/* * Copyright 2012 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/base/SkBezierCurves.h" #include "include/private/base/SkAssert.h" #include "include/private/base/SkFloatingPoint.h" #include "include/private/base/SkPoint_impl.h" #include "src/base/SkCubics.h" #include "src/base/SkQuads.h" #include static inline double interpolate(double A, double B, double t) { return A + (B - A) * t; } std::array SkBezierCubic::EvalAt(const double curve[8], double t) { const auto in_X = [&curve](size_t n) { return curve[2*n]; }; const auto in_Y = [&curve](size_t n) { return curve[2*n + 1]; }; // Two semi-common fast paths if (t == 0) { return {in_X(0), in_Y(0)}; } if (t == 1) { return {in_X(3), in_Y(3)}; } // X(t) = X_0*(1-t)^3 + 3*X_1*t(1-t)^2 + 3*X_2*t^2(1-t) + X_3*t^3 // Y(t) = Y_0*(1-t)^3 + 3*Y_1*t(1-t)^2 + 3*Y_2*t^2(1-t) + Y_3*t^3 // Some compilers are smart enough and have sufficient registers/intrinsics to write optimal // code from // double one_minus_t = 1 - t; // double a = one_minus_t * one_minus_t * one_minus_t; // double b = 3 * one_minus_t * one_minus_t * t; // double c = 3 * one_minus_t * t * t; // double d = t * t * t; // However, some (e.g. when compiling for ARM) fail to do so, so we use this form // to help more compilers generate smaller/faster ASM. https://godbolt.org/z/M6jG9x45c double one_minus_t = 1 - t; double one_minus_t_squared = one_minus_t * one_minus_t; double a = (one_minus_t_squared * one_minus_t); double b = 3 * one_minus_t_squared * t; double t_squared = t * t; double c = 3 * one_minus_t * t_squared; double d = t_squared * t; return {a * in_X(0) + b * in_X(1) + c * in_X(2) + d * in_X(3), a * in_Y(0) + b * in_Y(1) + c * in_Y(2) + d * in_Y(3)}; } // Perform subdivision using De Casteljau's algorithm, that is, repeated linear // interpolation between adjacent points. void SkBezierCubic::Subdivide(const double curve[8], double t, double twoCurves[14]) { SkASSERT(0.0 <= t && t <= 1.0); // We split the curve "in" into two curves "alpha" and "beta" const auto in_X = [&curve](size_t n) { return curve[2*n]; }; const auto in_Y = [&curve](size_t n) { return curve[2*n + 1]; }; const auto alpha_X = [&twoCurves](size_t n) -> double& { return twoCurves[2*n]; }; const auto alpha_Y = [&twoCurves](size_t n) -> double& { return twoCurves[2*n + 1]; }; const auto beta_X = [&twoCurves](size_t n) -> double& { return twoCurves[2*n + 6]; }; const auto beta_Y = [&twoCurves](size_t n) -> double& { return twoCurves[2*n + 7]; }; alpha_X(0) = in_X(0); alpha_Y(0) = in_Y(0); beta_X(3) = in_X(3); beta_Y(3) = in_Y(3); double x01 = interpolate(in_X(0), in_X(1), t); double y01 = interpolate(in_Y(0), in_Y(1), t); double x12 = interpolate(in_X(1), in_X(2), t); double y12 = interpolate(in_Y(1), in_Y(2), t); double x23 = interpolate(in_X(2), in_X(3), t); double y23 = interpolate(in_Y(2), in_Y(3), t); alpha_X(1) = x01; alpha_Y(1) = y01; beta_X(2) = x23; beta_Y(2) = y23; alpha_X(2) = interpolate(x01, x12, t); alpha_Y(2) = interpolate(y01, y12, t); beta_X(1) = interpolate(x12, x23, t); beta_Y(1) = interpolate(y12, y23, t); alpha_X(3) /*= beta_X(0) */ = interpolate(alpha_X(2), beta_X(1), t); alpha_Y(3) /*= beta_Y(0) */ = interpolate(alpha_Y(2), beta_Y(1), t); } std::array SkBezierCubic::ConvertToPolynomial(const double curve[8], bool yValues) { const double* offset_curve = yValues ? curve + 1 : curve; const auto P = [&offset_curve](size_t n) { return offset_curve[2*n]; }; // A cubic Bézier curve is interpolated as follows: // c(t) = (1 - t)^3 P_0 + 3t(1 - t)^2 P_1 + 3t^2 (1 - t) P_2 + t^3 