/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkFloatingPoint_DEFINED #define SkFloatingPoint_DEFINED #include "include/private/base/SkAttributes.h" #include "include/private/base/SkMath.h" #include #include #include #include inline constexpr float SK_FloatSqrt2 = 1.41421356f; inline constexpr float SK_FloatPI = 3.14159265f; inline constexpr double SK_DoublePI = 3.14159265358979323846264338327950288; static constexpr int sk_float_sgn(float x) { return (0.0f < x) - (x < 0.0f); } static constexpr float sk_float_degrees_to_radians(float degrees) { return degrees * (SK_FloatPI / 180); } static constexpr float sk_float_radians_to_degrees(float radians) { return radians * (180 / SK_FloatPI); } // floor(double+0.5) vs. floorf(float+0.5f) give comparable performance, but upcasting to double // means tricky values like 0.49999997 and 2^24 get rounded correctly. If these were rounded // as floatf(x + .5f), they would be 1 higher than expected. #define sk_float_round(x) (float)sk_double_round((double)(x)) template , bool> = true> static inline constexpr bool SkIsNaN(T x) { return x != x; } // Subtracting a value from itself will result in zero, except for NAN or ±Inf, which make NAN. // Multiplying a group of values against zero will result in zero for each product, except for // NAN or ±Inf, which will result in NAN and continue resulting in NAN for the rest of the elements. // This generates better code than `std::isfinite` when building with clang-cl (April 2024). template , bool> = true> static inline bool SkIsFinite(T x, Pack... values) { T prod = x - x; prod = (prod * ... * values); // At this point, `prod` will either be NaN or 0. return prod == prod; } template , bool> = true> static inline bool SkIsFinite(const T array[], int count) { T x = array[0]; T prod = x - x; for (int i = 1; i < count; ++i) { prod *= array[i]; } // At this point, `prod` will either be NaN or 0. return prod == prod; } inline constexpr int SK_MaxS32FitsInFloat = 2147483520; inline constexpr int SK_MinS32FitsInFloat = -SK_MaxS32FitsInFloat; // 0x7fffff8000000000 inline constexpr int64_t SK_MaxS64FitsInFloat = SK_MaxS64 >> (63-24) << (63-24); inline constexpr int64_t SK_MinS64FitsInFloat = -SK_MaxS64FitsInFloat; // sk_[float|double]_saturate2int are written to return their maximum values when passed NaN. // MSVC 19.38+ has a bug with this implementation, leading to incorrect results: // https://developercommunity.visualstudio.com/t/Optimizer-incorrectly-handles-NaN-floati/10654403 // // We inject an explicit NaN test on MSVC to work around the problem. #if defined(_MSC_VER) && !defined(__clang__) #define SK_CHECK_NAN(resultVal) if (SkIsNaN(x)) { return resultVal; } #else #define SK_CHECK_NAN(resultVal) #endif /** * Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN. */ static constexpr int sk_float_saturate2int(float x) { SK_CHECK_NAN(SK_MaxS32FitsInFloat) x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat; x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat; return (int)x; } /** * Return the closest int for the given double. Returns SK_MaxS32 for NaN. */ static constexpr int sk_double_saturate2int(double x) { SK_CHECK_NAN(SK_MaxS32) x = x < SK_MaxS32 ? x : SK_MaxS32; x = x > SK_MinS32 ? x : SK_MinS32; return (int)x; } /** * Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN. */ static constexpr int64_t sk_float_saturate2int64(float x) { SK_CHECK_NAN(SK_MaxS64FitsInFloat) x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat; x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat; return (int64_t)x; } #undef SK_CHECK_NAN #define sk_float_floor2int(x) sk_float_saturate2int(std::floor(x)) #define sk_float_round2int(x) sk_float_saturate2int(sk_float_round(x)) #define sk_float_ceil2int(x) sk_float_saturate2int(std::ceil(x)) #define sk_float_floor2int_no_saturate(x) ((int)std::floor(x)) #define sk_float_round2int_no_saturate(x) ((int)sk_float_round(x)) #define sk_float_ceil2int_no_saturate(x) ((int)std::ceil(x)) #define sk_double_round(x) (std::floor((x) + 0.5)) #define sk_double_floor2int(x) ((int)std::floor(x)) #define sk_double_round2int(x) ((int)std::round(x)) #define sk_double_ceil2int(x) ((int)std::ceil(x)) // Cast double to float, ignoring any warning about too-large finite values being cast to float. // Clang thinks this is undefined, but it's actually implementation defined to return either // the largest float or infinity (one of the two bracketing representable floats). Good enough! SK_NO_SANITIZE("float-cast-overflow") static constexpr float sk_double_to_float(double x) { return static_cast(x); } inline constexpr float SK_FloatNaN = std::numeric_limits::quiet_NaN(); inline constexpr float SK_FloatInfinity = std::numeric_limits::infinity(); inline constexpr float SK_FloatNegativeInfinity = -SK_FloatInfinity; inline constexpr double SK_DoubleNaN = std::numeric_limits::quiet_NaN(); // Calculate the midpoint between a and b. Similar to std::midpoint in c++20. static constexpr float sk_float_midpoint(float a, float b) { // Use double math to avoid underflow and overflow. return static_cast(0.5 * (static_cast(a) + b)); } static inline float sk_float_rsqrt_portable(float x) { return 1.0f / std::sqrt(x); } static inline float sk_float_rsqrt (float x) { return 1.0f / std::sqrt(x); } // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not, // so we have a helper that suppresses the possible undefined-behavior warnings. #ifdef SK_BUILD_FOR_WIN #pragma warning(push) #pragma warning(disable : 4723) #endif SK_NO_SANITIZE("float-divide-by-zero") static constexpr float sk_ieee_float_divide(float numer, float denom) { return numer / denom; } SK_NO_SANITIZE("float-divide-by-zero") static constexpr double sk_ieee_double_divide(double numer, double denom) { return numer / denom; } #ifdef SK_BUILD_FOR_WIN #pragma warning( pop ) #endif // Returns true iff the provided number is within a small epsilon of 0. bool sk_double_nearly_zero(double a); // Compare two doubles and return true if they are within maxUlpsDiff of each other. // * nan as a or b - returns false. // * infinity, infinity or -infinity, -infinity - returns true. // * infinity and any other number - returns false. // // ulp is an initialism for Units in the Last Place. bool sk_doubles_nearly_equal_ulps(double a, double b, uint8_t maxUlpsDiff = 16); #endif