/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkBitmapProcState.h" #include "include/core/SkAlphaType.h" #include "include/core/SkColorPriv.h" #include "include/core/SkColorType.h" #include "include/core/SkImageInfo.h" #include "include/core/SkTileMode.h" #include "include/private/base/SkMacros.h" #include "include/private/base/SkTPin.h" #include "src/core/SkMemset.h" #include "src/core/SkMipmapAccessor.h" #include #include #include class SkImage; class SkImage_Base; // One-stop-shop shader for, // - nearest-neighbor sampling (_nofilter_), // - clamp tiling in X and Y both (Clamp_), // - with at most a scale and translate matrix (_DX_), // - and no extra alpha applied (_opaque_), // - sampling from 8888 (_S32_) and drawing to 8888 (_S32_). static void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y, SkPMColor* dst, int count) { const SkBitmapProcState& s = *static_cast(sIn); SkASSERT(s.fInvMatrix.isScaleTranslate()); SkASSERT(s.fAlphaScale == 256); const unsigned maxX = s.fPixmap.width() - 1; SkFractionalInt fx; int dstY; { const SkBitmapProcStateAutoMapper mapper(s, x, y); const unsigned maxY = s.fPixmap.height() - 1; dstY = SkTPin(mapper.intY(), 0, maxY); fx = mapper.fractionalIntX(); } const SkPMColor* src = s.fPixmap.addr32(0, dstY); const SkFractionalInt dx = s.fInvSxFractionalInt; // Check if we're safely inside [0...maxX] so no need to clamp each computed index. // if ((uint64_t)SkFractionalIntToInt(fx) <= maxX && (uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX) { int count4 = count >> 2; for (int i = 0; i < count4; ++i) { SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx; SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx; SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx; SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx; dst[0] = src0; dst[1] = src1; dst[2] = src2; dst[3] = src3; dst += 4; } for (int i = (count4 << 2); i < count; ++i) { unsigned index = SkFractionalIntToInt(fx); SkASSERT(index <= maxX); *dst++ = src[index]; fx += dx; } } else { for (int i = 0; i < count; ++i) { dst[i] = src[SkTPin(SkFractionalIntToInt(fx), 0, maxX)]; fx += dx; } } } static void S32_alpha_D32_nofilter_DX(const SkBitmapProcState& s, const uint32_t* xy, int count, SkPMColor* colors) { SkASSERT(count > 0 && colors != nullptr); SkASSERT(s.fInvMatrix.isScaleTranslate()); SkASSERT(!s.fBilerp); SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); SkASSERT(s.fAlphaScale <= 256); // xy is a 32-bit y-coordinate, followed by 16-bit x-coordinates. unsigned y = *xy++; SkASSERT(y < (unsigned)s.fPixmap.height()); auto row = (const SkPMColor*)( (const char*)s.fPixmap.addr() + y * s.fPixmap.rowBytes() ); if (1 == s.fPixmap.width()) { SkOpts::memset32(colors, SkAlphaMulQ(row[0], s.fAlphaScale), count); return; } // Step 4 xs == 2 uint32_t at a time. while (count >= 4) { uint32_t x01 = *xy++, x23 = *xy++; SkPMColor p0 = row[UNPACK_PRIMARY_SHORT (x01)]; SkPMColor p1 = row[UNPACK_SECONDARY_SHORT(x01)]; SkPMColor p2 = row[UNPACK_PRIMARY_SHORT (x23)]; SkPMColor p3 = row[UNPACK_SECONDARY_SHORT(x23)]; *colors++ = SkAlphaMulQ(p0, s.fAlphaScale); *colors++ = SkAlphaMulQ(p1, s.fAlphaScale); *colors++ = SkAlphaMulQ(p2, s.fAlphaScale); *colors++ = SkAlphaMulQ(p3, s.fAlphaScale); count -= 4; } // Step 1 x == 1 uint16_t at a time. auto x = (const uint16_t*)xy; while (count --> 0) { *colors++ = SkAlphaMulQ(row[*x++], s.fAlphaScale); } } static void S32_alpha_D32_nofilter_DXDY(const SkBitmapProcState& s, const uint32_t* xy, int count, SkPMColor* colors) { SkASSERT(count > 0 && colors != nullptr); SkASSERT(!s.fBilerp); SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); SkASSERT(s.fAlphaScale <= 256); auto src = (const char*)s.fPixmap.addr(); size_t rb = s.fPixmap.rowBytes(); while (count --> 0) { uint32_t XY = *xy++, x = XY & 0xffff, y = XY >> 16; SkASSERT(x < (unsigned)s.fPixmap.width ()); SkASSERT(y < (unsigned)s.fPixmap.height()); *colors++ = SkAlphaMulQ(((const SkPMColor*)(src + y*rb))[x], s.fAlphaScale); } } SkBitmapProcState::SkBitmapProcState(const SkImage_Base* image, SkTileMode tmx, SkTileMode tmy) : fImage(image) , fTileModeX(tmx) , fTileModeY(tmy) {} // true iff the matrix has a scale and no more than an optional translate. static bool matrix_only_scale_translate(const SkMatrix& m) { return (m.getType() & ~SkMatrix::kTranslate_Mask) == SkMatrix::kScale_Mask; } /** * For the purposes of drawing bitmaps, if a matrix is "almost" translate * go ahead and treat it as if it were, so that subsequent code can go fast. */ static bool just_trans_general(const SkMatrix& matrix) { SkASSERT(matrix_only_scale_translate(matrix)); const SkScalar tol = SK_Scalar1 / 32768; return SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol) && SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol); } /** * Determine if the matrix can be treated as integral-only-translate, * for the purpose of filtering. */ static bool just_trans_integral(const SkMatrix& m) { static constexpr SkScalar tol = SK_Scalar1 / 256; return m.getType() <= SkMatrix::kTranslate_Mask && SkScalarNearlyEqual(m.getTranslateX(), SkScalarRoundToScalar(m.getTranslateX()), tol) && SkScalarNearlyEqual(m.getTranslateY(), SkScalarRoundToScalar(m.getTranslateY()), tol); } static bool valid_for_filtering(unsigned dimension) { // for filtering, width and height must fit in 14bits, since we use steal // 2 bits from each to store our 4bit subpixel data return (dimension & ~0x3FFF) == 0; } bool SkBitmapProcState::init(const SkMatrix& inv, SkAlpha paintAlpha, const SkSamplingOptions& sampling) { SkASSERT(!inv.hasPerspective()); SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || inv.isScaleTranslate()); SkASSERT(!sampling.isAniso()); SkASSERT(!sampling.useCubic); SkASSERT(sampling.mipmap != SkMipmapMode::kLinear); fPixmap.reset(); fBilerp = false; auto* access = SkMipmapAccessor::Make(&fAlloc, (const SkImage*)fImage, inv, sampling.mipmap); if (!access) { return false; } std::tie(fPixmap, fInvMatrix) = access->level(); fInvMatrix.preConcat(inv); fPaintAlpha = paintAlpha; fBilerp = sampling.filter == SkFilterMode::kLinear; SkASSERT(fPixmap.addr()); bool integral_translate_only = just_trans_integral(fInvMatrix); if (!integral_translate_only) { // Most of the scanline procs deal with "unit" texture coordinates, as this // makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate // those, we divide the matrix by its dimensions here. // // We don't do this if we're either trivial (can ignore the matrix) or clamping // in both X and Y since clamping to width,height is just as easy as to 0xFFFF. if (fTileModeX != SkTileMode::kClamp || fTileModeY != SkTileMode::kClamp) { SkMatrixPriv::PostIDiv(&fInvMatrix, fPixmap.width(), fPixmap.height()); } // Now that all possible changes to the matrix have taken place, check // to see if we're really close to a no-scale matrix. If so, explicitly // set it to be so. Subsequent code may inspect this matrix to choose // a faster path in this case. // This code will only execute if the matrix has some scale component; // if it's already pure translate then we won't do this inversion. if (matrix_only_scale_translate(fInvMatrix)) { SkMatrix forward; if (fInvMatrix.invert(&forward) && just_trans_general(forward)) { fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY()); } } // Recompute the flag after matrix adjustments. integral_translate_only = just_trans_integral(fInvMatrix); } if (fBilerp && (!valid_for_filtering(fPixmap.width() | fPixmap.height()) || integral_translate_only)) { fBilerp = false; } return true; } /* * Analyze filter-quality and matrix, and decide how to implement that. * * In general, we cascade down the request level [ High ... None ] * - for a given level, if we can fulfill it, fine, else * - else we downgrade to the next lower level and try again. * We can always fulfill requests for Low and None * - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack * and may be removed. */ bool SkBitmapProcState::chooseProcs() { SkASSERT(!fInvMatrix.hasPerspective()); SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || fInvMatrix.isScaleTranslate()); SkASSERT(fPixmap.colorType() == kN32_SkColorType); SkASSERT(fPixmap.alphaType() == kPremul_SkAlphaType || fPixmap.alphaType() == kOpaque_SkAlphaType); SkASSERT(fTileModeX != SkTileMode::kDecal); fInvProc = SkMatrixPriv::GetMapXYProc(fInvMatrix); fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX()); fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY ()); fAlphaScale = SkAlpha255To256(fPaintAlpha); bool translate_only = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; fMatrixProc = this->chooseMatrixProc(translate_only); SkASSERT(fMatrixProc); if (fInvMatrix.isScaleTranslate()) { fSampleProc32 = fBilerp ? SkOpts::S32_alpha_D32_filter_DX : S32_alpha_D32_nofilter_DX ; } else { fSampleProc32 = fBilerp ? SkOpts::S32_alpha_D32_filter_DXDY : S32_alpha_D32_nofilter_DXDY; } SkASSERT(fSampleProc32); // our special-case shaderprocs // TODO: move this one into chooseShaderProc32() or pull all that in here. if (fAlphaScale == 256 && !fBilerp && SkTileMode::kClamp == fTileModeX && SkTileMode::kClamp == fTileModeY && fInvMatrix.isScaleTranslate()) { fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc; } else { fShaderProc32 = this->chooseShaderProc32(); } return true; } static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn, int x, int y, SkPMColor* colors, int count) { const SkBitmapProcState& s = *static_cast(sIn); SkASSERT(s.fInvMatrix.isTranslate()); SkASSERT(count > 0 && colors != nullptr); SkASSERT(!s.fBilerp); const int maxX = s.fPixmap.width() - 1; const int maxY = s.fPixmap.height() - 1; int ix = s.fFilterOneX + x; int iy = SkTPin(s.fFilterOneY + y, 0, maxY); const SkPMColor* row = s.fPixmap.addr32(0, iy); // clamp to the left if (ix < 0) { int n = std::min(-ix, count); SkOpts::memset32(colors, row[0], n); count -= n; if (0 == count) { return; } colors += n; SkASSERT(-ix == n); ix = 0; } // copy the middle if (ix <= maxX) { int n = std::min(maxX - ix + 1, count); memcpy(colors, row + ix, n * sizeof(SkPMColor)); count -= n; if (0 == count) { return; } colors += n; } SkASSERT(count > 0); // clamp to the right SkOpts::memset32(colors, row[maxX], count); } static inline int sk_int_mod(int x, int n) { SkASSERT(n > 0); if ((unsigned)x >= (unsigned)n) { if (x < 0) { x = n + ~(~x % n); } else { x = x % n; } } return x; } static inline int sk_int_mirror(int x, int n) { x = sk_int_mod(x, 2 * n); if (x >= n) { x = n + ~(x - n); } return x; } static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn, int x, int y, SkPMColor* colors, int count) { const SkBitmapProcState& s = *static_cast(sIn); SkASSERT(s.fInvMatrix.isTranslate()); SkASSERT(count > 0 && colors != nullptr); SkASSERT(!s.fBilerp); const int stopX = s.fPixmap.width(); const int stopY = s.fPixmap.height(); int ix = s.fFilterOneX + x; int iy = sk_int_mod(s.fFilterOneY + y, stopY); const SkPMColor* row = s.fPixmap.addr32(0, iy); ix = sk_int_mod(ix, stopX); for (;;) { int n = std::min(stopX - ix, count); memcpy(colors, row + ix, n * sizeof(SkPMColor)); count -= n; if (0 == count) { return; } colors += n; ix = 0; } } static inline void filter_32_alpha(unsigned t, SkPMColor color0, SkPMColor color1, SkPMColor* dstColor, unsigned alphaScale) { SkASSERT((unsigned)t <= 0xF); SkASSERT(alphaScale <= 256); const uint32_t mask = 0xFF00FF; int scale = 256 - 16*t; uint32_t lo = (color0 & mask) * scale; uint32_t hi = ((color0 >> 8) & mask) * scale; scale = 16*t; lo += (color1 & mask) * scale; hi += ((color1 >> 8) & mask) * scale; // TODO: if (alphaScale < 256) ... lo = ((lo >> 8) & mask) * alphaScale; hi = ((hi >> 8) & mask) * alphaScale; *dstColor = ((lo >> 8) & mask) | (hi & ~mask); } static void S32_D32_constX_shaderproc(const void* sIn, int x, int y, SkPMColor* colors, int count) { const SkBitmapProcState& s = *static_cast(sIn); SkASSERT(s.fInvMatrix.isScaleTranslate()); SkASSERT(count > 0 && colors != nullptr); SkASSERT(1 == s.fPixmap.width()); int iY0; int iY1 SK_INIT_TO_AVOID_WARNING; int iSubY SK_INIT_TO_AVOID_WARNING; if (s.fBilerp) { SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); uint32_t xy[2]; mproc(s, xy, 1, x, y); iY0 = xy[0] >> 18; iY1 = xy[0] & 0x3FFF; iSubY = (xy[0] >> 14) & 0xF; } else { int yTemp; if (s.fInvMatrix.isTranslate()) { yTemp = s.fFilterOneY + y; } else{ const SkBitmapProcStateAutoMapper mapper(s, x, y); // When the matrix has a scale component the setup code in // chooseProcs multiples the inverse matrix by the inverse of the // bitmap's width and height. Since this method is going to do // its own tiling and sampling we need to undo that here. if (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY) { yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); } else { yTemp = mapper.intY(); } } const int stopY = s.fPixmap.height(); switch (s.fTileModeY) { case SkTileMode::kClamp: iY0 = SkTPin(yTemp, 0, stopY-1); break; case SkTileMode::kRepeat: iY0 = sk_int_mod(yTemp, stopY); break; case SkTileMode::kMirror: default: iY0 = sk_int_mirror(yTemp, stopY); break; } #ifdef SK_DEBUG { const SkBitmapProcStateAutoMapper mapper(s, x, y); int iY2; if (!s.fInvMatrix.isTranslate() && (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY)) { iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); } else { iY2 = mapper.intY(); } switch (s.fTileModeY) { case SkTileMode::kClamp: iY2 = SkTPin(iY2, 0, stopY-1); break; case SkTileMode::kRepeat: iY2 = sk_int_mod(iY2, stopY); break; case SkTileMode::kMirror: default: iY2 = sk_int_mirror(iY2, stopY); break; } SkASSERT(iY0 == iY2); } #endif } const SkPMColor* row0 = s.fPixmap.addr32(0, iY0); SkPMColor color; if (s.fBilerp) { const SkPMColor* row1 = s.fPixmap.addr32(0, iY1); filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); } else { if (s.fAlphaScale < 256) { color = SkAlphaMulQ(*row0, s.fAlphaScale); } else { color = *row0; } } SkOpts::memset32(colors, color, count); } static void DoNothing_shaderproc(const void*, int x, int y, SkPMColor* colors, int count) { // if we get called, the matrix is too tricky, so we just draw nothing SkOpts::memset32(colors, 0, count); } bool SkBitmapProcState::setupForTranslate() { SkPoint pt; const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt); /* * if the translate is larger than our ints, we can get random results, or * worse, we might get 0x80000000, which wreaks havoc on us, since we can't * negate it. */ const SkScalar too_big = SkIntToScalar(1 << 