecordingContext* recordingContext() const { return nullptr; } virtual skgpu::graphite::Recorder* recorder() const { return nullptr; } virtual skgpu::ganesh::Device* asGaneshDevice() { return nullptr; } virtual skgpu::graphite::Device* asGraphiteDevice() { return nullptr; } // Marking an SkDevice immutable declares the intent that rendering to the device is // complete, allowing it to be sampled as an image without requiring a copy. Drawing // operations may not function and may assert if invoked after setImmutable() is called. virtual void setImmutable() {} virtual sk_sp makeSurface(const SkImageInfo&, const SkSurfaceProps&); struct CreateInfo { CreateInfo(const SkImageInfo& info, SkPixelGeometry geo, SkRasterHandleAllocator* allocator) : fInfo(info) , fPixelGeometry(geo) , fAllocator(allocator) {} const SkImageInfo fInfo; const SkPixelGeometry fPixelGeometry; SkRasterHandleAllocator* fAllocator = nullptr; }; /** * Create a new device based on CreateInfo. If the paint is not null, then it represents a * preview of how the new device will be composed with its creator device (this). * * The subclass may be handed this device in drawDevice(), so it must always return a device * that it knows how to draw, and that it knows how to identify if it is not of the same * subclass (since drawDevice is passed a SkDevice*). If the subclass cannot fulfill that * contract (e.g. PDF cannot support some settings on the paint) it should return NULL, and the * caller may then decide to explicitly create a bitmapdevice, knowing that later it could not * call drawDevice with it (but it could call drawSprite or drawBitmap). */ virtual sk_sp createDevice(const CreateInfo&, const SkPaint*) { return nullptr; } // -- Drawing routines (called after saveLayers and imagefilter operations are applied) // Ensure that non-RSXForm runs are passed to onDrawGlyphRunList. void drawGlyphRunList(SkCanvas*, const sktext::GlyphRunList& glyphRunList, const SkPaint& paint); // Slug handling routines. virtual sk_sp convertGlyphRunListToSlug( const sktext::GlyphRunList& glyphRunList, const SkPaint& paint); virtual void drawSlug(SkCanvas*, const sktext::gpu::Slug* slug, const SkPaint& paint); virtual void drawPaint(const SkPaint& paint) = 0; virtual void drawPoints(SkCanvas::PointMode mode, size_t count, const SkPoint[], const SkPaint& paint) = 0; virtual void drawRect(const SkRect& r, const SkPaint& paint) = 0; virtual void drawRegion(const SkRegion& r, const SkPaint& paint); virtual void drawOval(const SkRect& oval, const SkPaint& paint) = 0; /** By the time this is called we know that abs(sweepAngle) is in the range [0, 360). */ virtual void drawArc(const SkArc& arc, const SkPaint& paint); virtual void drawRRect(const SkRRect& rr, const SkPaint& paint) = 0; // Default impl calls drawPath() virtual void drawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint&); /** * If pathIsMutable, then the implementation is allowed to cast path to a * non-const pointer and modify it in place (as an optimization). Canvas * may do this to implement helpers such as drawOval, by placing a temp * path on the stack to hold the representation of the oval. */ virtual void drawPath(const SkPath& path, const SkPaint& paint, bool pathIsMutable = false) = 0; virtual void drawImageRect(const SkImage*, const SkRect* src, const SkRect& dst, const SkSamplingOptions&, const SkPaint&, SkCanvas::SrcRectConstraint) = 0; // Return true if canvas calls to drawImage or drawImageRect should try to // be drawn in a tiled way. virtual bool shouldDrawAsTiledImageRect() const { return false; } virtual bool drawAsTiledImageRect(SkCanvas*, const SkImage*, const SkRect* src, const SkRect& dst, const SkSamplingOptions&, const SkPaint&, SkCanvas::SrcRectConstraint) { return false; } virtual void drawImageLattice(const SkImage*, const SkCanvas::Lattice&, const SkRect& dst, SkFilterMode, const SkPaint&); /** * If skipColorXform is true, then the implementation should