P_3 // = (-P_0 + 3P_1 + -3P_2 + P_3) t^3 + (3P_0 - 6P_1 + 3P_2) t^2 + // (-3P_0 + 3P_1) t + P_0 // Where P_N is the Nth point. The second step expands the polynomial and groups // by powers of t. The desired output is a cubic formula, so we just need to // combine the appropriate points to make the coefficients. std::array results; results[0] = -P(0) + 3*P(1) - 3*P(2) + P(3); results[1] = 3*P(0) - 6*P(1) + 3*P(2); results[2] = -3*P(0) + 3*P(1); results[3] = P(0); return results; } namespace { struct DPoint { DPoint(double x_, double y_) : x{x_}, y{y_} {} DPoint(SkPoint p) : x{p.fX}, y{p.fY} {} double x, y; }; DPoint operator- (DPoint a) { return {-a.x, -a.y}; } DPoint operator+ (DPoint a, DPoint b) { return {a.x + b.x, a.y + b.y}; } DPoint operator- (DPoint a, DPoint b) { return {a.x - b.x, a.y - b.y}; } DPoint operator* (double s, DPoint a) { return {s * a.x, s * a.y}; } // Pin to 0 or 1 if within half a float ulp of 0 or 1. double pinTRange(double t) { // The ULPs around 0 are tiny compared to the ULPs around 1. Shift to 1 to use the same // size ULPs. if (sk_double_to_float(t + 1.0) == 1.0f) { return 0.0; } else if (sk_double_to_float(t) == 1.0f) { return 1.0; } return t; } } // namespace SkSpan SkBezierCubic::IntersectWithHorizontalLine( SkSpan controlPoints, float yIntercept, float* intersectionStorage) { SkASSERT(controlPoints.size() >= 4); const DPoint P0 = controlPoints[0], P1 = controlPoints[1], P2 = controlPoints[2], P3 = controlPoints[3]; const DPoint A = -P0 + 3*P1 - 3*P2 + P3, B = 3*P0 - 6*P1 + 3*P2, C = -3*P0 + 3*P1, D = P0; return Intersect(A.x, B.x, C.x, D.x, A.y, B.y, C.y, D.y, yIntercept, intersectionStorage); } SkSpan SkBezierCubic::Intersect(double AX, double BX, double CX, double DX, double AY, double BY, double CY, double DY, float toIntersect, float intersectionsStorage[3]) { double roots[3]; SkSpan ts = SkSpan(roots, SkCubics::RootsReal(AY, BY, CY, DY - toIntersect, roots)); int intersectionCount = 0; for (double t : ts) { const double pinnedT = pinTRange(t); if (0 <= pinnedT && pinnedT <= 1) { intersectionsStorage[intersectionCount++] = SkCubics::EvalAt(AX, BX, CX, DX, pinnedT); } } return {intersectionsStorage, intersectionCount}; } SkSpan SkBezierQuad::IntersectWithHorizontalLine(SkSpan controlPoints, float yIntercept, float intersectionStorage[2]) { SkASSERT(controlPoints.size() >= 3); const DPoint p0 = controlPoints[0], p1 = controlPoints[1], p2 = controlPoints[2]; // Calculate A, B, C using doubles to reduce round-off error. const DPoint A = p0 - 2 * p1 + p2, // Remember we are generating the polynomial in the form A*t^2 -2*B*t + C, so the factor // of 2 is not needed and the term is negated. This term for a Bézier curve is usually // 2(p1-p0). B = p0 - p1, C = p0; return Intersect(A.x, B.x, C.x, A.y, B.y, C.y, yIntercept, intersectionStorage); } SkSpan SkBezierQuad::Intersect( double AX, double BX, double CX, double AY, double BY, double CY, double yIntercept, float intersectionStorage[2]) { auto [discriminant, r0, r1] = SkQuads::Roots(AY, BY, CY - yIntercept); int intersectionCount = 0; // Round the roots to the nearest float to generate the values t. Valid t's are on the // domain [0, 1]. const double t0 = pinTRange(r0); if (0 <= t0 && t0 <= 1) { intersectionStorage[intersectionCount++] = SkQuads::EvalAt(AX, -2 * BX, CX, t0); } const double t1 = pinTRange(r1); if (0 <= t1 && t1 <= 1 && t1 != t0) { intersectionStorage[intersectionCount++] = SkQuads::EvalAt(AX, -2 * BX, CX, t1); } return SkSpan{intersectionStorage, intersectionCount}; }