30); if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { return false; } // Since we know we're not filtered, we re-purpose these fields allow // us to go from device -> src coordinates w/ just an integer add, // rather than running through the inverse-matrix fFilterOneX = mapper.intX(); fFilterOneY = mapper.intY(); return true; } SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { if (kN32_SkColorType != fPixmap.colorType()) { return nullptr; } if (1 == fPixmap.width() && fInvMatrix.isScaleTranslate()) { if (!fBilerp && fInvMatrix.isTranslate() && !this->setupForTranslate()) { return DoNothing_shaderproc; } return S32_D32_constX_shaderproc; } if (fAlphaScale < 256) { return nullptr; } if (!fInvMatrix.isTranslate()) { return nullptr; } if (fBilerp) { return nullptr; } SkTileMode tx = fTileModeX; SkTileMode ty = fTileModeY; if (SkTileMode::kClamp == tx && SkTileMode::kClamp == ty) { if (this->setupForTranslate()) { return Clamp_S32_D32_nofilter_trans_shaderproc; } return DoNothing_shaderproc; } if (SkTileMode::kRepeat == tx && SkTileMode::kRepeat == ty) { if (this->setupForTranslate()) { return Repeat_S32_D32_nofilter_trans_shaderproc; } return DoNothing_shaderproc; } return nullptr; } #ifdef SK_DEBUG static void check_scale_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { unsigned y = *bitmapXY++; SkASSERT(y < my); const uint16_t* xptr = reinterpret_cast(bitmapXY); for (int i = 0; i < count; ++i) { SkASSERT(xptr[i] < mx); } } static void check_scale_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { uint32_t YY = *bitmapXY++; unsigned y0 = YY >> 18; unsigned y1 = YY & 0x3FFF; SkASSERT(y0 < my); SkASSERT(y1 < my); for (int i = 0; i < count; ++i) { uint32_t XX = bitmapXY[i]; unsigned x0 = XX >> 18; unsigned x1 = XX & 0x3FFF; SkASSERT(x0 < mx); SkASSERT(x1 < mx); } } static void check_affine_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { for (int i = 0; i < count; ++i) { uint32_t XY = bitmapXY[i]; unsigned x = XY & 0xFFFF; unsigned y = XY >> 16; SkASSERT(x < mx); SkASSERT(y < my); } } static void check_affine_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { for (int i = 0; i < count; ++i) { uint32_t YY = *bitmapXY++; unsigned y0 = YY >> 18; unsigned y1 = YY & 0x3FFF; SkASSERT(y0 < my); SkASSERT(y1 < my); uint32_t XX = *bitmapXY++; unsigned x0 = XX >> 18; unsigned x1 = XX & 0x3FFF; SkASSERT(x0 < mx); SkASSERT(x1 < mx); } } void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, uint32_t bitmapXY[], int count, int x, int y) { SkASSERT(bitmapXY); SkASSERT(count > 0); state.fMatrixProc(state, bitmapXY, count, x, y); void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); if (state.fInvMatrix.isScaleTranslate()) { proc = state.fBilerp ? check_scale_filter : check_scale_nofilter; } else { proc = state.fBilerp ? check_affine_filter : check_affine_nofilter; } proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height()); } SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { return DebugMatrixProc; } #endif /* The storage requirements for the different matrix procs are as follows, where each X or Y is 2 bytes, and N is the number of pixels/elements: scale/translate nofilter Y(4bytes) + N * X affine/perspective nofilter N * (X Y) scale/translate filter Y Y + N * (X X) affine filter N * (Y Y X X) */ int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { int32_t size = static_cast(bufferSize); size &= ~3; // only care about 4-byte aligned chunks if (fInvMatrix.isScaleTranslate()) { size -= 4; // the shared Y (or YY) coordinate if (size < 0) { size = 0; } size >>= 1; } else { size >>= 2; } if (fBilerp) { size >>= 1; } return size; }