assume that the provided * vertex colors are already in the destination color space. */ virtual void drawVertices(const SkVertices*, sk_sp, const SkPaint&, bool skipColorXform = false) = 0; virtual void drawMesh(const SkMesh& mesh, sk_sp, const SkPaint&) = 0; virtual void drawShadow(const SkPath&, const SkDrawShadowRec&); // default implementation calls drawVertices virtual void drawPatch(const SkPoint cubics[12], const SkColor colors[4], const SkPoint texCoords[4], sk_sp, const SkPaint& paint); // default implementation calls drawVertices virtual void drawAtlas(const SkRSXform[], const SkRect[], const SkColor[], int count, sk_sp, const SkPaint&); virtual void drawAnnotation(const SkRect&, const char[], SkData*) {} // Default impl always calls drawRect() with a solid-color paint, setting it to anti-aliased // only when all edge flags are set. If there's a clip region, it draws that using drawPath, // or uses clipPath(). virtual void drawEdgeAAQuad(const SkRect& rect, const SkPoint clip[4], SkCanvas::QuadAAFlags aaFlags, const SkColor4f& color, SkBlendMode mode); // Default impl uses drawImageRect per entry, being anti-aliased only when an entry's edge flags // are all set. If there's a clip region, it will be applied using clipPath(). virtual void drawEdgeAAImageSet(const SkCanvas::ImageSetEntry[], int count, const SkPoint dstClips[], const SkMatrix preViewMatrices[], const SkSamplingOptions&, const SkPaint&, SkCanvas::SrcRectConstraint); virtual void drawDrawable(SkCanvas*, SkDrawable*, const SkMatrix*); // -- "Special" drawing and image routines // Snap the 'subset' contents from this device, possibly as a read-only view. If 'forceCopy' // is true then the returned image's pixels must not be affected by subsequent draws into the // device. When 'forceCopy' is false, the image can be a view into the device's pixels // (avoiding a copy for performance, at the expense of safety). Default returns null. virtual sk_sp snapSpecial(const SkIRect& subset, bool forceCopy = false); // Can return null if unable to perform scaling as part of the copy, even if snapSpecial() w/o // scaling would succeed. virtual sk_sp snapSpecialScaled(const SkIRect& subset, const SkISize& dstDims); // Get a view of the entire device's current contents as an image. sk_sp snapSpecial(); /** * The SkDevice passed will be an SkDevice which was returned by a call to * createDevice on this device with kNeverTile_TileExpectation. * * The default implementation calls snapSpecial() and drawSpecial() with the relative transform * from the input device to this device. The provided SkPaint cannot have a mask filter or * image filter, and any shader is ignored. */ virtual void drawDevice(SkDevice*, const SkSamplingOptions&, const SkPaint&); /** * Draw the special image's subset to this device, subject to the given matrix transform instead * of the device's current local to device matrix. * * If 'constraint' is kFast, the rendered geometry of the image still reflects the extent of * the SkSpecialImage's subset, but it's assumed that the pixel data beyond the subset is valid * (e.g. SkSpecialImage::makeSubset() was called to crop a larger image). */ virtual void drawSpecial(SkSpecialImage*, const SkMatrix& localToDevice, const SkSamplingOptions&, const SkPaint&, SkCanvas::SrcRectConstraint constraint = SkCanvas::kStrict_SrcRectConstraint); /** * Draw the special image's subset to this device, treating its alpha channel as coverage for * the draw and ignoring any RGB channels that might be present. This will be drawn using the * provided matrix transform instead of the device's current local to device matrix. * * Coverage values beyond the image's subset are treated as 0 (i.e. kDecal tiling). Color values * before coverage are determined as normal by the SkPaint, ignoring style, path effects, * mask filters and image filters. The local coords of any SkShader on the paint should be * relative to the SkDevice's current matrix (i.e. 'maskToDevice' determines how the coverage * mask aligns with device-space, but otherwise shading proceeds like other draws). */ virtual void drawCoverageMask(const SkSpecialImage*, const SkMatrix& maskToDevice, const SkSamplingOptions&, const SkPaint&); /** * Draw rrect with an optimized path for analytic blurs, if provided by the device. */ virtual bool drawBlurredRRect(const SkRRect&, const SkPaint&, float deviceSigma) { return false; } /** * Evaluate 'filter' and draw the final output into this device using 'paint'. The 'mapping' * defines the parameter-to-layer space transform used to evaluate the image filter on 'src', * and the layer-to-device space transform that is used to draw the result into this device. * Since 'mapping' fully specifies the transform, this draw function ignores the current * local-to-device matrix (i.e. just like drawSpecial and drawDevice). * * The final paint must not have an image filter or mask filter set on it; a shader is ignored. * The provided color type will be used for any intermediate surfaces that need to be created as * part of filter evaluation. It does not have to be src's color type or this Device's type. */ void drawFilteredImage(const skif::Mapping& mapping, SkSpecialImage* src, SkColorType ct, const SkImageFilter*, const SkSamplingOptions&, const SkPaint&); protected: // DEPRECATED: Can be deleted once SkCanvas::onDrawImage() uses skif::FilterResult so don't // bother re-arranging. virtual sk_sp makeSpecial(const SkBitmap&); virtual sk_sp makeSpecial(const SkImage*); // Configure the device's coordinate spaces, specifying both how its device image maps back to // the global space (via 'deviceToGlobal') and the initial CTM of the device (via // 'localToDevice', i.e. what geometry drawn into this device will be transformed with). // // (bufferOriginX, bufferOriginY) defines where the (0,0) pixel the device's backing buffer // is anchored in the device space. The final device-to-global matrix stored by the SkDevice // will include a pre-translation by T(deviceOriginX, deviceOriginY), and the final // local-to-device matrix will have a post-translation of T(-deviceOriginX, -deviceOriginY). void setDeviceCoordinateSystem(const SkM44& deviceToGlobal, const SkM44& globalToDevice, const SkM44& localToDevice, int bufferOriginX, int bufferOriginY); // Convenience to configure the device to be axis-aligned with the root canvas, but with a // unique origin. void setOrigin(const SkM44& globalCTM, int x, int y) { this->setDeviceCoordinateSystem(SkM44(), SkM44(), globalCTM, x, y); } // Returns whether or not localToDevice() has changed since the last call to this function. bool checkLocalToDeviceDirty() { bool wasDirty = fLocalToDeviceDirty; fLocalToDeviceDirty = false; return wasDirty; } private: friend class SkCanvas; // for setOrigin/setDeviceCoordinateSystem friend class DeviceTestingAccess; // Defaults to a CPU image filtering backend. virtual sk_sp createImageFilteringBackend(const SkSurfaceProps& surfaceProps, SkColorType colorType) const; // Implementations can assume that the device from (x,y) to (w,h) will fit within dst. virtual bool onReadPixels(const SkPixmap&, int x, int y) { return false; } // Implementations can assume that the src image placed at 'x,y' will fit within the device. virtual bool onWritePixels(const SkPixmap&, int x, int y) { return false; } virtual bool onAccessPixels(SkPixmap*) { return false; } virtual bool onPeekPixels(SkPixmap*) { return false; } virtual void onClipShader(sk_sp) = 0; // Only called with glyphRunLists that do not contain RSXForm. virtual void onDrawGlyphRunList(SkCanvas*, const sktext::GlyphRunList&, const SkPaint& paint) = 0; void simplifyGlyphRunRSXFormAndRedraw(SkCanvas*, const sktext::GlyphRunList&, const SkPaint& paint); const SkImageInfo fInfo; const SkSurfaceProps fSurfaceProps; SkM44 fLocalToDevice; // fDeviceToGlobal and fGlobalToDevice are inverses of each other; there are never that many // SkDevices, so pay the memory cost to avoid recalculating the inverse. SkM44 fDeviceToGlobal; SkM44 fGlobalToDevice; // fLocalToDevice but as a 3x3. SkMatrix fLocalToDevice33; // fLocalToDevice is the device CTM, not the global CTM. // It maps from local space to the device's coordinate space. // fDeviceToGlobal * fLocalToDevice will match the canvas' CTM. // // setGlobalCTM and setLocalToDevice are intentionally not virtual for performance reasons. // However, track a dirty bit for subclasses that want to defer local-to-device dependent // calculations until needed for a clip or draw. bool fLocalToDeviceDirty = true; }; class SkNoPixelsDevice : public SkDevice { public: SkNoPixelsDevice(const SkIRect& bounds, const SkSurfaceProps& props); SkNoPixelsDevice(const SkIRect& bounds, const SkSurfaceProps& props, sk_sp colorSpace); // Returns false if the device could not be reset; this should only be called on a root device. bool resetForNextPicture(const SkIRect& bounds); // SkNoPixelsDevice tracks the clip conservatively in order to respond to some queries as // accurately as possible while emphasizing performance void pushClipStack() override; void popClipStack() override; void clipRect(const SkRect& rect, SkClipOp op, bool aa) override; void clipRRect(const SkRRect& rrect, SkClipOp op, bool aa) override; void clipPath(const SkPath& path, SkClipOp op, bool aa) override; void clipRegion(const SkRegion& globalRgn, SkClipOp op) override; void replaceClip(const SkIRect& rect) override; bool isClipAntiAliased() const override { return this->clip().fIsAA; } bool isClipEmpty() const override { return this->devClipBounds().isEmpty(); } bool isClipRect() const override { return this->clip().fIsRect && !this->isClipEmpty(); } bool isClipWideOpen() const override { return this->clip().fIsRect && this->devClipBounds() == this->bounds(); } void android_utils_clipAsRgn(SkRegion* rgn) const override { rgn->setRect(this->devClipBounds()); } SkIRect devClipBounds() const override { return this->clip().fClipBounds; } protected: void drawPaint(const SkPaint& paint) override {} void drawPoints(SkCanvas::PointMode, size_t, const SkPoint[], const SkPaint&) override {} void drawImageRect(const SkImage*, const SkRect*, const SkRect&, const SkSamplingOptions&, const SkPaint&, SkCanvas::SrcRectConstraint) override {} void drawRect(const SkRect&, const SkPaint&) override {} void drawOval(const SkRect&, const SkPaint&) override {} void drawRRect(const SkRRect&, const SkPaint&) override {} void drawPath(const SkPath&, const SkPaint&, bool) override {} void drawDevice(SkDevice*, const SkSamplingOptions&, const SkPaint&) override {} void drawVertices(const SkVertices*, sk_sp, const SkPaint&, bool) override {} void drawMesh(const SkMesh&, sk_sp, const SkPaint&) override {} void drawSlug(SkCanvas*, const sktext::gpu::Slug*, const SkPaint&) override {} void onDrawGlyphRunList(SkCanvas*, const sktext::GlyphRunList&, const SkPaint&) override {} bool isNoPixelsDevice() const override { return true; } private: struct ClipState { SkIRect fClipBounds; int fDeferredSaveCount; bool fIsAA; bool fIsRect; ClipState(const SkIRect& bounds, bool isAA, bool isRect) : fClipBounds(bounds) , fDeferredSaveCount(0) , fIsAA(isAA) , fIsRect(isRect) {} void op(SkClipOp op, const SkM44& transform, const SkRect& bounds, bool isAA, bool fillsBounds); }; void onClipShader(sk_sp shader) override; const ClipState& clip() const { return fClipStack.back(); } ClipState& writableClip(); skia_private::STArray<4, ClipState> fClipStack; }; class SkAutoDeviceTransformRestore : SkNoncopyable { public: SkAutoDeviceTransformRestore(SkDevice* device, const SkMatrix& localToDevice) : fDevice(device) , fPrevLocalToDevice(device->localToDevice()) { fDevice->setLocalToDevice(SkM44(localToDevice)); } ~SkAutoDeviceTransformRestore() { fDevice->setLocalToDevice(fPrevLocalToDevice); } private: SkDevice* fDevice; const SkM44 fPrevLocalToDevice; }; #endif